Source of Acquisition
NASA Johnson Space Center

Higher Order Bases 1n a 2D Hybrid
BEM/FEM Formulation

Patrick W. Fink, Member, IEEE, and Donald R. Wilton, Fellow, IEEE

Abstract

The advantages of using higher order, interpolatory basis functions are examined in
the analysis of transverse electric (TE) plane wave scattering by homogeneous,
dielectric cylinders. A boundary-element/finite-element (BEM/FEM) hybrid
formulation is employed in which the interior dielectric region is modeled with the
vector Helmholtz equation, and a radiation boundary condition is supplied by an
Electric Field Integral Equation (EFIE). An efficient method of handling the
singular self-term arising in the EFIE is presented. The iterative solution of the
partially dense system of equations is obtained using the Quasi-Minimal Residual
(QMR) algorithm with an Incomplete LU Threshold (ILUT) preconditioner.
Numerical results are shown for the case of an incident wave impinging upon a
square dielectric cylinder. The convergence of the solution is shown versus the
number of unknowns as a function of the completeness order of the basis functions.

Index Terms — BEM/FEM , Electromagnetic radiation and scattering, higher order,
numerical analysis

I. Introduction

Two-dimensional, higher order basis functions have been shown to be advantageous both
in FEM formulations and in integral equation formulations. Salazar-Palma, et. al., [1]
examined higher order vector bases in various closed FEM problems. Hamilton, et.al.,
[2] examined higher order bases in TM scattering from a perfect electric conducting
(PEC), circular cylinder. In each of these studies, the general observed trend was that
increasing the completeness order of the basis functions improved the accuracy for a
given number of unknowns, or reduced the number of unknowns required for a given
accuracy. These benefits, however, are dependent upon the smoothness or regularity of
the solution [1]. Prior to the common use of edge-based basis functions, Gong and
Glisson [3] used linear and quadratic nodal basis functions in a 2D hybrid FEM/Method
of Moments formulation. Later, Peterson, et. al., [4] employed higher order (quadratic
for the TM case and linear for the TE case) scalar and vector bases in 2D scattering from
heterogeneous objects with mesh termination provided by an absorbing boundary
condition. It was shown that the increase from piecewise constant bases to piecewise



linear bases significantly improved the accuracy of the normal component at media
interfaces.

The finite element method is often the preferred approach for modeling inhomogeneous
or anisotropic regions. However, in unbounded regions, some method of terminating the
finite-element mesh must be employed. Absorbing Boundary Conditions (ABC) and
Perfectly Matched Layer (PML) absorbers have been used extensively to simulate an
open boundary condition on the FEM mesh. While these methods preserve the sparsity
of the system, they are not without drawbacks. In both, the mesh must extend away from
the surface of the scattering object an acceptable distance, and some experimentation to
determine this distance may be necessary. The use of the PML absorber results in poor
conditioning of the resulting system [6], and material values for the component layers
must be optimized over the band of interest. The ABC method involves higher order
derivatives of the fields at the mesh termination. In addition, the ABC and PML are
approximate boundary conditions. Since this work is intended for insertion into a
production code (EIGER [7], [8]), we chose the BEM approach for mesh termination in
order to minimize sources of error that might arise from a user’s incomplete knowledge
of the characteristics or limitations of the termination model.

In this paper, higher order basis functions are applied in the hybrid BEM/FEM
formulation. The problem is formulated using the vector Helmholtz equation for the
electric field in the homogenous, isotropic interior region. The fields on the exterior are
represented in terms of equivalent electric and magnetic currents on the FEM region
boundary, and a null field condition on the electric field just inside the boundary is used
to obtain an Electric Field Integral Equation (EFIE) there [9]. It is shown that use of a
generalized Gaussian quadrature is an accurate and efficient method for handling the
singular self-term arising in the 2D EFIE. Numerical results are shown for a TE-
polarized plane wave incident upon a square dielectric cylinder. Convergence of the
equivalent electric and magnetic currents along the boundary is examined as a function of
the completeness order of the basis functions. The Quasi-Minimal Residual (QMR)
method with an Incomplete LU Threshold (ILUT) preconditioner is used to solve the
resulting sparse system. The effects of the fill level and tolerance specified in the ILUT
preconditioner are compared as the order of the basis function increases.

