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A Mass Computation Model for Lightweight Brayton Cycle 
Regenerator Heat Exchangers 

 
Albert J. Juhasz 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Based on a theoretical analysis of convective heat transfer across large internal surface areas, this 

paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by 
packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet 
and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into 
closed cycle gas turbine flow ducting. 

Surface area and resulting volume and mass requirements are computed for a range of heat exchanger 
effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing 
heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also 
illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness 
is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness 
values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass 
tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To 
verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a 
regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in 
both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in 
lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results. 

Nomenclature 
a  passage height dimension (<0.01 m for plate-fin HX) 
AW ≈ (AW + AC)/2 average surface area  
Ch = (Wcp)h  hot fluid capacity rate (W/K) 
CC = (Wcp)C  cold fluid capacity rate (W/K), also Cmin., and Cmax, are, respectively, the smaller and 

larger of the CC and Ch values 
CPC ,CPT specific heats for the compressor and turbine flows  
dCAS density of casing material (kg/m3) 
eC surface effectiveness for cold area, AC 
eh surface effectiveness for hot area, Ah  
εRG  regenerator effectiveness 
hC ,hh local heat transfer coefficients, cold and hot sides (W/m2-K (SI) or Btu/ft2-hr-R 

(English)) 
H and T gas enthalpy and temperature values with subscripts referring to state points 
k  thermal conductivity of the wall material (units in W/m-K (SI) or Btu/ft-hr-R 

(English)) 
MCAS regenerator casing mass (kg) 
tW casing wall thickness (m) 
TIC compressor inlet temperature (K) 
TIT turbine inlet temperature (K) 
TIT /TIC cycle temperature ratio 
WC, WT compressor and turbine mass flow rate 
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VCOR regenerator core volume (m3 or ft3) 
S total heat transfer surface area (m2 or ft2) 
U overall heat transfer coefficient (W/m2-K or Btu/ft2-hr-R) 

Introduction 
The function of heat exchangers is to transfer thermal energy between different media, such as a 

warmer fluid, which is being cooled, and a colder one that is being heated in the process. The fluids may 
be either in the liquid or gaseous phase, or one or the other may even undergo a change of phase, as in the 
example of a boiling liquid or a condensing vapor. Heat exchangers are essential components in space 
heating, refrigeration, air conditioning, and chemical and petrochemical plants and refineries. They also 
have a major role in the implementation of various thermodynamic cycles in large electrical power plants 
and heat engines, including Closed Cycle Gas Turbines (CCGT) for stationary conventional fueled or 
nuclear power plants (Refs. 1 to 3) or propulsion systems (Ref. 4) where efficient conversion of thermal-
to-electrical energy or rotary shaft work energy is a principal objective. For the variety of heat exchanger 
design configurations for each particular application, which may range from shell-tube to plate-fin 
designs in parallel flow, counterflow, or crossflow configurations, refer to the many texts in this field 
(Refs. 5 and 6). For a given temperature difference between the hot and cold fluids, the underlying 
objective for all heat exchanger types is to maximize the heat transfer surface area of the wall or 
separating barrier between the two fluids, while minimizing the resistance to flow, or pressure drop of the 
fluid flow through the heat exchanger. Since the focus of this paper is on regenerator surface area and 
weight, refer to Reference 7 for an analysis on heat exchanger pressure drop. See Reference 8 for an 
edited compilation on the topic of gas turbine heat transfer.  

The objective of this paper is to develop a theoretical model for the determination of CCGT 
regenerator (recuperator) heat exchanger volume and mass for power systems ranging from kilowatt to 
multi-megawatt output levels. The model development includes an examination of the fundamental 
relationships between the required heat exchanger effectiveness, heat transfer surface area and the internal 
heat transfer coefficients available, both on the hot and cold passage side for overall heat transfer as an 
input variable. This input variable can be obtained from the thermodynamics of the Closed Brayton Cycle 
(CBC) power system under consideration as modeled, for example, by the BRMAPS code (Refs. 9 and 
10), the total working fluid mass flow rate passing through the regenerator’s hot and cold passages. 

