Risk Informed Design as Part of the Systems Engineering Process

CHSF Symposium AIAA NASA October 14-15, 2010

George Deckert – NASA
What is Risk Informed Design (RID)?

♦ The intent of Risk Informed Design is to make informed design trades in consciously buying down risk to the crew and the mission
 • Establishing the relative importance of risk drivers so that design and operations decisions can be made early in the Design, Development, Test, and Evaluation (DDT&E) cycle to effectively mitigate risk
 • Better balancing risk against other design commodities (cost, mass, power, etc.) in the iterative design and planning process
 • Controlling design complexity (historically a significant factor in system failures)

♦ Understanding and taking action to mitigate the most important risks early, limits the likelihood of having to “accept” risk later on in the product life cycle

The process is a continuous process throughout the lifecycle of the Orion Project
At each design and verification cycle, work to reduce the risk drivers
 • Focus on the Top Drivers to maximize impact
 • When new drivers emerge (new cycles) as Top Drivers, work those drivers
 • Key decision points emerge at various program milestones (e.g. Achievability)
RID Approach

♦ RID is based on the principle that risk is a design commodity such as mass, volume, cost or power.

♦ Both Qualitative and Quantitative risk analyses are used to expose dominant risk contributors, design trades and planning alternatives in the context of assigning critical design commodities.

♦ RID is accomplished as part of the systems engineering design process.

♦ Risk analysis includes all significant failure types, including: functional, phenomenological, software, human reliability, common cause, and external or environmental events.

♦ Complexity and fidelity of analysis is consistent with the available data and information during each design cycle
 - Early in development: Analysis done using higher level heritage based risk models
 - Models and analysis then mature with design and gain additional detail
 - Late in development: Models reflect “as designed” system and provide sufficient fidelity to evaluate aggregate risk for verification purposes
An example of integrating the decision packages to show management the relationships between the Loss of Crew Risk, Mass and Cost.

- These DPs have been sorted by the delta risk. You could sort on any of your design “commodities”

<table>
<thead>
<tr>
<th></th>
<th>Delta Mass</th>
<th>Delta Cost</th>
<th>Delta Risk</th>
<th>Cumulative Vehicle Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00E-02</td>
</tr>
<tr>
<td>DP 14</td>
<td>150</td>
<td>50</td>
<td>2.00E-03</td>
<td>8.00E-03</td>
</tr>
<tr>
<td>DP 11</td>
<td>67</td>
<td>11</td>
<td>1.00E-03</td>
<td>7.00E-03</td>
</tr>
<tr>
<td>DP 10</td>
<td>18</td>
<td>30</td>
<td>8.00E-04</td>
<td>6.20E-03</td>
</tr>
<tr>
<td>DP 7</td>
<td>12</td>
<td>6</td>
<td>5.00E-04</td>
<td>5.70E-03</td>
</tr>
<tr>
<td>DP 2</td>
<td>20</td>
<td>20</td>
<td>4.00E-04</td>
<td>5.30E-03</td>
</tr>
<tr>
<td>DP 8</td>
<td>5</td>
<td>1</td>
<td>3.00E-04</td>
<td>5.00E-03</td>
</tr>
<tr>
<td>DP 4</td>
<td>7</td>
<td>15</td>
<td>2.00E-05</td>
<td>4.98E-03</td>
</tr>
<tr>
<td>DP 13</td>
<td>98</td>
<td>13</td>
<td>2.00E-05</td>
<td>4.96E-03</td>
</tr>
<tr>
<td>DP 3</td>
<td>10</td>
<td>8</td>
<td>1.00E-05</td>
<td>4.95E-03</td>
</tr>
<tr>
<td>DP 9</td>
<td>100</td>
<td>12</td>
<td>6.00E-06</td>
<td>4.94E-03</td>
</tr>
<tr>
<td>DP 1</td>
<td>3</td>
<td>1</td>
<td>5.00E-06</td>
<td>4.93E-03</td>
</tr>
<tr>
<td>DP 6</td>
<td>15</td>
<td>2</td>
<td>4.00E-06</td>
<td>4.93E-03</td>
</tr>
<tr>
<td>DP 12</td>
<td>34</td>
<td>7</td>
<td>1.00E-06</td>
<td>4.93E-03</td>
</tr>
<tr>
<td>DP 5</td>
<td>50</td>
<td>19</td>
<td>8.00E-07</td>
<td>4.93E-03</td>
</tr>
<tr>
<td>DP 15</td>
<td>75</td>
<td>25</td>
<td>6.00E-08</td>
<td>4.93E-03</td>
</tr>
</tbody>
</table>
Backup Material
The RID process generally follows a three phase process.