II. Problem Formulation

The problem addressed is TE plane wave scattering by a dielectric cylinder (Fig. 1).
Each side of the cylinder is of length d = 0.58 4 ,, where 4, is the wavelength in free
space. The TE case was chosen since the operators involved have features similar to
those encountered in the 3D case. The interior and exterior formulations are discussed in
detail below, followed by a discussion on the enforcement of continuity of the tangential
electric and magnetic fields at the interface.



Figure 1. TE scattering from a square, dielectric cylinder.

A. Interior Formulation

The vector Helmholtz equation is used to model the electric field in the interior region,
VxVXE - k*E=— jo ul, (1)

where it has been assumed that the material is homogeneous and isotropic throughout the
domain. It is also assumed that there are no impressed current sources inside the
dielectric region, so the right-hand side of (1) vanishes. Curl-conforming, interpolatory
basis functions are used to represent the electric field in the interior region:
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where the superscript “p” denotes the completeness order of the basis, and N, denotes

the total number of unknowns associated with the interior electric field. The
completeness order is the highest order such that all independent polynomial terms of that
order or less are represented. The so-called “Whitney forms”, or “edge bases”, are used
as the 0™ order basis functions. Basis functions of completeness order p>0 are obtained
by multiplying the 0" order edge basis function by a pm—order modified or shified
Silvester interpolatory polynomial [10].

Equation (2) is inserted in (1), and the weak form of (1) is then obtained by the Galerkin
method, resulting in
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where Q{'is the i" testing function, and Q' is the ;" source basis function. The curl-

curl term in (1) has been modified through the use of the divergence theorem, resulting in
the first term of (3) and the introduction of a boundary integral term. This boundary
integral term provides for coupling of the magnetic field to the exterior region through
enforcement of the boundary condition on the tangential magnetic field. It can be
thought of as providing the source for the FEM problem, as becomes more apparent when
it is expressed in terms of the interior magnetic field at the boundary:
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Note that the basis function for the tangential magnetic field is identical to that used for
the electric current in the exterior formulation. This is discussed in more detail below.

B. Exterior Formulation

The exterior region is modeled using the Electric Field Integral Equation (EFIE). Using
the equivalence principle, electric and magnetic currents are placed around the boundary
of the cylinder, and the total tangential electric field is set equal to zero just inside the
boundary:
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Here, E, . 1is the electric field associated with the incident plane wave in the absence of

the scattering object, n is the normal to the contour, and the T implies that the
bounding contour is approached from the inside. The jump discontinuity of the curl term
caused by the magnetic current M has been removed and presented explicitly in the first
term. Therefore, the electric field at the observation point p due to the curl term arises
only from the magnetic current away from point p[11]. Furthermore, all current, field,
and potential dependence upon the position, p, on the cylinder has been suppressed for
notational simplicity. Since the sources are radiating in a homogeneous region, the
potentials can be expressed using the free-space Green’s function, G(p,p"), and (5)
becomes
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where 0S, indicates that the integral does not contribute at p'= p, and the prime notation
indicates source point coordinates.

On the boundary segments, piecewise polynomial, interpolatory basis functions are used
to represent the magnetic currents, which are z-directed in the TE formulation:

Ny ~
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where N, is the total number of unknowns associated with the magnetic current, and the
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superscript “p” is again the order of polynomial completeness. 17/. denotes the
coefficients of the magnetic current, which constitute a subset of the coefficients, V,,of

the electric field (2) as discussed below. IT1”’(p) is simply the product of the p‘h-order
modified Sylvester polynomial that interpolates the /" unknown and a pulse function that
is unity when p is within the support of the segment, and zero otherwise. This choice of
basis function allows for straightforward enforcement of tangential continuity across the
boundary, 4S5, as discussed below.

