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ABSTRACT   

Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, 

made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent 

surfaces.  Theoretical degradation in emittance with contaminant thickness was calculated.  Maximum allowable source 

outgassing rates were calculated using worst case view factors from source to baffle surface.  Tight requirements pushed 

the team to change the design of the adjacent surfaces to minimize the outgassing sources. 

Keywords: Emittance degradation, contamination, outgassing, NVR contamination, particulate contamination, 

emittance degradation with contamination, vapor deposited gold emittance degradation, outgassing in vacuum 

 

1. INTRODUCTION  

This paper documents the methods and processes used to determine contamination requirements for the gold-plated, 

thermal control baffles and radiator panels on the JWST IEC.  These requirements are driven by 1) the operational 

requirements of the thermal control baffles, which are integrated adjacent to the radiators, and 2) the need to minimize 

self contamination within in the IEC, (i.e. from its radiators to its baffles to prevent degradation of the baffle thermal 

properties). 

2. BACKGROUND 

The IEC is a composite shell that houses the electronics boxes for the four scientific instruments on JWST.  The IEC is 

part of the Integrated Scientific Instrument Module (ISIM).  It uses radiators to passively maintain operational 

temperatures of the instrument electronic boxes.  Additionally, in order to direct the infra-red (IR) flux from these 

radiators away from the JWST sunshield and optics train, the IEC design incorporates gold-plated baffles in front of the 

radiators. When considering the performance of the baffles in order to derive contamination requirements, both the 

optical scatter properties and the thermal performance of the baffles need to be considered.   

The IEC thermal design allocates a 0.010 change in hemispherical emittance, , on the gold-plated baffles at end-of-life 

(EOL) due to contamination.  The gold baffles are assumed to have an initial hemispherical  of 0.026  ± 0.026 (error), 

and a 0.010 increase due to contamination. These combine to a maximum EOL hemispherical  limit of 0.062 at EOL.  

The following outgassing and particulate requirements are derived from the allowable 0.010 increase in  due to 

contamination. 

The degradation in  cont) will be due to a combination of particulate and molecular contamination 

resident on the surface of the gold.  Splitting the delta- equally between each type of contamination, there will be an 

allowable 0.005 change due to particulate contamination, and a 0.005 change due to surface molecular contamination at 

EOL. 

A core requirement for baffle performance is derived from scatter.  A 1.5 percent area coverage (PAC) yields a 

calculated scatter of 2.5 %, which has been deemed acceptable. This value is well above the PAC required to keep the 

change in cont less than 0.010 (see section 3) to maintain thermal performance.  Thus the thermal requirements are the 

driver for deriving the contamination requirements to maintain the performance of the gold baffles.   



 

 
 

 

3. CHANGE IN EMITTANCE DUE TO PARTICULATE CONTAMINATION 

The change of 0.005 in contdue to particulate can be determined using the weighted average of the contributions from 

the base material and the particulate contamination.   

Using the 0.026 value for the gold surface and assuming an 0.9 value for the particles, a parametric correlation 

can be plotted (Figure 1). This indicates an EOL particulate requirement of 0.57 PAC.    

 

 

. 

 

 

The EOL particulate level will be due to the particulate on the baffles at the time of launch from ground processing, plus 

the particulate deposited on the baffles during launch, commonly referred to as particulate redistribution during launch.  

After launch, it is well understood that any particles generated in and around the spacecraft on orbit will not move 

around to deposit on other surfaces.  Since there are no moving parts on the baffles to generate particles, the particulate 

budget after launch is not considered. 

 

The only piece of information missing in the particulate budgeting calculations is the expected particle contribution to 

the baffle surface from redistribution during launch; this number will be provided by the JWST program.  To be 

conservative, part of the 0.57 PAC EOL will be allocated for launch redistribution.  

 

 

 
Figure 1: Change in Gold Emittance with PAC from particles of emissivity = 0.9.   
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4. MOLECULAR CONTAMINATION 

Many factors were considered when predicting the molecular deposition that would correspond to an increase in cont of 

0.005.  The two theories used to predict the molecular film thickness on a surface that will produce a change in cont of 

0.005 are Beer’s Law  (where the absorption of  the contamination film is considered) and Thin Film Interference (TFI) 

(where the absorption of the contamination film and the subsequent reflection off the underlying surface is combined).  

Beer’s law predicts a molecular film of 150Å while Thin Film Interference predicts a thickness of 650Å (see Figure 2)
1
.  

The JWST ISIM contamination control (CC) team chose to use the average of the Beer’s Law and TFI prediction 

methods, which leads to a requirement that the total deposition at EOL shall be no more than 400Å on the gold  baffle 

surface in order to maintain a Dcont  ≤ 0.005 due to non-volatile residue (NVR) or molecular deposition.  

