
ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 1

Initialization and Restart in Stochastic Local

Search: Computing a Most Probable

Explanation in Bayesian Networks
Ole J. Mengshoel, Member, IEEE, David C. Wilkins, and Dan Roth, Member, IEEE

✦

Abstract—For hard computational problems, stochastic local search

has proven to be a competitive approach to finding optimal or approx-

imately optimal problem solutions. Two key research questions for

stochastic local search algorithms are: Which algorithms are effective

for initialization? When should the search process be restarted? In

the present work we investigate these research questions in the context

of approximate computation of most probable explanations (MPEs) in

Bayesian networks (BNs). We introduce a novel approach, based on

the Viterbi algorithm, to explanation initialization in BNs. While the

Viterbi algorithm works on sequences and trees, our approach works

on BNs with arbitrary topologies. We also give a novel formalization of

stochastic local search, with focus on initialization and restart, using

probability theory and mixture models. Experimentally, we apply our

methods to the problem of MPE computation, using a stochastic local

search algorithm known as Stochastic Greedy Search. By carefully

optimizing both initialization and restart, we reduce the MPE search

time for application BNs by several orders of magnitude compared to

using uniform at random initialization without restart. On several BNs

from applications, the performance of Stochastic Greedy Search is

competitive with clique tree clustering, a state-of-the-art exact algorithm

used for MPE computation in BNs.

Index Terms—Stochastic local search, Bayesian networks, initializa-

tion, restart, finite mixture models.

1 INTRODUCTION

MULTI-VARIATE probability distributions play a cen-
tral role in a wide range of automated reasoning

and state estimation applications. Multi-variate prob-
ability distributions can be decomposed by means of
Bayesian networks [1], factor graphs [2], Tanner graphs,
Markov random fields [3], [4], arithmetic circuits [5], or
clique trees [6], [7], [8]. If the resulting graph decomposi-
tion is relatively sparse, efficient reasoning and learning
algorithms exist.

• Ole J. Mengshoel is with the Carnegie Mellon University, NASA-Ames
Research Center, Mail Stop 269-3, Moffett Field, CA 94035. E-mail:
ole.mengshoel@sv.cmu.edu

• David C. Wilkins is with the Symbolic Systems Program, Stan-
ford University, Bldg 460 Room 127, Stanford, CA 94305. E-mail:
dwilkins@stanford.edu

• Dan Roth is with the Department of Computer Science, University of
Illinois at Urbana-Champaign, 201 N. Goodwin Avenue, Urbana, IL
61801. E-mail: danr@cs.uiuc.edu.

In this article, we focus on reasoning in the form
of stochastic local search in Bayesian networks (BNs).
Stochastic local search (SLS) algorithms are among the
best known for computationally hard problems includ-
ing satisfiability (SAT) [9], [10], [11], [12]. SLS algo-
rithms have also been successful in computing the most
probable explanation [13], [14], [15], [16], [17], [18] and
the maximum a posteriori hypothesis [19] in Bayesian
networks. While the details of different SLS algorithms
vary [12], by definition they use noise and initialization
algorithms in addition to hill-climbing; SLS algorithms
typically also rely on restarts.

Our focus in this work is on initialization and restart.
Specifically, we investigate the following research ques-
tions. How do different SLS initialization algorithms
impact performance? How can their effect be analyzed?
What is the impact of the restart parameter? In answer-
ing these questions, we consider the stochastic greedy
search (SGS) algorithm, an SLS approach for computing
MPEs in BNs [14], [15]. The stochastic local search part of
SGS is a generalization of the GSAT and WALKSAT fam-
ily of algorithms [9], [20], [10] to the probabilistic setting
of BNs, and SGS is also related to other SLS algorithms
for BN computation [21], [13], [19]. Specifically, our con-
tribution in this work is two-fold. Our first contribution
consists of two novel initialization algorithms. These
algorithms are generalizations of the Viterbi approach
[22] and use Viterbi to exactly compute MPEs for tree-
structured BNs. Algorithms that exploit tree-structured
graphs or sub-graphs are well-known [2], [3], [4]; in
this article we discuss how such algorithms can be
used for SLS initialization in general BNs. Informally,
these algorithms construct explanations that are good
approximations to MPEs, and these explanations make
up starting points for the hill-climbing phase of SGS. In
application BNs, we show experimentally that these and
other initialization algorithms can substantially improve
performance. Our second contribution rests on the
belief that the research questions raised above are best
answered within a solid mathematical framework. Con-
sequently, we carefully develop a mathematical frame-
work for SLS analysis, based on probability theory and

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2

mixture distributions, and fit mixture models to SLS run-
length data in experiments. We thus help improve the
theoretical foundations of SLS; this is significant because
the theoretical foundations of SLS have lagged compared
to the impressive experimental performance of these
algorithms [23], [24], [17].