The electric currents are also represented by piecewise polynomial, interpolatory basis
functions [10]:
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where [ . is the unit vector along the /" segment, and A (p) is the p"-order,
j g the /" seg ;

interpolatory scalar function that interpolates the /" node in the set of N , degrees of

freedom associated with the electric currents. It should be noted that electric current
bases for interpolation points that coincide with segment endpoints span the support of
the contiguous segments in order to ensure continuity of current across the segments.
Bases that interpolate interior points have only a single segment as their support. While
this choice of basis function provides a differentiable function within the element and
ensures current continuity between segments, it also implies that the lowest completeness
order for the electric current is p = 1. This is in contrast to the basis representations for
the electric field and equivalent magnetic current, where the lowest order is p=0.



As in the interior formulation, the Galerkin choice for testing functions is used to obtain

the weak form of (6) by dot multiplying both sides by A", yielding
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where an integration by parts and the divergence theorem are used to transfer derivatives
from the scalar potential onto the testing function. The number of testing functions in (9)

corresponds to the number of electric current unknowns, N,. This is a result of the
strong continuity enforcement in which the degrees of freedom associated with the
magnetic current are shared with the electric field along the boundary of the interior FEM

region. Thus, the set of unknowns corresponding to the magnetic field, {VM } , 1s a subset

of the total set of unknowns for the electric field, {VE} :

C. Accurate Integration of Self-Term

[n order to realize the expected improvements in accuracy afforded by the higher order
bases, it is necessary to accurately integrate all matrix entries; this requires that special
consideration be given to the integration of singular self-terms.

In two dimensions, the Green’s function in (9) is given by [11]

_ Hy (kD)
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G(p,p)

where D E’p—p’l . As the source point, p’, approaches the observation point, p, the
Hankel function may be approximated by [12]:
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where Iny is Euler’s constant (0.5772...). To accurately integrate the logarithmic
singularity, the generalized Gaussian quadrature rule introduced by Ma et. al., [13] is
used. This rule exactly integrates linear combinations of the functions

I Intoix 2B(x): x°, #210(x); .. x"7 Jn(x) (12)

on the interval (0,1) with an N-point rule. To implement this quadrature rule, the source
segment is simply divided into two subsegments on either side of the observation point
and each is reparameterized with the parameter origin at the observation point where the
Green’s function is singular.

Observation
node i ot node i+1
— ® —
< + >
Integration path 1 Integration path 2

Figure 2. Integration using generalized quadrature rule.

D. Continuity Enforcement

To uniquely determine the fields in the exterior and interior regions, continuity of the
tangential fields at the boundary must be enforced in some sense. As a result of the
interpolatory basis functions selected for the interior electric field and the exterior
magnetic current, the nodes associated with each are collocated along the boundary, 05 .
Since it is the tangential component of the interior electric field that is interpolated at
these boundary nodes, and the magnetic current is Z -directed, assigning a single degree
of freedom for each pair of collocated nodes for E and M enforces strong tangential
continuity of the electric field across the boundary. Similarly, the same basis function
and degree of freedom used to model the electric current on the exterior is also used to
represent the tangential magnetic field in (4).

E. Matrix Structure and Sparse Solver

The linear system of equations consists of a total of Ny densely populated rows
corresponding to the EFIE (9) and N sparsely populated rows corresponding to the
Helmholtz equation (4). This system was solved by direct LU decomposition for the
smaller problems considered. For larger problems, memory and speed considerations
necessitate the use of an iterative method. Without any type of matrix normalization, the




hybrid system is very ill-conditioned. Therefore, column scaling was used prior to the
iterative solution process [14]. The Quasi-Minimal Residual (QMR) iterative method
was then employed with an Incomplete LU Threshold (ILUT) preconditioner [15]. This
preconditioner approximates the complete LU factorization as