Development of Regenerator Mass Model 
As indicated above, modeling of a CBC recuperator heat exchanger needs to be performed in 

conjunction with the analysis of the entire Brayton energy conversion system to determine the working 
fluid mass flow rate and the temperatures at the entrance and exit state points for the hot and cold flow 
passages. Four possible regenerated CBC configurations for space power systems with a nuclear reactor 
heat source for direct or indirect heat input and rejection are shown in Figure 1. For the indirectly heated 
cycle configurations the input thermal energy is supplied by liquid metal cooled reactors (LMCR), while a 
high-temperature gas reactor (HTGR), which heats the inert CCGT gaseous (e.g., He and He-Xe) working 
fluid directly, is used for the directly heated cycles. Similarly, indirect heat rejection implies a pumped 
liquid-to-gas heat exchanger cooling the cycle working fluid, while the liquid is cooled in a space 
radiator. In direct heat rejection the cycle working fluid flows over evaporator ends of radiator heat pipes, 
which in turn the condenser sections are cooled via the space radiator. 

Note that removing the recuperator from each of the four configurations shown would result in four 
additional cycles referred to as non-regenerated CBC configuration.  

Since these non-regenerated power systems do not require a recuperator, they are not the main focus 
of this paper. However, they are used in system tradeoff studies in comparing the higher expected cycle 
efficiency of regenerated systems at certain operating conditions with the lower system mass of the non-
regenerated CBC configurations. 
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CBC Regenerator Heat Transfer 
To review the role of the regenerator in a CBC gas turbine power system refer to Figure 2, which 

shows a direct comparison of a regenerated CBC schematic (Fig. 2(a)) with its corresponding 
Temperature-Entropy or T – S diagram (Fig. 2(b)). 

The nomenclature of Figure 2 is largely self explanatory with C and T designating “compressor” and 
“turbine,” H.S. is heat source, Q is thermal energy, and WC and WT represent work (for compressor and 
turbine). Temperatures are designated by T and pressures by P, with subscripts referring to the various 
locations in Figure 2(a).  
 

 
 

Figure 1.—Regenerated CBC configurations with direct or indirect heat input and rejection. 
 

 
Figure 2.—Regenerator effect on Brayton cycle. (a) Schematic diagram. (b) T – S diagram. 
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A figure of merit called the regenerator effectiveness, εRG, is the ratio of the actual quantity of heat 
transferred, QTRANS, to the compressor exit stream at temperature TOC to the heat available for transfer in 
the turbine exit flow, QAVAIL at temperature. Hence, 
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where, by definition  
 
εRG   regenerator effectiveness 
WC, WT   are the compressor and turbine weight (i.e., mass) minus flow rate 
CPC ,CPT  specific heats for the compressor and turbine flows 
H and T   gas enthalpy and temperature values with subscripts referring to state points shown in 

Figures 2(a) and (b) 
 
From the numerator of Equation (1) it is easily seen that 

 ( )OCQINPCCTRANS TTCWQ −=  (2a) 

but is also true that 

 ( )REJOTPTTTRANS TTCWQ −=  (2b) 

 
As previously mentioned, in closed cycle applications, WC = WT with specific heat being a constant 

for helium or for any inert gas mixture, Equation (1) simplifies to 
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To further illustrate how the presence, or absence, of a regenerator (recuperator) affects the system 
schematic and the T – S diagram of a CBC, consider the comparisons shown in Figure 3. 

Note that whereas the regenerated cycle heat is transferred from the higher temperature, and the lower 
pressure turbine exit streams to the compressor flow, there is no heat exchange between the two streams 
for the non-regenerated cycle, which therefore needs to operate at a higher cycle pressure ratio, POC /PIC, 
to maximize thermodynamic cycle efficiency. Since at this higher pressure ratio, the turbine exit 
temperature TOT may be approximately the same or even lower than the compressor exit temperature TOC , 
any attempt to transfer heat between the two streams would actually lower the cycle efficiency and 
therefore be counterproductive. So, while the non-regenerated cycle has a simpler configuration and a 
lower mass due to the absence of a heat exchanger and connecting ductwork, the regenerated cycle has a 
higher efficiency at its lower optimum pressure ratio. This will be further illustrated in a later section of 
this paper. 
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Figure 3.—Thermodynamic comparison of regenerated and non-regenerated CBC. (a) Regenerated cycle. 

(b) Non-regenerated cycle. 