The most closely related research to ours has focused
on run time variability, SLS restart, and SLS initialization.
An easy-hard-easy run time pattern has been observed
for the NP-complete satisfiability (SAT) problem [25],
and great variability in run times has been observed in
the hard region of SAT [26]. Even in the easy region,
there is great variability in the run time for an ensemble
of problem instances [27]. Based on these observations,
the benefit of randomized restarts has been established,
both for SLS [28] and for systematic search [29]. Mo-
tivated by high run time variability for hard problem
instances, Bayesian models that predict inference run
times have been learned and then used to dynamically
optimize the SLS restart point [30]. In other related
research, off-line and on-line computations are combined
to dynamically control restarts [31], and restart policies
based on beliefs about problem instance hardness are
used to make search more efficient [32]. Finally, we
note that initialization has turned out to be crucial in
making SLS competitive with other approaches to BN
computation, especially in application BNs [14], [15],
[19], [13].

The rest of this article is organized as follows. Section 2
contains notation and fundamental concepts. In Section
3 we introduce our SLS approach including our novel
initialization algorithms. In Section 4, we analyze our
approach using techniques from probability theory and
finite mixtures. Experimental results are presented in
Section 5. In Section 6 we conclude and present direc-
tions for future research. We note that earlier versions of
this research have been reported previously [14], [15].

2 PRELIMINARIES

This section introduces notation and known results re-
lated to Bayesian networks, the Viterbi approach, and
tree-based reparametrization.

2.1 Fundamental Concepts and Notation

Bayesian networks [1], defined as follows, organize ran-
dom variables in directed acyclic graphs (DAGs).

Definition 1 (Bayesian network): A Bayesian network
(BN) is a tuple β = (X , E, P), where (X , E) is a
DAG with n = |X| nodes, m = |E| edges, and an as-
sociated set of conditional probability distributions P =
{Pr(X1 | ΠX1

), . . . , Pr(Xn | ΠXn)}. Here, Pr(Xi | ΠXi)
is the conditional probability distribution for Xi ∈ X .
Further, let πXi represent the instantiation of the parents
ΠXi of Xi. The independence assumptions encoded in
(X , E) imply the joint probability distribution

Pr(x) =

n∏
i=1

Pr(xi | πXi), (1)

where Pr(x) = Pr(X1 = x1, . . ., Xn = xn).
Pr(Xi | ΠXi) is also known as a conditional probability

table (CPT). The notation ΩX is used to represent the
(here discrete) state space of a BN node X . A BN may be
given evidence by clamping some nodes to their observed
states. An instantiation of the remaining nodes is an
explanation, formally defined as follows.

Definition 2 (Explanation): Consider a BN β = (X ,
E, P) with evidence e = {x1, . . ., xm} = {X1 =
x1, . . ., Xm = xm}. An explanation x is defined as
x = {xm+1, . . ., xn} = {Xm+1 = xm+1, . . ., Xn = xn}.
A sub-explanation y of x is defined as y ⊆ x.

To simplify the exposition, one may regard z = x ∪ e,
and consider Pr(z) = Pr(x, e) = Pr(x | e) Pr(e) instead
of the closely related Pr(x | e). The BN β is typically left
implicit when discussing an explanation x for β.

Given a BN with evidence or no evidence, various
forms of BN inference can be performed [1], [6], [7], [33],
[8], [19]. This article focuses on computing the most
probable explanation, also known as belief revision [1].

Definition 3 (Most probable explanation (MPE)):
Computing a most probable explanation (MPE) in
a BN is the problem of finding an explanation x∗

such that Pr (x∗) ≥ Pr (y), where y is any other
explanation in the BN. The set of the k most probable
explanations is defined as X∗ = {x∗1, . . .,x∗k} where
Pr (x∗) = Pr (x∗1) = · · · = Pr (x∗k).

In other words, no other explanation has higher prob-
ability than x∗i for 1 ≤ i ≤ k. Several explanations with
the same probability can exist, and we therefore say “an”
MPE rather than “the” MPE.

It can be shown by reduction from SAT that MPE
computation is NP-hard [34]. Approximating an MPE to
within a constant ratio-bound has also been proven to be
NP-hard [35]. Since inference in BNs is computationally
hard and the MPE problem is important in applications,
it is important to study inexact approaches, including
stochastic local search (SLS) algorithms, where estimates
of x∗ ∈X∗ are computed.