1. Early design concepts are defined with minimally required functionality to perform the mission and no redundancy.
 - Initial focus on implementing “Key Driving Requirements” vs. establishing a fully functional, acceptably safe, or highly reliable design.
 - Risk analyses are performed during this phase to understand the risk vulnerabilities of this “zero based design” (ZBD).
2. Once a ZBD baseline has been established, design enhancements are evaluated with a focus on enhanced functionality and Loss of Crew (LOC) risk.

- Focus: “Make the design work” and “Make the design safe”.
- Design is evaluated to determine the best ways to mitigate the risk of the vehicle.
- Methods may include: adding a function (e.g., an abort capability), looking at a diverse method for performing the critical function (dissimilar functional redundancy), increased testing to improve reliability, selecting more reliable components, adding margin to the system or adding similar redundancy.
- Risk mitigation methods are selectively applied to more optimally reduce risk while maintaining performance and cost objectives, with a priority on diversity vs. simple redundancy.
- **Major Premise**: Simply adding redundancy is one option to improve safety and reliability. It is not the only option. It is not always the safest or most cost effective option.
- Many different investment portfolios (Decision Packages) are compared using Figures of Merit (FOMs) derived from key risk commodities, including LOC risk in order to develop a more functional and safe design within available resources.
- **Goal**: Spend scarce risk mitigation resources (mass, power, volume, cost) most effectively to maximally address risk.
3. Finally, additional enhancements are considered which more fully address functional requirements and focus on reliability and the Loss of Mission (LOM) risk.

- A portfolio approach to comparing investments is again used
- Ensures that the final design iteration produces a vehicle that more optimally meets functional requirements safely, reliably, and within budget.
“Build-Up” approach from the zero based design to a risk balanced design assures that affirmative rationale is used for the system design, its complexity, and the existence of each system element.

- Rationale exists to justify resource allocations such as: mass, power, and cost.
- Build up approach lessens the likelihood of having to make dramatic design changes later in the design cycle to resolve critical commodity shortfalls and get back “in the box.”

NASA Risk informed Design Process
- Use PRA, Hazard Analysis, and FMEA
- Use of engineering judgment and analysis
- Use of Operational judgment and analysis

<table>
<thead>
<tr>
<th>Start with Baseline Design</th>
<th>Initial Analyses</th>
<th>NASA Risk informed Design Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review/Validate Analyses</td>
<td></td>
<td>Use PRA, Hazard Analysis, and FMEA</td>
</tr>
<tr>
<td>Includes all stakeholders</td>
<td></td>
<td>Use of engineering judgment and analysis</td>
</tr>
<tr>
<td>Identify set of Risk Drivers for the vehicle based on analyses</td>
<td></td>
<td>Use of Operational judgment and analysis</td>
</tr>
</tbody>
</table>

Key Points
- The process is a continuous process throughout the lifecycle of the Orion Project
- At each design and verification cycle, work to reduce the risk drivers
 - Focus on the Top Drivers to maximize impact
- When new drivers emerge (new cycles) as Top Drivers, work those drivers
- Key decision points emerge at various program milestones (e.g. Achievability)
PROBABILISTIC RISK ASSESSMENT
PRA through Product Life Cycle

♦ PRA in Design
 • Design seeks to optimize programs, missions, or systems to meet objectives and requirements within given constraints
 • PRA evaluates risk of alternative designs, relative risks of subsystem contributors and identifies how risks can be minimized through design change or other means

♦ PRA in Operation
 • Normal operation, normal and accident operating procedures, and maintenance can cause increased risks
 • PRA is eminently suited to assess these risks as well as to guide and optimize “configuration management” for minimum risk

♦ PRA for Upgrade
 • Improvements in design can result in risk increase
 • PRA can evaluate upgrade alternatives and show the least risky ones

♦ PRA for Decommissioning
 • End of life presents situations when safety can be compromised and regulatory requirements breached
 • PRA can guide the removal-from-service process to accomplish it safely and within regulatory constraints
Why PRA?