Derivation of Regenerator Total Surface Area 
Referring to Figure 2(a) one can define an effective, or log mean temperature difference, ∆tm, as 
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In our derivation it is convenient to expand the terms in parentheses of Equation (4) in terms of the 
temperature changes for the compressor stream (TQIN – TOC) and the turbine discharge flow (TOT – TREJ). 
Rewriting Equation (1) to show the dependence of ∆tm on these temperature differences gives 
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Substituting for (TQIN – TOC) and (TOT – TREJ) from Equation (2) into Equation (5) yields 
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The somewhat complicated form of Equation (6) can be greatly simplified by making the following 
substitutions for some of the parameter groups: 

 
PCC

TRANS
CW

Q
=β  ; 

PTT

PCC
CW
CW

=χ  ; and OCOT TT −=δ   (7) 

With the indicated substitution Equation (6) can now be rewritten as 
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Since the only difference between the compressor flow WC and the turbine flow WT is due to potential 
leakage by ducting compressor flow to gas foil bearings and alternator cooling, the value (1 – χ) is very 
close to zero. Expanding the denominator of Equation (6) into a series and neglecting higher order terms 
leads to  
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Substituting the expression obtained in Equation (9) into Equation (8) results in the following expression 
for ∆tm: 

 
( )

( ) ( ) β−δ≡
β−δβχ−
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/1
1

mt  (10) 

Using the symbol definitions from Equation (7), Equation (10) can be written as 

 ( )
PCC

TRANS
OCOTm CW

QTTt −−≈∆  (11) 

Since the total heat transferred QTRANS is a function of total surface area S, Δtm and an overall heat transfer 
coefficient, UAV, the expression for this coefficient is adapted from the previously cited Reference 5, 
which defines the overall heat transfer coefficients for the hot and cold sides, Uh and UC in terms of hot- 
and cold-side heat transfer coefficients hh and hC can be written as 

 ( ) ( ) CChChwhhh heAAkAA
a

heU
111

++=  (11a) 

 ( ) ( ) hhChCwCCC heAAkAA
a

heU
111

++=  (11b) 

The following symbols remain to be defined for Equation (11): 
 
a  passage height dimension (<0.01 m for plate-fin HX) 
hC ,hh local heat transfer coefficients for the cold and hot sides (units in W/m2-K (SI) or 

Btu/ft2-hr-R (English)) 
k  thermal conductivity of the wall material (units in W/m-K (SI) or Btu/ft-hr-R 

(English)) 
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eC surface effectiveness for cold area, AC 
eh surface effectiveness for hot area, Ah  
AW ≈ (AW + AC)/2 average surface area  
Ch = (Wcp)h  hot fluid capacity rate (W/K) 
CC = (Wcp)C  cold fluid capacity rate (W/K), also Cmin. and Cmax, are, respectively, the smaller and 

larger of the CC and Ch values 
 
Kays and London (Ref. 5) next compute a number of heat transfer units parameter defined as 

 dAU
CC

UAN
AAV

tu ∫==
0minmin

1  (11c) 

Letting U = UAV (in W/m2-K), as defined in Equations (11), represents an overall heat transfer 
coefficient, and S (in m2) stands for a total required heat transfer surface area. The total heat transferred 
from the turbine exit gas to the compressor discharge stream can be written as 

 mTRANS tUSQ ∆= ** = ( ) 
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Solving for QTRANS we obtain 
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Rearranging Equation (13) and noting from Equation (2b) that QTRANS can be written as QTRANS = 
WTCPT(TOT – TREJ), we may write 

 ( ) ( )

PCC

OCOT
REJOTPTTTRANS

CWSU

TTTTCWQ 11
+

−
=−=  (14) 

Since for a regenerator (recuperator) with the same working fluid passing through the hot and cold 
passages, WTCPT/WCCPC ≈ 1, Equation (14) may be solved for the regenerator effectiveness as defined in 
Equation (3). Thus 

 
USCWTT
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Equation (15) can then be solved for surface area S as given by Equation (16) 
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1
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While Equation (16) expresses the total surface area required for a regenerator of effectiveness εRG, in 
terms of total mass flow rate WC = WT (identical to the compressor or turbine flow rate) and overall heat 
transfer coefficient U, a form found more useful by the author for actual heat exchanger surface area 
calculations is based on surface area per unit working fluid mass flow, or 

 







−

=
RG

RGPC

C U
C

W
S

ε
ε

1
  (17) 

Multiplying the result obtained on the right-hand side of Equation (17) by the compressor mass flow 
rate will give the total heat exchanger surface area. Equations (16) and (17) show that the surface area S 
will be directly proportional to the throughput mass flow rate, and vary inversely with U, and also 
increase logarithmically with effectiveness εRG, becoming theoretically infinite at 100 percent 
effectiveness (i.e., εRG = 1). 