LU~ A=LU, (13)
where 4 is the system matrix formed from (9) and (4), and L and U are obtained by

applying a sparsity pattern to the standard LU factorization. For each row in L and U,
the sparsity pattern may be affected by two parameters, a fill-in factor, fil/_limit, and a
tolerance factor, TOL. The fill-in factor specifies the maximum number of entries, in
addition to the number of non-zero row entries of the original matrix, to be allowed in the
corresponding rows of L and U. Only the largest fill limit entries in a row of L or U are

retained, and these sets are denoted by S* and S, respectively, for the i” row. The
final sparsity pattern is then determined dynamically for each row of Z and U by
disallowing any positions in S{* and S'“’ for which the corresponding value is less than

a specified tolerance. This tolerance is computed as the product of the average
magnitude of the row entries and the user specified tolerance factor, 7OL. The tolerance
criterion for the matrix element to be included in the sparsity pattern of L is summarized
by
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where £ is the (i,/) entry in the matrix L, TOL is the user-specified tolerance, and N

is the total number of non-zero elements in the lower part (i.e., j < i) of the M row. A
similar condition exists for entries of U.

II1. Numerical Results
A. Eigenvalues of a Square Conducting Cylinder

In order to verify the functionality of the finite-element formulation and code, the
generalized eigenvalues, &* in (1), were computed for the case of a square, cylindrical

conducting cavity with an interior relative permittivity of ¢ = 1.0. For this case, the
relative permittivity was set to unity. The theoretical convergence rate for the
eigenvalues is [1]

4, -4 < cre, (15)

where / is the extent of the element, ), is the numerically obtained estimate of the i"

eigenvalue, Xi is the i exact eigenvalue, p 1s the order of polynomial completeness, and
C is a constant that depends on the element type, but is independent of 4. Figure 3 shows




the convergence versus the number of segments for basis completeness orders ranging
from one to five. The slopes for the theoretical rates of convergence are shown for
comparison in the lower left corner where s = 2(p+1/). The convergence rates compare
favorably with the theoretical rates. The p =5 curve appears to converge faster than the
theoretical rate; however, the two data points obtained for this case are probably
insufficient to reveal the final convergence rate.
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Figure 3. Convergence of lowest eigenvalue for a square cylinder with bases of
completeness order p on triangular elements.

B. Dielectric Cylinder

In this section, results are presented for the case of TE plane wave scattering by a square,
dielectric cylinder. The relative permittivity of the cylinder is &, =2.2, and the length of

each side of the square is 0.58 A,. In Fig. 4, the equivalent electric current is plotted as a
function of the normalized distance around the square (Fig. 1), where the normalized side
length is unity. The basis order p is the completeness order for the electric current bases.
In the case p=5, the entire finite element region comprises just two triangles. It can be
seen that the p=5 case with just 85 unknowns compares very well with the p=1 baseline
case with 15,000 unknowns.
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Figure 4. Equivalent electric current on a square, dielectric cylinder.

Figure 5 is a similar plot of the equivalent magnetic current along the boundary. In this

graph, p is the completeness order of the magnetic current bases. Note that both the p=0
and p=4 solutions appear close to the baseline over much of the plot. However, the p=0

case has nodes nearer the vertices where the magnetic current is singular, and the error is
significant at these points.
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Figure 5. Equivalent magnetic current on a square, dielectric cylinder.

Figure 6 shows the convergence of the equivalent electric current as a function of the
completeness order of the electric current bases. The result obtained from a p=1 solution
with 15,000 unknowns was used as the baseline. For comparison, curves showing the
rates of convergence,

g YL
(16)

=
= >
2

where N is the number of unknowns, are inset in the lower left corner of Fig. 6. These
rates correspond to the convergence of a closed domain, FEM solution with different
orders of polynomial approximation, « , when the local errors are of the same order of
magnitude [1]. Since the elements in this study were of uniform length, and the error will
most likely be greater near the cylinder corners, this latter condition is certainly violated.
Nonetheless, there is a dramatic improvement in convergence of the p=2 case compared
to p=1. The p=3 case shows marginal improvement over p=2, and orders higher than p=3

11



do not appear to offer convergence benefits for the electric current in this problem. It
should be noted that, due to the edge singularity in the magnetic current, the higher order
bases are probably disadvantageous near the corners of the cylinder. This edge
singularity likely causes a diminishing return in accuracy with higher basis orders for this
problem.