♦ In some cases, qualitative functional redundancy analyses can adequately assess reliability. Due to the high-hazard missions and the system complexity associated with Human Space Flight, quantification of risk to the crew and mission is needed.

♦ “Risk”: scenarios, associated frequencies, and associated consequences

♦ The quantitative risk perspective gained from PRA allows for evaluation of design based on:
 • Comprehensive set of failure scenarios and consequence severity
 • System’s ability to cope with off-nominal events
 • Effectiveness of mitigation capabilities
 • Identification and expected frequency estimation of risk-significant failure modes
 • Consideration of support systems and environmental conditions

♦ PRA is used to identify potential risk reduction measures and to support decisions regarding change in design or operational practice.
Elements of PRA

♦ Master Logic Diagrams (MLDs) – Top-down display of initiating events (IEs), or perturbations requiring system or crew response. Increases in event description detail at lower tiers, with IEs at bottom. Supports identification of comprehensive set of IEs.

♦ Event Sequence Diagrams (ESDs) — Flowchart with scenario paths leading to end states. Detailed graphical representation enhances communication between PRA analysts, designers, operations, and crews.

♦ End States — Consequences, such as Loss of Mission (LOM) or Loss of Crew (LOC), that terminate event sequences because the outcome is known.

♦ Event Tree (ET) — Classifies scenarios according to consequences. Typically portrays progression of events, which are either occurring or non-occurring, over time. “Down” tree branch considered failure, “up” considered success.

♦ Fault Tree (FT) — Logical depiction (AND, OR, NofM gates) of combinations of events that violate success criteria. Events that appear in multiple trees correspond to subsystem or phase interdependencies. Scenario frequency is calculated by linking ETs and FTs.

♦ Data Collection — Process of collecting and analyzing available information to estimate parameters of the model. Includes component failure rates, human failure probabilities, common cause failure probabilities, phenomenological event estimation, software failure probabilities, etc.

♦ Uncertainty Analyses — Development of scenario introduces model assumptions and parameters that are based on what is currently known about the behavior of systems under given conditions. Important to properly account for both natural variability of physical process and uncertainties in knowledge of the processes.

♦ Presentation of Results — Development of appropriate displays to communicate the model results, the most important contributors to risk, and the associated model uncertainty.
NASA’s PRA Process

PRA PROCESS

Inputs to Decision Making Process

Master Logic Diagram (Hierarchical Logic)

Event Sequence Diagram (Logic)

Event Tree (Inductive Logic)

Fault Tree (Logic)

One to Many Mapping of an ET-defined Scenario

NEW STRUCTURE

Probabilistic Treatment of Basic Events

Model Integration and Quantification of Risk Scenarios

Risk Results and Insights

Examples (from left to right):
- Probability that the hardware fails when needed
- Probability that the crew fails to perform a task
- Probability that there would be a windy condition at the time of landing

The uncertainty in occurrence of an event is characterized by a probability distribution.
Model and data improvement continue throughout the lifecycle

Risk informed design, test and operations continue throughout the Project lifecycle
Example Event Tree and Fault Trees
Notional Cut-set Output