Definition 4 (MPE (lower-bound) estimate): Let x∗ be an
MPE. A best-effort estimate of x∗ is denoted x̂∗; if
Pr(x̂∗) ≤ Pr(x∗) then x̂∗ is a lower-bound estimate.

SLS algorithms typically compute lower-bound MPE
estimates x̂∗. In Section 3.1 we discuss one SLS algo-
rithm, Stochastic Greedy Search, in more detail.

2.2 Existing Dynamic Programming Algorithms

We now discuss forward and backward dynamic pro-
gramming for chains and trees; we denote these algo-
rithms TREEFDP and TREEBDP respectively. We present
this well-known approach due to Viterbi [36], [22] for
BNs that are chains in some detail. The case of trees is a
straight-forward extension since different paths down a
tree are independent and can be treated independently
using essentially the same algorithm. We introduce the
following terminology for BNs with such tree topologies.

Definition 5 (Backward tree, forward tree): Consider a
BN β = (X , E, P). If the underlying graph (X , E) of

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 3

β is a tree where all non-leaf nodes have one or more
children, then β is a backward tree. If the underlying
graph (X , E) of β is a tree where all non-root nodes
have one or more parents, then β is a forward tree.
Y → X ← Z is an example forward tree and Y ←

X → Z is an example backward tree; see Figure 2 for
other backward tree examples.

To simplify exposition, we now assume BN nodes
with S = 2 states, say {0, 1}. The approach clearly
generalizes to S > 2. We consider a BN that is a chain
X1 → X2 → . . . → XT of length T . The CPTs are
denoted by Pr(X1 = x1), Pr(X2 = x2 | X1 = x1), . . .,
Pr(Xt = xt | Xt−1 = xt−1), where xi ∈ {0, 1}. The key
observation that TREEFDP is based on is the following.
In order to compute the probability of the most probable
explanation of a sub-chain of length t ≤ T , it is sufficient
to know S = 2 numbers: (i) the probability of the most
probable explanation until node number t−1, assuming
that the (t−1)-st node is set to 0; and (ii) the probability
of the most probable explanation until node number t−1,
assuming that the (t− 1)-st node is set to 1.

More specifically, let xt ∈ {0, 1} be the assignment of
the t-th node. In order to compute an MPE, we operate
on two arrays, the D-array containing probabilities (such
as Pr(x∗)) and the A-array containing states (such as
x∗). Let Dt(xt) be the maximal probability of a sequence
of assignments to nodes X1, . . . , Xt, with Xt = xt. Let
At−1(xt) be the assignment to the node Xt−1 in the most
probable sub-explanation that assigns Xt = xt.

For initialization in the TREEFDP algorithm, let
D1(x1) = Pr(x1) for x1 ∈ {0, 1}. These D1 values are
simply priors. Also set A0(x0) = {}. The recursive step
is for the D-array

Dt(xt) = max
xt−1∈{0,1}

{Dt−1(xt−1) Pr(xt | xt−1)},

while for the A-array we get the recursive step

At−1(xt−1) = arg max
xt−1∈{0,1}

{Dt−1(xt−1) Pr(xt | xt−1)}.

The final assignments in the iterative loop are to
DT (XT = 0) and DT (XT = 1) for probabilities, and to
AT−1(XT = 0) and AT−1(XT = 1) for states.

Computing DT = maxxT∈{0,1}{DT (XT = xT)} is
one of the last steps of the algorithm. Here, we choose
the best of the two probabilities DT (XT = 0) and
DT (XT = 1). For the states, we similarly compute the
last assignment AT = arg maxxT∈{0,1}{D(XT = xT)}.
Note that this is done after computing AT−1(xT). Given
the information in the A-array, one just needs to perform
a backtracking step in order to compute the MPE x∗ for
the chain [22, p. 264, Equation 35].

The TREEBDP algorithm is similar to TREEFDP.
Again, there are two arrays, an array E containing
probabilities, and an array B containing states. The E-
array corresponds to the D-array, while the B-array
corresponds to the A-array. To save space we refer to
the literature [36], [22] for further details.

The following result, adapted from Rabiner [22], sum-
marizes the performance of TREEBDP and TREEFDP.

Theorem 1: In a BN that is a backward tree, TREEBDP
computes an MPE x∗. In a BN that is a forward tree,
TREEFDP computes an MPE x∗.

Viterbi, generalized to arbitrary tree-structured graph-
ical models, is called max-product belief propagation
[2]. A tree-based reparametrization framework has been
developed [3], [4], which includes the belief propagation
[1] and sum-product algorithms [2] as special cases.
Within this reparametrization framework, there are ap-
proximation algorithms for MPEs [3] and marginals
[4]. Our novel approaches to initialization, discussed in
Section 3.2.2, are based on TREEBDP and TREEFDP and
are closely related to the tree-based reparametrization
algorithm for MPE computation.