Determination of Regenerator Mass 
Once the total heat transfer surface area has been determined, calculation of regenerator mass can be 

accomplished in a few steps. One necessary additional input is a surface compactness parameter, which 
expresses the number of square units of surface area that can be packaged, or stacked, into a unit volume 
of multipassage regenerator heat exchanger hardware, while still leaving enough open area between the 
stacked plates for hot and cold gas to flow through. Next, the density of materials used for the heat 
exchanger plate-fin construction—the casing and the connecting ductwork—needs to be determined. 
Manufacturing experience has shown that as much as 1000 ft2 of surface area can be stacked into a cubic 
foot of volume. This packing density or stacking factor (STF in English units) translates into ~3281 m2/m3 
in SI units, referred to as STRFRSI in the regenerator subroutine developed for this paper. The 
regenerator core volume, VCOR, can be written as 

 STFSVCOR *=  (18) 

Initially assuming a cubic configuration, a characteristic length dimension is (VCOR)0.333. Arbitrarily 
setting this value as the height, LH(m), we can set the length LL = 2*LH and the width dimension, LW = 
0.5*LH, the core volume for a parallel-piped form can be written as 

 WLHCOR LLLV =       (m3) (19) 

The regenerator core mass, MCOR (kg), will be the volume times an average core density, dCOR 
(kg/m3), giving 

 CORWLHCOR dLLLM =    (kg)  (20) 

The regenerator casing mass is the sum of the masses of the six sides of the parallel-piped 

 ( ) ( ) ( )[ ] CASWWLLHWHCAS dtLLLLLLM ***2 ++=    (21) 

where 
 

MCAS regenerator casing mass (kg) 
tW  casing wall thickness (m) 
dCAS density of casing material (kg/m3) 
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Finally, assuming that the mass of the hot and cold inlet and outlet ducts is 25 percent of casing mass, 
that is, MDUCT ~ 0.25MCAS, the total regenerator mass MREG becomes 

 DUCTCASCORREG MMMM ++=  (22) 

The above equations and procedures were programmed into a subroutine called RGNW of the 
previously mentioned BRMAPS code, which was then run in a standalone mode to generate the results 
discussed in the next section. Note that since regenerator effectiveness, εRG , was an input variable for 
these computations, the procedure to compute εRG for the recommended counterflow or crossflow 
recuperator configurations for desired Ntu values (Ref. 5) was not required for the subroutine. The 
procedure is however available as an option in the author’s main program (BRMAPS). 

Regenerator Mass Results 
Numerical results of regenerator mass are shown in Table 1, which is an output by one of the author’s 

subroutines on regenerator performance and specific mass, for He working fluid, as a function of 
regenerator effectiveness (ERG), stacking factor (STFRI), core material density (DENI), and overall heat 
transfer coefficient (UU). Resulting values are shown in columns 2 and 5, respectively, referring to 
specific heat transfer area and specific mass. As shown, the first 10 rows of the table are displayed in 
English and the remaining rows in SI units. The units displayed in column 5 are identical to the SI and 
English unit portions of the table. 

 
TABLE 1.—REGENERATOR DESIGN COMPARISON IN ENGLISH AND SI UNITS FOR He WORKING FLUID  

(a) English units 
Regenerator 
effectiveness 

(ERG) 

SPCFC area 
(SOW) 

(ft2-hr/lb) 

Stacking factor 
(STFRI) 
(ft2/ft3) 

Material density 
(DEN=DENI) 

(lbm/ft3) 

SPCFC mass 
(SMASS) 
lb/(lb/sec) 

Heat transfer coefficient 
(UU) 

(Btu/(ft2-hr-R) 
0.100 0.00551 1000.0 243.5 5.80 25.00 

.200 .01240 1000.0 243.5 13.04 25.00 

.300 .02125 1000.0 243.5 22.36 25.00 

.400 .03306 1000.0 243.5 34.78 25.00 

.500 .04959 1000.0 243.5 52.17 25.00 

.600 .07439 1000.0 243.5 78.25 25.00 

.700 .11572 1000.0 243.5 121.72 25.00 

.800 .19837 1000.0 243.5 208.67 25.00 

.900 .44633 1000.0 243.5 469.51 25.00 

.950 .94226 1000.0 243.5 991.18 25.00 
(b) SI units 

Regenerator 
effectiveness 

(ERG) 

SPCFC area 
(SOW) 

(m2-s/kg) 

Stacking factor 
(STFRSI) 
(m2/m3) 

