Polymer Chemistry

Chemical Analysis and Polymer Branch
Materials Science Division
Engineering and Technology Directorate
Kennedy Space Center, Florida

Dr. Martha Williams (Martha.K.Williams@nasa.gov)
Dr. Luke Roberson (Luke.B.Roberson@nasa.gov)
Anne Caraccio (Anne.Caraccio@nasa.gov)
7/29/2010
Materials Science Division
Organizational Chart

NE-L
Murray, S. – Chief
Foster, A. – Deputy
Balles, A. – Technical
Integration Mgr

NE-L1
Failure
Analysis &
Material Eval.

NE-L2
Mat. Testing &
Corrosion
Control

NE-L3
Prototype
Development

NE-L4
Materials and
Processing

NE-L5
Applied
Physics

NE-L6
Chemical
Analysis &
Polymer Branch

Chemical
Analysis

Polymer
Science &
Technology Lab
Lab Overview

Mission

To develop and apply new technologies in polymer and material chemistry that benefit NASA's programs and mission

Team

2 NASA scientists, 1 co-op, and 4 contractors

Areas of Expertise

Polymer Nanocomposites
Next Generation Wire Materials
Carbon Nanotube and Nanofiber Materials
Conductive Polymers
Polymer Processing
Fire and Polymers
Foam and Insulation Materials

Numerous Collaborative Efforts

NASA Centers (JSC, LaRC, MSFC, GSFC, GRC)
KSC Directorates (Shuttle, Ares, Orion, Ground support operations)
Academia (Alberta, FIT, GT, Harding, Illinois-Urbana Champagne, UCF, UF, USF)
Industry Space Act Agreements (Thermax, DeWAL, Sharklet, Crosslink, Sabic, Amalgam)
Industry Contracts (ARCNano, Epner)
What Are Polymers?

Poly Mers are made of many Monomers

Many Units → One Unit

![Ethylene](image)

Polymerization

![Polyethylene](image)

Polymers: Derived from the Greek words *poly* and *mers* meaning "many parts".

- Large molecules composed of repeated chemical units
- When you think of polymer most automatically think → PLASTIC. However, polymers are a wide range of natural and synthetic materials with a wide variety of properties.
- Molecular weight of the resulting synthesized polymer can range from the very lightest of molecules up to huge gels.
History of Polymer Chemistry

1844
Charles Goodyear patents vulcanization process.

1907
Leo Bakeland created the first completely synthetic polymer, Bakelite (Phenol/formaldehyde).

1920
Vinyl Chloride resin mass production begins (Invented in 1835).

1930
Polystyrene mass production begins (Invented in 1839 by Eduard Simon).

1930s-40s
Polyethylene mass production begins.

1960s-70s
Kevlar and high performance polymer industries take off.

We now use more plastic than steel, aluminum and copper combined.
Composites/Materials Development at KSC

- Smart Materials and Detection Systems
- Self healing materials
- Flame retardant materials
- Aerogel composites
- Aerogel for environmental remediation
- Chemochromic hazardous gas detectors
- Antimicrobial polymers
- CNTs and conductive polymer technologies
Why Wiring?

- **Aged Wire**
 - Cracks and frays over time
 - Hard to detect damage
 - Extensive maintenance related damage during ground processing work

- **Space Shuttle Orbiter**
 - 183 miles of wiring buried deep within structure of vehicle
 - Difficult to manually inspect
Wire System Failures

STS-93 (July 1999)
 Short circuit in 14 AWG Kapton® insulated wire
TWA 800 (July 1996)
 Frayed Kapton® wire in center tank area
SwissAir 111 (September 1998)
 Damaged wire in plane's entertainment system

Manual Repair Technologies for Kapton and Teflon wires

In situ Damage Detection systems for vehicle health monitoring

Self-Healing insulation
Wire System Materials

Insulation and Repair Materials

Present Wiring Repairs

Manual Repair Concept

Casting of wire repair materials

Laboratory Repair Process
Wire Systems Integration

- **Smart Connectors**
 - Small, lightweight, ultra reliable

- **In-situ wire damage detection system**
 - Capable of wire damage detection “on-the-fly”

- **Integrated vehicle health monitoring (IVHM)**
 - System-of-systems level, providing high level of reliability
Self-Healing Wire Repair

See Video
“Smart Wiring” Summary

- Early wire fault detection and self-repair includes the development of an *in situ* detection system to detect and locate an electrical compromise on an energized “live” wire.
- The *in situ* detection monitoring system uses Time Domain Reflectometry (TDR) to locate failures such as opens, shorts, and intermittent faults in existing wiring systems.
- A new wire construction that contains a conductive composite detection layer for early detection to wire insulation damage and self-healing capabilities are also included in this “Smart Wiring” system.
- Currently partnering with wiring industry and NAVAIR.
Fire and Polymers