3 STOCHASTIC LOCAL SEARCH (SLS)

In this section we present our stochastic local search al-
gorithm SGS in Section 3.1. Our initialization algorithms,
the forward dynamic programming (GRAPHFDP) and
backward dynamic programming (GRAPHBDP) algo-
rithms, are discussed in Section 3.2.

3.1 Stochastic Greedy Search

Figure 1 presents our Stochastic Greedy Search (SGS)
algorithm, discussed in more detail elsewhere [15], [17],
[18]. The structure of SGS is similar to that of the seminal
WALKSAT family of algorithms [20], [10]. In SGS, as in
WALKSAT, the MAX-FLIPS restart parameter controls
the number of flips made before SGS is restarted. A try
starts with initialization and ends after at most MAX-
FLIP flips. After MAX-FLIPS flips, if there is a new
try, a new explanation x from which search restarts is
randomly generated; this is also similar to WALKSAT. If
exactly one initialization is performed at the beginning
of each try, a total of at most MAX-FLIPS + 1 operations
are performed per try. Two termination criteria are
displayed in Figure 1; the lower bound ` ≤ Pr(x∗)
and the MAX-TRIES parameter. The latter is easy to
understand, for the former SGS terminates when the
probability of the MPE estimate x̂∗ exceed the lower
bound `, or Pr(x̂∗) ≥ `. While we assume that ` is an
input parameter, it can also be estimated during search.
Other termination criteria can easily be introduced.

There are, however, some important differences be-
tween SGS and many other WALKSAT-style algorithms.
First, SGS searches for an MPE in a BN, not a satisfying
assignment in a CNF logic formula. Second, SGS com-
bines greedy and noisy search algorithms in a portfolio
S with stochastic initialization algorithms in a portfolio
I, while WALKSAT does not use portfolios. Formally, we
use the following definition (see [18]):

Definition 6 (Stochastic portfolio): Let q ≥ 1 and let
Φ = {φ1, . . . , φq} be a set of algorithms. A stochastic
portfolio over Φ is a set of q tuples Λ = {ν1, . . . , νq} =
{(φ1, p1), . . . , (φq, pq)} where 0 ≤ pi ≤ 1,

∑q
i=1 pi = 1,

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 4

SGS(β, `, I, S, MAX-FLIPS, MAX-TRIES)
Input: β Bayesian network (BN)

` lower bound: Pr(x̂∗) ≥ `
I initialization portfolio
S local search portfolio
MAX-FLIPS number of flips per try
MAX-TRIES number of tries

Output: (b, x̂∗) b ∈ {true,false};
x̂∗ is estimated optimum

begin
x̂∗ ← INITIALIZE(I, β) {initial MPE estimate x̂∗}
if (Pr(x̂∗) ≥ `) then return (true, x̂∗)
i← 1
while (i ≤MAX-TRIES)

j ← 0 {the 0th operation is this initialization}
x← INITIALIZE(I, β) {initialize x}
if (Pr(x̂∗) ≥ `) then return (true, x̂∗)
j ← 1
while (j ≤MAX-FLIPS)

x← SEARCH(x, S, β) {update x}
if (Pr(x) > Pr(x̂∗)) then x̂∗ ← x
if (Pr(x̂∗) ≥ `) then return (true, x̂∗)
j ← j + 1

endwhile
i← i+ 1

endwhile
return (false, x̂∗)

end

Fig. 1. The stochastic local search algorithm SGS for

computing MPEs. SGS operates in two main phases: an

initialization phase and a local search phase. INITIALIZE

applies initialization algorithms from I, while SEARCH

applies search algorithms from S. SGS terminates if a

high-probability explanation is found or if the number of

tries exceeds MAX-TRIES.

and (φi, pi) means that the i-th algorithm φi, where
1 ≤ i ≤ q, is picked (and executed) with selection
probability pi when an algorithm is selected from Λ.

Both I and S are portfolios according to this definition.

3.2 Initialization Algorithms

Initialization algorithms play an important role in SGS
and other SLS algorithms [14], [15], [16]. We present
below several initialization algorithms for stochastic gen-
eration of initial explanations. SGS uses a portfolio I of
initialization algorithm (or operators), and initialization
of an explanation takes place when INITIALIZE(I, β) is
invoked. The algorithms discussed in this section, as well
as other initialization algorithms, can easily be incorpo-
rated in the initialization portfolio I of SGS. Evidence
e in a BN is not changed by any of these initialization
algorithms, however in order to simplify the discussion
we often do not make this explicit in the following.