 

Figure 2: Beer’s Law and Thin Film Interference predictions for D with NVR thickness, based on calculations 

performed by J. Hueser (BATC) for the SIRTF mission.
1
 

 

Contamination sources on the IEC are relatively isolated from the rest of the spacecraft and so the spacecraft 

requirements levied on the IEC are not very stringent.  Conversely, there are not significant contamination sources on the 

spacecraft with a view to the baffles.   Additionally, the IEC is designed such that effluent from the interior of the IEC 

compartment will be vented in a direction that prevents impingement onto the baffle surface.  Thus, the largest molecular 

contaminant contributor to the IEC baffle surface is the IEC radiators sitting directly underneath them.  Thermal 

predictions have demonstrated that the radiators operate at a temperature as much as 140 °C above the baffle 

temperatures; this means that the majority of the outgassing from the radiators will condense on the baffle surfaces, for 

the duration of the mission on orbit.   

The requirement levied on the IEC by ISIM, is to deliver the IEC to ISIM with a maximum of 100Å on all IEC surfaces. 

This requirement was not derived from the allowable deposition on the IEC baffles, but is part of a budget generated to 

protect the scientific instruments and other sensitive surfaces on JWST.  Accounting for this 100 Å and to preserve the 
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400 Å EOL, 300Å of deposition is allowed for the post delivery to ISIM Integration and Test (I&T) activities and for the 

5 year mission.   

Splitting this evenly between before and after launch, the outgassing requirement for the radiators must be low enough 

that no more than 150Å is deposited on the baffles over 5 years on-orbit.  The resulting outgassing rate (OGR) allowance 

for the flight radiators equated to 5.0 x 10
-14

 g/cm
2
-s or 2.88 x 10

-10
 g/s as measured by a measuring device at -90°C, 

(where -90°C represents the minimum expected temperature of the baffles on-orbit and the outgassing rate is normalized 

by the paint surface area in square centimeters).  In addition, a particle and NVR budget for IEC level testing was 

generated to ensure that ground operations will not exceed allocations for PAC and NVR during this phase of the 

processing.  This budget is a subset of the overall JWST budget for the IEC which will ensure that the PAC and NVR at 

EOL will not be exceeded.  The current IEC Baffle I&T Contamination Budget is shown in the table below. 

Table 1: IEC Baffle Contamination Budget 

Phase Start Date End Date Duration 

Particle-

Horizontal 

(PAC) 

Particle-

Vertical 

(PAC) 

Particle-

Inverted 

(PAC) 

NVR 

(Å) 

 

Initial Clean    
1 0.02 0.02 0.02 20 

Coatings 28-Aug-09 11-Dec-09 105 1.27 0.15 0.03 21 

Baffle Assembly 16-Nov-09 30-Nov-09 14 1.27 0.15 0.04 21 

Baffle only Tvac Test 1-Dec-09 29-Dec-09 28 1.28 0.15 0.04 39 

Integrate to Shell 31-Dec-09 3-May-10 123 2.31 0.26 0.05 40 

PT Sine Vibration 4-May-10 25-May-10 21 2.41 0.27 0.06 41 

Prep 4-Cycle Tvac 26-May-10 9-Jun-10 14 2.41 0.27 0.06 42 

4-Cycle Tvac 10-Jun-10 30-Jun-10 20 2.42 0.28 0.07 59 

Post TVac tasks 1-Jul-10 15-Jul-10 14 2.43 0.28 0.07 59 

PT Acoustic Test 16-Jul-10 22-Jul-10 6 2.54 0.29 0.08 59 

Pre-ship prep 23-Jul-10 9-Sep-10 48 2.55 0.29 0.08 60 

ISIM Delivery 10-Sep-10 10-Sep-10 1 0.02 0.02 0.02 100 

T-0 Launch    0.5 0.5 0.5 250 

EOL    0.57 0.57 0.57 400 

 

In addition, for the Flight Directional Baffle Thermal Vacuum (TV) Test that occurred at the Goddard Space Flight 

Center (GSFC) in early 2010, using the flight baffles and GSE radiator panels, the CC team had budgeted an allowable 

deposition of 15Å over 1 day of thermal vacuum exposure, for each baffle.  The allocation of an allowable deposition of 

15Å over 1 day was part of the allowable pre-ISIM delivery NVR deposition budget of 100Å.  This philosophy allowed 

for a much higher OGR for these GSE radiators than the flight radiators, by a factor of ~183, assuming the delta cont = 

0.010 is not changed.  Part of the justification for allowing such a high deposition rate (15Å/day) during the Flight 

Directional Baffle TV Test is the qualitative understanding that the majority of the material deposited during this test, at 

cryogenic temperatures will evaporate upon return to ambient temperature and pressure.  Further, the contamination 

team was concerned about the ability of the existing flight radiator coatings design (also used on these GSE radiators) to 

meet these low outgassing rates.  The Flight Directional Baffle TV Test and the preceding GSE radiator vacuum 

bakeout, with the same coatings design as the flight radiators, provided data to help determine if the current coatings 

design would be able to meet the flight OGR requirements. 