Material density 
(DENSI) 
(kg/m3) 

SPCFC mass 
(SMASS) 

kg/(kg/sec) 

Heat transfer coefficient 
(UUS) 

(J/(m2-sec-K) 
(W/m2-K) 

0.100 4.06 3280.8 3900.0 5.80 142.08 
.200 9.14 3280.8 3900.0 13.04 142.08 
.300 15.67 3280.8 3900.0 22.35 142.08 
.400 24.38 3280.8 3900.0 34.77 142.08 
.500 36.56 3280.8 3900.0 52.16 142.08 
.600 54.84 3280.8 3900.0 78.23 142.08 
.700 85.31 3280.8 3900.0 121.70 142.08 
.800 146.25 3280.8 3900.0 208.62 142.08 
.900 329.07 3280.8 3900.0 469.41 142.08 
.950 694.70 3280.8 3900.0 990.97 142.08 

 
As a check on the internal dimensional consistency maintained during the calculations, the reader 

may easily verify that with constant overall heat transfer coefficients of 25 Btu/ft2-hr-R, which is identical 
to 142.08 W/m2-K. The numerical specific mass values in column 5 are identical within roundoff error 
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accuracy in both systems of units. The reason is that the units of lb/(lb/sec) and those of kg/(kg/sec) both 
reduce to units of seconds, so identical numerical values do result. The author has found that the practice 
of performing internal computations in two sets of units is an excellent way to ensure that no dimensional 
errors inadvertently were introduced into computational procedures. The accuracy of code output results 
can thus be validated to a higher degree of confidence level than would otherwise be the case. The SI 
portion of the tabulated results is plotted in Figure 4, for a range of overall heat transfer coefficient values. 
This figure confirms the observations made regarding Equations (16) and (17), concerning the rapid 
increase of total surface area per unit mass flow, especially for regenerator effectiveness values greater 
than 0.8. This is because the surface area tends towards infinity as the effectiveness parameter is 
approaching unity. This is manifested by the heat exchanger surface area and mass doubling as the 
difference between 100 percent effectiveness and the design effectiveness is halved. Thus a recuperator 
having 95 percent effectiveness would have twice the surface area and mass required for 90 percent 
effectiveness. Similarly, an increase in effectiveness from 98 to 99 percent would require doubling the 
surface area and mass of the heat exchanger. 

The curve for the low heat transfer coefficient values shown in Figure 4 is representative for 
conventional heat exchangers with multiple staggered tube rows. Space power systems will need 
regenerators utilizing the plate-fin heat exchanger design concept with the capability to raise the heat 
transfer coefficient values to over 280 W/m2-K (50 Btu/hr-ft2-F). The dramatic reduction in regenerator 
weight for the higher heat transfer coefficient values can be readily deduced from the figure. Furthermore, 
it needs to be pointed out that the regenerator core density value was based on use of high-temperature 
metal alloys with values of ~3900 kg/m3 (see Table 1). Future use of high thermal conductivity composite 
materials may reduce this value by a factor of three or more. Such a breakthrough will be of great value in 
further reducing the mass (weight) for heat exchange components of space-based systems.  

 
 

 
Figure 4.—Regenerator specific mass as a function of effectiveness with heat 

transfer coefficient U as a parameter. 
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Figure 5.—Thermodynamic efficiency of Brayton cycles at various 
regenerator effectiveness values and operating conditions with He 
working fluid. (a) Temperature ratio 3.0. (b) Temperature ratio 4.0. 

 

Comparative Cycle Performance 
Having determined the mass penalty on CBC space power systems due to incorporation of a 

recuperator (i.e., regenerative heat exchanger) in the energy conversion cycle, tradeoff studies on 
regenerated versus non-regenerated cycles require relevant information on how regenerators designed for 
a range of effectiveness values will enhance cycle efficiency. Figure 5 shows results of thermodynamic 
cycle efficiency as a function of compressor pressure ratio for He working fluid with regenerator 
effectiveness, ERG, as a parameter. These results were obtained using the author-developed CBC code, 
referred to as BRMAPS (Ref. 9). Cycle performance for cycle temperature ratios of 3.0 and 4.0 are shown 
in Figures 5(a) and (b), respectively. 