3.2.1 Related SLS Initialization Algorithms

Uniform initialization (UN), the basis for our SGS/UN
experiments in Section 5, assigns initial states indepen-
dently and uniformly at random to an explanation x.
More formally, suppose that we have a Bayesian network
with nodes X . The uniform initialization algorithm goes
through all nodes X ∈ X . If X is a non-evidence
node, each state x ∈ ΩX has a probability of 1/|ΩX | of
being chosen to be part of the initial explanation x. An
early approach to MPE computation by means of sto-
chastic methods used uniform initialization and investi-
gated three randomized search techniques: iterative local
search, simulated annealing, and genetic search [21]. In
general, SAT solvers have also employed initialization
uniformly at random, and innovations have largely been
made in the area of search heuristics.

In the late 1990s, the benefit of more advanced SLS
initialization algorithms when computing MPE became
clear [13], [14], [15].

Forward simulation (FS), the basis for our SGS/FS
experiments in Section 5, is a well-known BN simulation
algorithm that operates as follows [37]: Suppose we have
a Bayesian network where V represents the root nodes
and C represents the non-root nodes. Using FS, a root
node V ∈ V is initialized, i.e. its states chosen for
inclusion in the initial explanation x, independently at
random according to the prior distribution Pr(V). A non-
root node C ∈ C is initialized randomly according to its
conditional distribution Pr(C | ΠC), and only after all of
its parent nodes ΠC have been initialized. Clearly, both
UN and FS are O(n).

Kask and Dechter empirically found strong MPE per-
formance using greedy search combined with stochas-
tic simulation [1] after performing initialization using
the mini-bucket approximation algorithm [13]. This
algorithm [38] approximates bucket elimination and is
useful for problem instances with large induced width
(or treewidth), since bucket elimination has exponential
space and time complexity in induced width [39].

Developing an SLS approach for the MAP problem,
which generalizes the MPE problem for BNs, Park
and Darwiche investigated two search algorithms (hill-
climbing and taboo search) as well as four initialization
algorithms [19]. Since the MAP problem is strictly harder
than the MPE problem [19], they in fact use MPE com-
putation as an initialization algorithm.

3.2.2 Novel Dynamic Programming Algorithms

We now turn to GRAPHFDP and GRAPHBDP. Unlike
TREEBDP and TREEFDP, GRAPHFDP and GRAPHBDP
can handle arbitrary BNs and not only trees and chains.
Both these algorithms split a BN β into trees, initialize
each tree independently using Viterbi (see Section 2.2),
and then collect the sub-explanations for all trees to give
an explanation for the entire BN β. More formally, let X
be the nodes in a BN. These nodes are partitioned into
k partitions

X = T 1 ∪ . . . ∪ T k, (2)

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 5

X1 X2

X3 X4

X5 X7X6

X1 X2

X3 X4

X5 X7X6

X1 X2

X3 X4

X5
X7X6

X1 X2

X3 X4

X5
X7X6

Fig. 2. Backward dynamic programming (GRAPHBDP)

initialization in a non-tree Bayesian network. To the

left, the BN is decomposed, by GRAPHBDP, into two

backward trees T1 = {X1, X3, X4, X5, X6} and T2 =
{X2, X7}. To the right, the BN is decomposed, again

by GRAPHBDP, into two different backward trees T1 =
{X1, X3} and T2 = {X2, X4, X5, X6, X7}.

where T i ∩ T j = ∅ for i 6= j. All partitions T i, where
1 ≤ i ≤ k, are either forward trees or backward trees.

Without loss of generality, we now assume that
GRAPHBDP is used and that all T i, where 1 ≤ i ≤ k,
therefore are backward trees. Consider the i-th backward
tree T i = {Xi1 , . . . , XiN }, where Xij ∈ X . For T i,
TREEBDP computes the sub-explanation

x∗i = {Xi1 = xi1 , . . . , XiN = xiN }, (3)

which is an MPE for T i according to Theorem 1. An MPE
estimate x̂∗ for the complete BN β can now be generated
by GRAPHBDP simply by collecting sub-explanations for
all k backward trees:

x̂∗ = x∗1 ∪ . . . ∪ x∗k. (4)

The GRAPHBDP algorithm is presented in Figure 3.
In constructing the trees {T 1, . . . ,T k}, some way to

introduce randomness is clearly needed in GRAPHBDP.
That is, we do not want every explanation generated
using INITIALIZE to be the same. Randomness is intro-
duced by constructing depth-first search trees where root
nodes, and then the children of any node, are picked
for processing uniformly at random. We call this novel
approach stochastic depth-first search, STOCHASTICDFS,
and summarize it as follows.