<table>
<thead>
<tr>
<th>Source</th>
<th>Subsys</th>
<th>Pf</th>
<th>Name</th>
<th>Description</th>
<th>Group</th>
<th>End Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRA 1</td>
<td>Descent system</td>
<td>1.50E-04</td>
<td>ML-MCXXCX-CFXXXX</td>
<td>Main parachute CCF</td>
<td>Parachutes</td>
<td>Phase 8</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Thermal Protection</td>
<td>2.80E-04</td>
<td>CT-LG-STPSX-DMXXXX</td>
<td>Side TPS attachment failure</td>
<td>Side TPS</td>
<td>Phase 8</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Ascent Escape</td>
<td>8.79E-05</td>
<td>MM-LOF--EMSEP-FFXXXX</td>
<td>Escape Motor separation Failure</td>
<td>Escape Motor</td>
<td>Phase 2</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Descent system</td>
<td>1.07E-04</td>
<td>ML-DCXXCX-CDXXXX</td>
<td>Drogue Chute Canopy</td>
<td>Parachutes</td>
<td>Phase 8</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Software</td>
<td>5.43E-05</td>
<td>CA-CDHSWF-SWXXXX</td>
<td>SW failure</td>
<td>Software</td>
<td>Phase 8</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Thermal Protection</td>
<td>9.29E-05</td>
<td>CT--BSTPSX-UTXXXX</td>
<td>Back Shell</td>
<td>Side TPS</td>
<td>Phase 8</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Descent system</td>
<td>2.84E-05</td>
<td>ML-PENCUT-CFXXXX</td>
<td>Parachute Staging CCF</td>
<td>Parachutes</td>
<td>Phase 8</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Thermal Protection</td>
<td>8.22E-05</td>
<td>CT-HSTPSX-DMXXXX</td>
<td>Heat Shield</td>
<td>Main TPS</td>
<td>Phase 8</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Mechanisms</td>
<td>1.11E-04</td>
<td>MM-DJLSC1-FFXXXX</td>
<td>Separation Charge 1 failure</td>
<td>Separation System</td>
<td>Phase 5</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Propulsion</td>
<td>6.56E-05</td>
<td>SP-RXXTVX-COXXXX</td>
<td>Thruster CCF</td>
<td>Reactive Control System</td>
<td>Phase 7</td>
</tr>
</tbody>
</table>

...
Informing the Design

♦ Identify functional groupings that represent risk scenarios common to a particular function.
 • These come from the “Group” column of the cut-set spreadsheet.

♦ Usually build the Pareto chart based on the top 95% of vehicle risk in order to illustrate the key drivers.
 • This is done to again help focus discussions on key drivers.

♦ Designers can focus on the top few risk contributors that represent the greatest “bang for the buck”.

♦ Allow the design teams to address specific failure scenarios and develop focused solutions rather than simply adding redundancy across the system.
Example Pareto Chart

NOTIONAL

![Pareto Chart Image]

- **Design Drivers #1 to #18**
- **Probability of Failure**

The Pareto Chart illustrates the relative impact of design drivers on the probability of failure. Each bar represents a design driver, with the height indicating the probability of failure associated with that driver.
USE OF THE PRA OUTPUT IN DESIGN TRADE STUDIES
Design Trades

- Design options are developed for each of the top design drivers as shown in the Pareto Chart.
- These options are compared to the baseline design to show expected changes to the Probability of Failure

<table>
<thead>
<tr>
<th>Results</th>
<th>Subsystem</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Prob. of Failure (Pf)</td>
<td>1/Pf</td>
</tr>
<tr>
<td>Design Driver</td>
<td>1.00E-4</td>
<td>10,000</td>
</tr>
<tr>
<td>Design Driver + Design Option #1</td>
<td>5.00E-5</td>
<td>20,000</td>
</tr>
<tr>
<td>Design Driver + Design Option #2</td>
<td>7.50E-5</td>
<td>13,333</td>
</tr>
</tbody>
</table>
Once design options are viewed within the particular design drivers, Decision Packages are prepared which would look at each option pulling estimates of mass, power, cost, risk, etc.

These Decision Packages are then viewed from an integrated perspective.

- The idea here is to choose the combination of Decision Packages that will reduce the risk to crew and show what the impacts would be for our other design “commodities” (mass, power, cost, etc.).

These integrated packages are provided to the project management so they can make their design decisions.
The Yellow diamonds represent an example of comparing the previous design drivers to what we expect to see after changes are accepted.
Results from the RID Process

- With this information, decision makers can make informed decisions as to where to draw the line to get the most “bang for your buck”.
- So from our example, the decision could be include DPs 14, 11, 10, 07, 02, and 08.
 - This seems to be the combination where we have a “knee” in the curve when looking at mass.
The use of the RID process in the development of the Constellation Program has been very beneficial.

For the first time in a major human spaceflight program, risk to the crew and mission has been a part of the design and development process instead of waiting for the design to be completed and then assessing the risk to the crew and mission.

This Process has been adopted by NASA as the way to develop Spacecraft and Launch Vehicles.