“The future cannot be predicted, but futures can be invented.” - Dennis Gabor, 1963
Engineering Capabilities

Integrated Manned Space Vehicle Systems

- Avionics, Communication & Software
- Radiation resistant hardware
- Structure and Materials Development
- Integrated Power
- Thermal Management
- Mechanical Separation
- Integrated Spacecraft Propulsion

Armadillo Aerospace LOX Methane

Pyrotechnic Initiator
Power Distribution Laboratory
Nondestructive Ultrasonic Testing
Engineering Capabilities

Life Support Systems and Integrated Environmental Control

- Space Suits
- EVA
- Habitats
- Regeneration
- Waste Management

Water Regeneration

Rover with Mark IV Advanced Space Suit

Space Suit Laboratory

Habitation Module
Engineering Capabilities

Flight Design

• Ascent and Abort Performance
• On-Orbit Flight
• Proximity Operations
• Automated Rendezvous and Docking
• Entry Performance
• Landing Recovery Systems
Engineering Capabilities

Integrated Environments Testing and Analysis

• Launch Dynamics
• Entry Environment
• Space Environment (man made and natural)
• Thermal Vacuum Chambers
• Electromagnetic Testing

Thermal Vacuum Chamber
Anechoic Chamber
Arc Jet control room
Radiant Heat Chamber
Successful Partnerships

Research & Development

NASA Resource: Engineering – Expandable Space/Surface Structures

Partner: Bigelow Aerospace

Goal: Develop technology to gain important insights and capabilities for development, launch, control and operations of expandable space/surface structures for long-term human space exploration goals.

Benefit: Construct and provide low-cost, robust, full-scale space habitats that can be preserved and utilized at minimum as a general concept by a domestic company.
Successful Partnerships

Suit, Tool, Mobility and Human Robotics

NASA Resource: Engineering Robonaut 2

Partner: General Motors

Goal: Accelerated development of the next generation of robots and related technologies for use in the automotive and aerospace industries

Benefit: Advanced leading edge control, sensor and vision technologies will lead to future robots that could assist astronauts during hazardous space missions and help GM build safer cars and plants.
Successful Partnerships

Life Support

NASA Resource: Regenerative life support – Sabatier Engineering Development Unit

Partner: Hamilton Sundstrand

Goal: Investigate Sabatier design characteristics with the objective of developing a safe, efficient and long life system for water recovery from hydrogen and carbon dioxide.

Benefit: This activity will immediately support the development of components for the Air Revitalization system in the International Space Station and will provide data for planning life support systems for possible future missions.
Successful Partnerships

Local Partnership

NASA Resource: Engineering Vibration test labs and sensor instrumentation

Partner: Texas Children’s Hospital

Goal: To allow Texas Children’s Hospital to use and/or adapt some of JSC’s vibration isolation techniques to develop a vibration isolation system for neonatal patients.

Benefits: Mitigation of injuries to neonatal patients due to vibrations generated by transporting, including ambulances and helicopters.
“...the United States was not built by those who waited and rested and wished to look behind them. This country was conquered by those who moved forward, and so will space.” - John F. Kennedy, 1962
<table>
<thead>
<tr>
<th>Capability</th>
<th>POC</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Architecture, Landing Systems, Docking Systems, Habitats</td>
<td>Bruce Sauser</td>
<td>Bruce.s.sauser@nasa.gov</td>
<td>281-483-2030</td>
</tr>
<tr>
<td>Crew Systems, Space Suits, Active thermal control, cold stowage, environmental control, thermal vacuum chamber testing, water regeneration, waste management</td>
<td>Trish Petete</td>
<td>patricia.petete-1@nasa.gov</td>
<td>281-483-8695</td>
</tr>
<tr>
<td>Aerodynamics, entry, abort, landing decelration, proximity operations, spacecraft mission design, spacecraft guidance and control</td>
<td>Dave Kanipe</td>
<td>david.b.kanipe@nasa.gov</td>
<td>281-483-4685</td>
</tr>
<tr>
<td>Energy systems, propulsion, batteries, power, pyrotechnics, and in-situ resources</td>
<td>Bill Hoffman</td>
<td>william.c.hoffman@nasa.gov</td>
<td>281-483-9056</td>
</tr>
<tr>
<td>Software, robotics, simulations</td>
<td>Rob Ambrose</td>
<td>robert.o.ambrose@nasa.gov</td>
<td>281-244-5561</td>
</tr>
<tr>
<td>Structures, dynamics, materials, nondestructive evaluation, mechanisms, manufacturing, passive thermal, stress analysis</td>
<td>Edgar Castro</td>
<td>edgard.s.castro@nasa.gov</td>
<td>281-483-7112</td>
</tr>
<tr>
<td>Avionics, communication, EEE parts, sensors, anechoic chamber, electromagnetic modeling, EMI/EMC,</td>
<td>Pat Pilola</td>
<td>patric.s.pilola@nasa.gov</td>
<td>281-483-5555</td>
</tr>
</tbody>
</table>