Let β = (X , E, P) be a BN, V ∈ X a root node,
and e evidence. The algorithm STOCHASTICDFS(β, V, e)
performs a depth-first search where all non-visited chil-
dren of V are recursively visited uniformly at random.
STOCHASTICDFS outputs a backward tree T i rooted in
V and marks all nodes in T i as visited in β. In T i,
all nodes reachable from V along a directed path in
β are included, except those nodes in β that are part
of backward trees {T 1, . . ., T i−1} already created by
STOCHASTICDFS and thus already marked as visited.

In its first while-loop, GRAPHBDP decomposes a BN
β into trees, starting from the root nodes, resulting in a
forest of trees. Each tree T in the induced forest of trees
is then, in the second while-loop, input to TREEBDP,
and an MPE for T is thus computed. Given the com-

GRAPHBDP(β,e)
Input: β Bayesian network (BN)

e evidence
Output: x explanation

begin
V ← root nodes in β
F ← ∅ {initialize the forest of backward trees F }
while V 6= ∅ {treat all root nodes}

V ← pick random root node from V
V ← V − {V }
{construct backward tree T with root V :}
T ← STOCHASTICDFS(β, V, e) {see text}
F ← F ∪ {T } {update forest F of trees}

endwhile
x← ∅ {initialize the explanation x}
V ← root nodes in β
while V 6= ∅ {treat all root nodes}

V ← pick node from V
V ← V − {V }
T ← pick, from F , the tree with root V
y ← TREEBDP(β,T , e)
x← x ∪ {y} {update explanation}

endwhile
return x

end

Fig. 3. The dynamic programming algorithm that itera-

tively creates backward trees for a BN and then executes

the Viterbi algorithm separately on each of these trees.

bined operation of STOCHASTICDFS and GRAPHBDP,
we can show the following.

Theorem 2: Let β be a BN and e = {X1 = x1, . . .,
Xm = xm} the evidence. The GRAPHBDP(β, e) algo-
rithm creates a forest of trees {T 1, . . . ,T k} in which each
node X ∈X of β = (X , E, P) participate in exactly one
tree T i, where 1 ≤ i ≤ k.

Proof: We first show that any node must be a mem-
ber of at least one tree. In β = (X , E, P), where V ⊆ X
are root nodes, suppose for the purpose of contradiction
that X ∈ X is not in any tree. Obviously, X is either a
BN root node, X ∈ V , or X is a BN non-root node,
X ∈ X − V . Case (i): If X ∈ V , it is the root of
exactly one tree by construction of GRAPHBDP and there
is a contradiction. Case (ii): If X is a non-root node,
X ∈ X − V , it is reachable by STOCHASTICDFS from
one or more root nodes, say {V1, . . . , Vm} ⊆ V , through
its parent nodes ΠX . Some Vi ∈ {V1, . . . , Vm} must have
been the first to have been picked in the first while-loop
of GRAPHBDP. At that point, by construction of STO-
CHASTICDFS, X would eventually have been included
in Vi’s tree, thus giving a contradiction and proving that
any node must be a member of at least one tree. Now
we show that X ∈X cannot be member of two different
trees. Suppose, for the purpose of contradiction, that
X ∈ T i and X ∈ T j with respective root nodes Vi and
Vj for i 6= j. The only non-trivial case is X 6= Vi and

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 6

X 6= Vj . Without loss of generality, we assume that Vi
was picked before Vj from V in the first while-loop of
GRAPHBDP, so i < j. When Vi was picked, and since
X ∈ T i, there must be a path from Vi to X and thus X is
marked visited upon inclusion in T i. By construction of
STOCHASTICDFS, X cannot be included in another tree
T j for j > i, giving a contradiction. An evidence node Xi

in e is treated exactly like any other node except that it’s
state xi is not changed. We have shown that any node
must be a member of at least one tree and cannot be
member of two trees; three or more trees follows easily
in a similar manner, proving the claim.

The second while-loop in GRAPHBDP invokes
TREEBDP for each backward tree T i. For each T i,
TREEBDP then sets up the dynamic programming ar-
rays, starting from the leaf nodes. The arrays are one
numerical array E and one state array B as discussed in
Section 2.2. Then TREEBDP constructs a sub-explanation
x∗i — as shown in Equation 3 — by forward propagation
and back-tracking over these DP arrays. Finally, all sub-
explanations are collected to form x̂∗; see (4).

Example 1: Figure 2 illustrates, for a small BN, how
GRAPHBDP may decompose a BN into two different
backward trees.

Example 1 illustrates the following general result,
which follows immediately from Theorem 2 and our
discussion above.