• Flame retardant strategies
 - Polymethoxyamide derivatives for high temperature engineering polymers (patent issued)
 - Carbon nanotube synergistic FR properties
 - Polyhedral Oligomeric Silsesquioxanes (POSS) FR properties

• Fire risk consultation
 - Wire insulation
 - Thermal insulation
 - Ablator

• Fire standards and risk
 - Ares I
 - Ares V
 - Orion
Aerogel Technology

- Aerogel materials are generally silica based, light weight materials, fully breathable, and treated to be super-hydrophobic.

- Aerogel granules are free flowing, fills small cavities, does not compact, no preconditioning required, and can be molded or formed using binders.

- Aerogel granules (Nanogel®) by Cabot Corp.:
 - 90% porous with a mean pore diameter of 20 nm.
 - Bead bulk density ≈ 80 kg/m³ (5 lbs/ft³).
 - Individual beads are fragile (shear), but have high elastic compression of over 50% with no damage.
 - k-value ≈18 mW/m-K @ 25°C and 760 torr.
 - www.cabot-corp.com/nanogel

- Aerogel blanket (Spaceloft®) manufactured by Aspen Aerogels:
 - Bulk density 6 to 8 lbs/ft³.
 - k-value ≈12 mW/m-K @ 38°C and 760 torr.
 - Use temperature range -273°C to 650°C (-459°F to 1200°F).
 - http://www.aerogel.com/
Aerogel Composites

AeroFoam - polyimide foam + aerogel
Enhanced thermal and vibration damping performance. Structural integrity to the aerogel and cryogen storage capabilities.

AeroPlastic – thermoplastic + aerogel
Extruded process, composite reducing heat transfer by 40-60%. Cryogen storage and transfer applications such as piping and seal.

AeroPlastic demo testing on cryo-piping system

Fiber/Textile+ aerogel structural composites
Aerogels for Oil Remediation

Why Aerogel?

Lightest solid known (80 kg/m³) – floats on water
High oil absorbency – 250 gallons/m³
Super-hydrophobic material (repels water)
Environmentally friendly – inert amorphous silica
Stable – long consistent service life, no UV degradation
Commercially manufactured in bulk quantities
Aerogel incorporated into mesh bag, blanket, or filled boon for easy deployment
KSC's Solution

- Cabot Nanogel: Commercial small business collaboration through existing SAA with NASA KSC
- $2800 per m³ = 250 gallons oil
- 60,000 barrels of oil released per day
- 480,000 miles of boons to be deployed off Florida coast
- Inventory of aerogel for oil recovery

<table>
<thead>
<tr>
<th>Domestic inventory</th>
<th>Europe inventory</th>
<th>Sustainable capacity per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m³</td>
<td>2000 m³</td>
<td>600 m³</td>
</tr>
<tr>
<td>25,000 gallons equivalency</td>
<td>500,000 gallons equivalency</td>
<td>150,000 gallons equivalency</td>
</tr>
</tbody>
</table>
A patent-pending irreversible color changing H₂ gas sensor was developed at KSC in partnership with UCF and ASRC.

Changes color from a light tan to black in the presence of H₂.

Can be manufactured into any polymer part, tape, fiber, or fabric material for unlimited potential uses.
- Paint, Gloves, Coveralls, PPE

Operates under ambient and cryogenic temperatures.

Reversible Sensor

<table>
<thead>
<tr>
<th>% H₂</th>
<th>T = 0</th>
<th>T = 1</th>
<th>T = 2</th>
<th>T = 3</th>
<th>T = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>AE = 0.0</td>
<td>AE = 1.54</td>
<td>AE = 1.97</td>
<td>AE = 13.48</td>
<td>AE = 21.93</td>
</tr>
<tr>
<td>5%</td>
<td>AE = 0.0</td>
<td>AE = 1.09</td>
<td>AE = 2.08</td>
<td>AE = 16.99</td>
<td>AE = 28.86</td>
</tr>
<tr>
<td>10%</td>
<td>AE = 0.0</td>
<td>AE = 0.75</td>
<td>AE = 10.45</td>
<td>AE = 28.90</td>
<td>AE = 32.09</td>
</tr>
<tr>
<td>50%</td>
<td>AE = 0.0</td>
<td>AE = 0.54</td>
<td>AE = 31.77</td>
<td>AE = 35.32</td>
<td>AE = 38.4</td>
</tr>
<tr>
<td>100%</td>
<td>AE = 0.0</td>
<td>AE = 1.30</td>
<td>AE = 34.27</td>
<td>AE = 37.37</td>
<td>AE = 37.47</td>
</tr>
</tbody>
</table>
Chemochromic Hydrogen Sensors

LPA OMBUU Deployment for STS 117, 118, 120, 122, 123

STS-118 LOAD-1 HP SKID (H2CONC-B)
Hydrogen vent lines on Pad A slope.