It should be noted that due to the increased cycle pressure drop of the highly regenerated cycle  
(ERG = 0.95), the turbine pressure ratio was set at only 94 percent of the compressor pressure ratio, 
implying a loss pressure ratio (LPR = 0.94) for a well designed regenerator. For the non-regenerated cycle 
(ERG = 0), the turbine pressure ratio was 98 percent of that developed by the compressor, and the LPR 
parameter was set proportionately between these values for the lower ERG parameters shown. The reader 
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may surmise that an excessively high regenerator pressure loss would negate the increase in cycle 
efficiency obtained by regeneration. This is indeed a correct conclusion. If the LPR parameter is set to 
0.8, implying a 20 percent pressure loss, the efficiency for 95 percent effectiveness would be no higher 
than that obtained for the non-regenerated cycles. 

Regarding Figure 5, note that cycle efficiency is raised considerably as regenerator effectiveness 
(ERG) is varied from 0, indicating no regeneration, to 0.95 (i.e., 95 percent) at pressure ratios below a 
certain threshhold, or crossover value, which is ~3.7 for IC (ALFA) = 3.0 and ~5.4 for ALFA = 4.0. 
Detailed numerical calculations of cycle state point temperatures confirm that the crossover pressure 
ratios designate conditions at which the turbine exit gas temperatures (TOT) are exactly equal to 
temperatures at the compressor discharge, and thus, there is no heat transfer from the turbine discharge 
gas stream to the compressor stream. Hence, all cycles will have the same efficiency, regardless of 
regenerator effectiveness. For pressure ratios above the crossover value, the efficiency of the 
nonregenerated cycle will exceed that of the regenerated cycles with the highest effectiveness regenerator 
incurring the largest efficiency penalty. 

Additional observations that can be gleaned from Figure 5 show that the pressure ratio at which the 
highest cycle efficiency is obtained becomes progressively lower with increasing effectiveness (εRG = 
ERG). Thus, for a cycle temperature ratio of 3.0 (Fig. 5 (a)), the optimum pressure ratio is approximately 
1.8 for an εRG of 0.95, yielding an efficiency of about 0.36 (i.e., 36 percent). But for the lower ERG value 
of 0.80 the pressure ratio optimum rises to ~2.20, at which an efficiency of only 30 percent is obtained. 
The reader may also note that as the cycle temperature ratio is raised to 4.0, efficiency values increase by 
~10 percent and the optimum pressure ratios shift to the right by increments that are in inverse relation to 
the ERG value. The increase in cycle efficiency between the non-regenerated case (ERG = 0) and the 
highest regenerated cycle (ERG = 0.95) at the optimum pressure ratios for each is about 10 percent for 
each temperature ratio. Note that tradeoff studies of cycle efficiency versus regenerator mass also need to 
take into account that, whereas centrifugal turbomachinery may be sufficient for the relatively low 
pressure ratios required for highly regenerated cycles, the higher optimum pressure ratios for the non-
regenerated machines may require multistage axial turbines and compressors. These, however, have a 
higher component (i.e., polytropic) efficiency, which may significantly reduce or even negate the 
efficiency advantage of regenerated cycles. Detailed tradeoff studies will require accurate performance 
turbomachine specifications. 

Concluding Remarks 
A computational procedure for the determination of CBC (closed Brayton cycle) recuperator mass 

and an accompanying computer subroutine were developed for incorporation in a previously written gas 
turbine code. Relevant equations were derived for computing the total heat exchanger surface area 
requirements as a function of overall heat transfer coefficient, plate-fin material thermal conductivity, and 
gas turbine mass flow rate. Relevant results on recuperator mass per unit CBC flow rate (in kg/(kg/sec) or 
lb/(lb/sec)) as a function of effectiveness with overall heat transfer coefficient as a parameter were shown 
(Fig. 4). As expected, as effectiveness values approach unity, or 100 percent, the required surface area 
and hence, heat exchanger mass tends toward infinity since heat transfer at near-zero temperature 
difference is implied. The beneficial effect of regeneration on CBC thermodynamic efficiency was also 
shown (Fig. 5), especially for low-cycle pressure ratios, where the temperature of the turbine exit flow 
significantly exceeds that of the compressor. The requirement for low regenerator pressure loss 
(<6 percent) was also implied in the results shown in Figure 5. 

Comparison of Figures 4 and 5 should permit meaningful tradeoff studies on the efficacy of 
regeneration for selected operating conditions. To verify the dimensional accuracy of the regenerator 
mass computational procedure, all calculation steps for a regenerator’s specific mass, that is, heat 
exchanger weight per unit working fluid mass flow are performed in both English and SI units. Identical 
numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show 
the dimensional consistency of overall results. 
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