Corollary 3: Consider a BN β = (X , E, P) with
X = {X1, . . ., Xn} and evidence e = {X1 = x1, . . .,
Xm = xm} where m < n. GRAPHBDP(β, e) computes
an explanation y over all non-evidence nodes Y =
{Xm+1, . . ., Xn} ⊂ X .

GRAPHFDP works similar to GRAPHBDP, but starts
its stochastic decomposition of the BN into a forest of
forward trees from the leaf nodes, constructs DP arrays
from the root nodes, and then propagates and back-
tracks. Both GRAPHFDP and GRAPHBDP have complex-
ity O(n), since each node X ∈ X is processed at most
once in both algorithms.

Both GRAPHBDP and GRAPHFDP are heuristics and
have limitations. At the same time, this way of gen-
eralizing beyond the cases of chains and trees is fast
and produces, as it turns out, good explanations for
certain tree-like BNs. Since trees are generated in a ran-
domized fashion, different sub-explanations {x1, . . . ,xk}
which are MPEs for the individual trees {T 1, . . . ,T k} are
constructed and aggregated to form different candidate
MPEs. For trees we will get an MPE x∗; generally
an explanation constructed in this manner is an MPE
estimate x̂∗. Experimentation is needed to evaluate their
quality, and we return to this in Section 5.

4 THEORETICAL FRAMEWORK FOR SLS

SLS algorithms often have highly variable run times
depending on the initial explanation and may also be
restarted at different points of their execution. In this
section, we carefully analyze SGS, in particular with
regard to initialization and restart.

4.1 Fundamentals of SLS Search

A number of non-negative random variables can be in-
troduced to characterize the (pseudo-)random behavior
of SLS algorithms including SGS. Let, for a try, the
number of initialization operations applied be a random
variable X and the number of search operations (flips,
either greedy or noisy) applied be a random variable Y .
The total number of operations applied in a try is then
a random variable Z = X + Y .

While SGS contains an initialization portfolios I,
we investigate general initialization portfolios in a
related article [17] and focus here on homogenous
initialization portfolios. These portfolios, containing a
single initialization algorithms, have the form I =
{(a1, 0), . . . , (aj , 1), . . . , (aξ, 0)}, which can be abbreviated
I = {(aj , 1)} = {(a, 1)} or SGS/a. In addition, we want
to make the value of the restart parameter MAX-FLIPS
= m explicit. To reflect these two points, we say Z(a,m)
and Y (a,m) rather than just Z and Y respectively.1 We
now obtain the expected number of operations in a try

E(Z(a,m)) = E(X) +E(Y (a,m)) = 1 +E(Y (a,m)), (5)

where the last equality holds for SLS algorithms that
perform exactly one initialization per try, as will be
assumed in the following. The notation m = ∞ means
that there is no restart.

SGS stops a try when an explanation x̂∗ such that
Pr(x̂∗) ≥ `, which we abbreviate x̂∗` , is found or when
the cutoff MAX-FLIPS is reached. In the former case
we say that the try is successful, and define success
probability ps(a,m) accordingly. For the latter case we
define failure probability pf (a,m).

Definition 7 (Success, failure of try): Let MAX-FLIPS =
m. The success probability of an SLS try is

ps(a,m) :=

m∑
i=0

Pr(Y (a,∞) = i). (6)

The failure probability is pf (a,m) := 1− ps(a,m).
An MPE estimate x̂∗` might be computed without

much search, if initialization is strong relative to the
problem instance. Therefore, summation starts with i = 0
in (6) to capture the probability of finding an x̂∗` as
a result of initialization. When there is a good fit be-
tween a problem instance and an initialization algorithm,
Pr(Y (a,∞) = 0) can in fact be substantial, as we will see
in experiments in Section 5.

The expected number of SGS operations executed,
E(Z(a,m)) is characterized by the following result. The
assumption ps(a,m) > 0 made below is reasonable since
if ps(a,m) = 0 then using MAX-FLIPS = m is futile.

Theorem 4 (Expected number of operations): Suppose
that ps(a,m) > 0 and let MAX-FLIPS = m. The expected

1. We could also have added SGS’s other input parameters to Z and
Y , however this would have made for a too tedious notation for the
purpose of this article, where we focus on initialization and restart.