Comparison of Delta E Values for Different Pigment Loads

Percent Irreversible Hydrogen Sensing Pigment in Teflon Tape

STS-130 H2 Pressure Flange A3362
Comparison of 1% and 5% by weight KAuCl$_4$ on different substrates.
Antimicrobial Materials

Shuttle Potable Water
(4) 170 lb Inconel bellow tanks
Iodine (3-4 mg/L)

ISS Potable Water
Stainless tubing
Ionic Silver Biocide

Orion Potable Water
(5) Inconel 718 Tanks (14.3 gal)
Miles of Titanium water lines
Surface Morphology and Surface Chemistry

- Efficacy studies after 21 days decreases biofilm formation
- Easy to imprint during manufacture of polymer articles through a coining process
- Can be used in conjunction with antimicrobial polymers
Microgravity Flight Experiments

BIOLOGICAL ANALYSIS

Confirm efficacy of \textit{Pseudomonas fluorescents} bacteria species with Sharklet® topography coupons and different surface treatments

- \textit{How well does it work in }\mu\text{G and lunar G compared to 1G?}
Conductive Inks Formulations for Multiple Applications

- Uses standard Inkjet printing technology
- 4pt probe used to measure resistivity or conductivity
- Formulations are solution blends; including carbon nanotubes, polymers and nanometallics. Patent application in work.
- Printing on multiple types of flat surfaces, including fabrics for dust screen technology
- Printing on curved surfaces for detection in process
Testing and Processing Equipment

- Fire Testing
 - Cone Calorimeter
 - Oxygen Index**
 - UL94 fire test
 - NASA Std 6001 fire test
 - Radiant Panel*
 - NBS Smoke Chamber*
 - Two foot tunnel*
 - Glow wire ignition*

- Cryogenic Materials Testing
 - Cryogenic moisture uptake (CMU)**
 - Brittleness/Impact test**
 - Liquid helium cold finger test**
 - Single Pin-socket Krytox
 Contamination Electrical
 Characterization under Cryogenic
 Conditions**

- Cellular Solid Analysis
 - Pycnometer (closed/open cell)**
 - Surface area measurement**

- Thermal Analysis
 - Thermogravimetric analysis (TGA)
 - Differential Scanning Calorimetry (DSC)
 - Dynamic Mechanical Analysis (DMA)

- Physical Testing
 - Tensile Test
 - Compressive Test
 - Pull/Peel Test

- Electrical Testing
 - 4-point probe
 - Surface/Volume resistance

- Polymer Processing capabilities
 - Extrusion
 - Injection molder
 - Fiber spinning equipment
 - Melt, ball, and high intensity mixers

*in collaboration with Cryogenics Test Laboratory
**in collaboration with Florida Tech
Acknowledgements

Polymer Science and Technology
Dr. Martha Williams, Lead
Dr. LaNetra Tate*
Trent Smith*
Anne Caraccio

ASRC Applied Chemistry Lab
Dr. Pedro Medelius
Dr. Tracy Gibson
Dr. Mary Whitten
Dr. Scott Jolley
Dr. Robert Devor
Dr. Steve Trigwell
Sarah Snyder
Lilly Fitzpatrick

Cryogenics Lab
James Fesmire
Jared Sass
Wes Johnson
Dr. Barry Meneghelli

Environmental Life Support
Dr. Ray Wheeler
Dr. Mike Roberts
Michelle Birmele
Dr. John Sager†

Surface Systems Group
Rob Mueller, Chief
Dr. Phil Metzger
David Smith*
Ryan Clegg*

Electrostatics and Surface Physics
Dr. Carlos Calle, Lead
Dr. Mike Hogue
Dr. Charlie Buhler†

LaRC
Dr. Erik Weiser
Bert Cano

Applied Physics Lab
Dr. Bob Youngquist, Lead
Dr. Janine Captain
Dr. Chris Immer

Technology Transfer Office
David Makufka
Carol Dunn
Randy Heald
Jim Nichols

* Former group members
† No longer at KSC
QUESTIONS?