 



 

 
 

 

5. GSE RADIATOR VALIDATION APPROACH 

A GSE radiator bakeout was performed in order to verify that the radiators would not deposit more than 15Å to the 

baffles during the Flight Directional Baffle TV Test, which was assumed to be a 1-day test for each set of baffles.  In 

addition, the CC team used the outgassing data to determine the bakeout length of time for a similarly coated flight 

radiator panel to reach the allowable flight OGR.  The certification phase of this bakeout was conducted with the shrouds 

set to -100ºC and the radiators at +40ºC.  The quartz crystal microbalance (QCM) as placed approximately 10 cm from 

the painted surface of the radiator and set to -90ºC.  This set-up allowed the QCM to have the majority of the radiator 

surface in its field of view, without much view of the chamber walls. The outgassing requirement for this validation 

phase  is  ≤ of 9.17e-12 g/cm
2
/s, the square centimeters represents the paint surface area. Using a QCM Research 15MHz 

QCM, situated approximately 10 cm above the radiator painted surface, the corresponding collection rate required on the 

QCM was ≤ 7.6 Hz/hr.  Additionally, margin was applied to the allowable frequency rate in order to account for a test 

that takes longer than 24 hours per baffle.  The resulting QCM frequency rate was 2.5 Hz/hr.  See figure 3 below to see 

the test set-up at the chamber 238 facility at GSFC.   

 

 

Figure 3:  GSE Radiator Panel Bakeout Configuration in Chamber 238 at GSFC. 

 

Following the test, an outgassing rate (g/cm
2
-s) versus time data fit was perfromed using a power law regression.  

Statistical analysis of the fit to the data demonstrated that the lower 95% confidence interval equated to a bakeout 
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duration of 54 months necessary to meet the flight OGR using a similar coatings design.  The power law fit and lower 

95% confidence interval equated to bakeout durations of 3.75 months and 18 days, respectively.  See figure 4 below. 

Given the cost and schedule implications for an extended bakeout; these results led the CC team to recommend 

switching the radiator coating to water-based silicate paint with equivalent thermal properties.  Prior to the 

recommendation to switch the flight coatings design other options such as an elevated bakeout temperature were 

explored.  Due to the irradiated coatings on areas not covered by painted stripes, it was determined that a thermal 

environment exceeding the ones established for the GSE Radiator Panel Bakeout, was not feasible.   

 

 

Figure 4: GSE Radiator OGR Regression and Extrapolation for Flight OGR. 

6. CONCLUSION 

Re-assessing several variables assumed in this initial run-through of IEC “self” contamination requirements might result 

in more reasonable outgassing requirements.   

• A better understanding of the mission operational temperatures of the baffles might allow higher QCM collection 

temperatures for the outgassing evaluations.   

• A larger allotment of cont for contamination would allow for higher deposition rates (i.e. higher radiator outgassing 

rates).   

• Non-organic coatings (e.g. silicate paints and vapor deposited coatings) would inherently decrease the outgassing 

products from the radiators.   
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Another driving assumption is that these calculations assume that there is no contribution of outgassing products from 

the interior of the IEC, i.e. the IEC vents direct the outgassing products away from the baffles, away from any surfaces 

that could reflect outgassing products back to the baffles, and that the radiator composite structure is vented into the IEC, 

not out toward the baffles.  Any unintentional venting from around the shell towards the baffles must be avoided; all 

open seams must be closed out with Kapton tape or another approved method.  In order to maintain these tight 

deposition requirements, it is imperative that the flight design of the IEC vents, and the radiator vent paths adhere to 

these assumptions. 