Figure 7 shows a similar convergence plot for the equivalent magnetic current as a
function of the completeness order of the magnetic current bases. As in Fig. 6, curves
showing rates of convergence that correspond to the same closed domain problem
described above are inset in the lower left corner for comparison. As was the case with
the electric current, the error in the magnetic current is almost certainly not uniform
across the elements, but it can be seen that the slopes for the cases p =1, 2, and 3 agree
well with the inset curves prior to leveling off. Furthermore, Fig. 7 reveals that there is a
significant advantage associated with the use of higher order bases up to p =3 or 4, even
though the convergence rates are not sustained as the nodes approach corners.
Comparing Figs. 6 and 7, there is a more pronounced improvement with basis order for
the magnetic current than for the electric current. This may be due, in part, to the fact
that the increase in unknowns for the trials associated with lower basis orders results in
more nodes near the corner where the magnetic current is singular. However, there is a
noticeable decrease in the slope of all curves for which p > 0, and this also is due to the
inability of the smoother basis functions to model the singularity near the corners. This is
revealed in Fig. 8, which shows a distribution of the error for two trials with p=2. As the
number of unknowns increase from 408 to 1488, it can be seen that the convergence near
the corners is very poor.
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Figure 6. Convergence of equivalent electric current, J, as a function of basis order.
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Figure 7. Convergence of equivalent magnetic current, M, as a function of basis order.
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Figure 8. Distribution of error as a function of u for two trials with p=2.

C. Iterative Solver

For the numerical convergence results discussed above, all of the problems except the
baseline could be readily solved via direct Gaussian elimination. However, various trials
were run to investigate the suitability of the Quasi-Minimal Residual (QMR) iterative
solver with an Incomplete LU Threshold (ILUT) preconditioner for the hybrid system
defined by (4) and (9). The trials consisted of different values for the tolerance and
maximum fill-in parameters for the ILUT preconditioner. In all trials, a column-norm
scaling was implemented prior to the iterative solution process.

It was found that there existed narrow ranges of the tolerance and fill-in parameters that
permitted stable operation of the iterative solver with the resulting preconditioner. Table
1 below shows the two input parameters, tolerance, 7OL, and fill-in factor, fill limit, as
well as the number of nonzero entries in the resulting L and U matrices for a p=0 case
with 2,880 unknowns. The first row corresponds to a complete fill-in, and, hence, is
equivalent to a sparse direct solve method. The second to last column shows the
cumulative number of nonzero entries in L and U as a percentage of the total number of
non-zero entries required for a sparse direct solution (fi/l_limit =100% and TOL=0). In
the final column, the convergence results are stated as the number of two-term QMR

iterations required for an absolute residual of less than 10™°. It should be noted that cases
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in which the preconditioner failed were marked by excessively large norms of the initial
residual after the first approximate inverse.

It can be seen from Table 1 that, for the case of p=0 with 2880 unknowns, the resulting
size of the preconditioner is approximately 75% of the complete fill-in required for a
sparse direct solution. Table 2 contains results for a p=3 case with 2496 unknowns. As
expected, the p=3 matrix is not as sparse as the p=0 matrix. In addition, the resulting size
of the preconditioner, approximately 85% of the full fill-in from a direct solver, is larger
than that achieved for the p=0 case. In [5] it was found that quadratic and linear bases
resulted in similar fill-in for a nearly equal number of unknowns. In contrast, a marked
increase in fill-in for the p=3 case can be seen in trial 1 of Table 2 compared to trial 1 in
Table 1. It should be noted that, in the cases presented here, no re-ordering of the system
matrix was attempted.