The IEC GSE radiator test demonstrated that the flight radiator OGR requirement is difficult to achieve with the current 

flight radiator coatings design.  Therefore, the contamination team recommended changing the flight coatings design to a 

non-organic combination of coatings in addition to loosening the allowable delta cont.  Currently the particle budget will 

be easier to maintain than the NVR budget due to the adverse impacts to the emissivity of the gold coated baffles.   
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JWST Overview



IEC Overview
--	 ------------- --- --------- -------
• Mass = 125 Kg

---------------- ---- --- --- ------------- ----------------- --- -- --------------• 	 36 total vanes, 2-1--inner -1inner and 15

• Power= 200-230W	
outer

• SI electronic boxes, T = 273-313K 	
• 6 different vane shapes

• Fiberglass shell w/Nomex core	 • Painted radiator strips lie between the
vanes

NIRCam Radiator	 MIRI Radiator Panel
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Zemax model using Monte Carlo Ray Tracing Method
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Comparison of BRDF Using 5 & 60 Deg Incident

• Positional Errors
	 Angles and 0.633 & 10.6 µm Wavelengths

 Surface Roughness

 Particle Contamination

Input:

BRDFTot = BRDFmeas+BRDFDust

1.00E+05

1.00E+04

1.00E+03

1.00E+02

1.00E+01
c
LL 1.00E+00

m
1.00E-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05

-90 -80 -70 -60 -50 -40 -30 -20 -10 0	 10 20 30

Degrees from Surface Normal

40 50 60 70 80 90

o PAC of 1.5 meets heat

rejection rqm’t
	

Particle Contamination not Limiting
Case for Optical Performance.

--------------------------------------------------------------------------------------------------------



Hot Case Predict

• Mirrors coated with vapor-
deposited gold
0 3% emissivity BOL

o 98% specularity

o Non-VDG surfaces will be covered
with MLI to reduce uncontrolled
emissions (including outgassing)

ehemi = 0.026AU + 0.026MUF + 0.01contam =
0.062

De = 0.005PAC + 0.005NVR = 0.01contam

Hot Case: Concern for molecular
deposition

Cold Case: Regions of the underside
of the housing and nodes away from
any boxes at 90K (concern for
molecular + H2O)



Baffle Surface Contamination
Reqm't (1/2)

 Particle Requirement - De ≤ 0.005
Allowable EOL particulate %area coverage (PAC) can be
determined from the weighted average of emittance
contributions from the gold and the particulate, assuming the
particulate has an emittance of 0.9:

De = 0.005 = ([1- PAC/100] * 0.026 + PAC/100 * 0.9) – 0.026

PAC at EOL ≤ 0.57
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Thin-Film Interference (TFI)
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Baffle Surface Contamination
Reqm’t (2/2)

• Molecular Requirement - De ≤ 0.005

o Beer’s Law predicts a 150 Å layer of NVR

o Thin Film Interference (TFI) predicts a 650 A layer of NVR

Use the average of the two predictions:

EOL NVR ≤ 400 Å



- _+	 Baffle Contamination Budget 
^ j

Particle-
Start End

Particle- Particle- Inverted
Phase Duration Horizontal Vertical NVR (Å)

Date Date (PAC)
(PAC) (PAC)

Initial Clean 1 0.02 0.02 0.02 20

1.27 0.15 0.03 21
Coatings 28-Aug-09 11-Dec-09 105

1.27 0.15 0.04 21

Baffle Assembly 16-Nov-09 30-Nov-09 14

1.28 0.15 0.04 39
Baffle only Tvac Test 1-Dec-09 29-Dec-09 28

2.31 0.26 0.05 40
Integrate to Shell 31-Dec-09 3-May-10 123

2.41 0.27 0.06 41
PT Sine Vibration 4-May-10 I 25-May-10 21

2.41 0.27 0.06 42
Prep 4-Cycle Tvac 26-May-10 9-Jun-10 14

2.42 0.28 0.07 59
4-Cycle Tvac 10-Jun-10 30-Jun-10 20

2.43 0.28 0.07 59
Post TVac tasks 1-Jul-10 15-Jul-10 14

2.54 0.29 0.08 59
PT Acoustic Test 16-Jul-10 I 22-Jul-10 6

2.55 0.29 0.08 60
Pre-ship prep 23-Jul-10 9-Sep-10 48

ISIM Delivery 10-Sep-10 10-Sep-10 1	 1 0.02 0.02 0.02 100

0.5 0.5 0.5 250
T-0 Launch

0.57 0.57 0.57 400
EOL

EOL Surface Cleanliness
Rqm’t of PAC of 0.5 and 400A
• Tracked via a budget for

ground operations (I&T)
• Included are allocations for on-

orbit accumulations.
• OGR ensures on-orbit

molecular allocation is not
exceeded (150Å).

• Very little particle
accumulation on-orbit –
launch particle redistribution
taken into account.

o Concern for molecular
accumulations on-orbit that
will exceed allocation



GSE Radiator Panel

 Internal IEC compartment
completely shielded from
views to baffles

 Baffles only view high
emissivity paint strips

 Current flight-like paint
strips are coated with a
molecular based paint

 Direct deposition rate
calculated with TQCMs in
a cold wall bakeout at
GSFC
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• Power Law Regression
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data
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• Cost/Schedule
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duration
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based silicate paint
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