Two additional trials were run for the case p=0 with 15,000 unknowns. These results are
shown in Table 3, where it can be seen that the resulting ILUT preconditioner is about

70% of the size of the complete, sparse LU factorization.

Table 1. Trials with p=0, N = 2880 unknowns.

Trial | TOL | fill limit | L U (L+U) | Iterations
%) (%)

.10 100. 306,870 | 299,877 10 o 1

241 B 10. 169,661 | 299,877 77 10
310 5. 157,061 | 299,877 Zis 15
4 |0 4 153,945 | 292,408 L 22
SR 3 147,951 | 246,512 Bt failed
6 |0.0025 100. 296,486 | 298,339 88.0 5

75 0 100. 270,195 | 293,339 49,9 9

8§ [0.05 100. 168,767 | 269,262 4oy 69
9: '] 0.075 100. 131,146 | 253,211 cals failed
10 |0.01 10. 154,354 | 293,339 oo g 17
1t {0.02 10. 135,629 | 286,760 898 failed
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Table 2. Trials with p=3, N = 2496 unknowns.

Trial | TOL | fill limit | L U (L+U) | Iterations
(%) (%)

1 0 100. 503,396 | 495,692 e 1

4 0 15. 388,212 | 495,692 S 12

3 0 10. 354,744 | 495,692 e 16

4 0 7.5 286,316 | 453,016 s failed

B 0.0025 | 100. 412,582 | 486,011 o 16

0 0.005 | 100. 368,128 | 478,775 dib 37

7 0.0075 | 100. 309,825 | 467,131 o failed

8 0.001 | 10. 335,273 | 491,409 8427 31

9 0.05 10. 148,974 | 435,175 i failed

Table 3. Trials with p=0, N = 15,000 unknowns.

Trial | TOL | fill_limit | L U (L+U) | Iterations
(%) (%)

! ! o 3728130 | 3689417 100.0 :

- el 1 1647754 | 3551338 [0 L

III. Conclusions

A FEM/BEM formulation using higher order, interpolatory vector basis functions was
presented for application to TE scattering from dielectric cylinders. A similar
formulation including results for scattering by 3D objects will be reported in the near
future. Although the formulation was applied to a homogeneous cylinder, it can be
readily adapted to inhomogeneous cylinders as well. A generalized Gaussian quadrature
[13] was implemented and found to provide accurate and efficient integration of the
singular self-terms.
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In order to verify the FEM code, the convergence of the lowest eigenvalue of a square
conducting cylinder was examined as a function of mesh density (4-refinements) and of
basis completeness order (p-refinements). Numerical results were presented for the case
of a TE plane wave impinging upon a dielectric square cylinder. The equivalent electric
and magnetic boundary currents were plotted for the cases of low (p=0 for the magnetic
currents) and high (p=4 for the magnetic currents) basis completeness orders. Finally, /-
p convergence was examined for the equivalent boundary currents with a 15,000
unknown p=0 (magnetic current) solution serving as a baseline. For both the electric and
magnetic equivalent currents, the use of higher order bases improved the convergence
significantly up to order p=3. The convergence rates tended to subside, however, beyond
a certain level of A-refinement. It is suspected that this is due to the edge singularity of
the magnetic current. Near edges, achieving full advantage from the use of higher order
basis functions will likely require equilibrated meshes [1] or the use of singular basis
functions [16].

An ILUT preconditioner, used in conjunction with QMR, was shown to provide solutions
with very few iterations, but provided only modest reductions in the required memory
when compared to a complete, sparse LU factorization. Adjusting the tolerance and fill-
in parameters for the implemented ILUT preconditioner did not permit a reduction of fill-
in at the expense of QMR iterations. Rather, there appeared to be a distinct threshold
below which the preconditioner provided a very good approximation to the inverse of the
original system, but above which the preconditioner became very poorly conditioned.
The ILUTP method, in which the “P” stands for pivoting, is recommended in [14] as a
remedy for unstable results with the ILUT preconditioner, but has not been applied in this
study.
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