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 7

number of SLS operations executed during a run,
E(Z(a,m)), is given by

E(Z(a,m)) =
mpf (a,m) +

∑m
i=0 iPr(Y (a,∞) = i) + 1

ps(a,m)
(7)

Proof: We introduce an indicator random variable R,
and let R = 1 mean SLS success in the first try while R =
0 means SLS failure in the first try. Using conditional
expectation gives

E(Z(a,m)) = E(Z(a,m) | R = 0) Pr(R = 0)

+ E(Z(a,m) | R = 1) Pr(R = 1). (8)

First, we consider the case where SLS terminates in the
first try and obtain

E(Z(a,m) | R = 1) = 1 +

m∑
i=0

iPr(Y (a,∞) = i)

ps(a,m)
, (9)

where the first term is due to initialization and the
second term is due to flips and is normalized using
ps(a,m) since we assume that SLS terminates in this
try. Second, we consider the case where SLS does not
terminate in the first try and obtain E(Z(a,m) | R = 0)
= E(Z(a,m) + m + 1), which by linearity is

E(Z(a,m) | R = 0) = E(Z(a,m)) +m+ 1. (10)

Substituting (9), (10), Pr(R = 0) = pf (a,m), and Pr(R =
1) = ps(a,m) into (8) and then solving for E(Z(a,m))
gives the desired result for a run (7).

Results similar to Theorem 4 have been obtained and
discussed previously [28], [40]. Theorem 4 is novel in that
we account for all operations including initialization,
not only flips Y (a,m) as earlier [28], [40].2 This is
important when initialization makes up a significant part
of total computation time, which is the case when small
values of MAX-FLIPS are optimal or close to optimal. In
addition, previous analytical results do not contain an
explicit proof as stated above [28], [40].

The distributions of Z(a,m) and Y (a,m) are also
known as run length distributions (RLDs) [12].3 A re-
lated random variable, which we will denote C(a,m),
measures wall-clock time in, say, milliseconds, and is
known as the run time distribution (RTD). Given the
additional variability introduced in RTDs, due to em-
pirical measurements that depend on the software and
hardware used in addition to the random number of SLS
operations, we mainly use RLDs in this article.

The performance of SLS algorithms varies dramati-
cally as the value of the restart parameter MAX-FLIPS
varies. How can MAX-FLIPS, then, be set such that SLS
performance is optimized? In answering this question,

2. Notation used previously is slightly different from ours. Instead
of E(Y (m)), Parkes and Walser use Eν,m, where ν represents a
problem instance and MAX-FLIPS = m [28]. Schuurmans and Southey
say E(T) with restart after t flips instead of E(Y (m)) [40].

3. A more descriptive terminology for Y (m) would perhaps be “flip
length distribution”, but we will use the more common “run length
distribution” in this article.

one needs to consider what, exactly, to optimize. It
is clearly reasonable to minimize the expected number
of SLS operations, and we consequently introduce the
following definition.

Definition 8 (Expectation-optimal MAX-FLIPS): Let
MAX-FLIPS = m and let Z(a,m) be the random
number of SLS operations. The expectation-optimal
value m∗o for MAX-FLIPS is defined as

m∗o(a) = arg min
m∈N

(E(Z(a,m))) , (11)

with µ∗o(a) = E(Z(a,m∗o)), often abbreviated m∗o and µ∗o
respectively.

Occasionally, we minimize the expected number of
SLS flips E(Y (a,m)) instead of minimizing E(Z(a,m))
as above, and define m∗f (a) in a similar manner to m∗o(a)
and also define µ∗f (a) = E(Y (a,m∗f)).

4.2 Finite Mixture Models of SLS

We now discuss finite mixture models, which have at
least two benefits in the SLS setting. First, finite mixture
models turn out to be a reasonable model of the multi-
modal nature of SLS run-length distribution (RLD) in
many instances [26]. Second, finite mixtures allow us to
improve the understanding of the role of restarts in SLS.

4.2.1 General Case of Finite Mixture Models

In order to make further progress, and supported by
previous research [26] as well as experiments in Section
5, we now introduce the assumption that an RLD may
be characterized as a finite mixture of κ components.

Definition 9 (SLS finite mixture model): Let MAX-FLIPS
= m, assume a homogenous initialization portfolio
{(a, 1)}, and let Fi (for 1 ≤ i ≤ κ) be a cumulative
distribution function. An SLS finite mixture model of
the RLD Z(a,m) is defined as

F (z; a,m) = π1(a,m)F1(z; a,m)+· · ·+πκ(a,m)Fκ(z; a,m),
(12)

where
∑

κ

i=1 πi(a,m) = 1.
Without loss of generality, we assume that the distribu-

tions F1, . . . , Fκ are ordered according to their respective
means: µ1 ≤ µ2 ≤ . . . ≤ µκ. Further, when no restart
is used we may say πi(a)Fi(z; a) and Z(a), and when
the initialization algorithm a is clear from the context or
assumed fixed we may say πi(m)Fi(z;m) and Z(m).

An interesting special case of (12) is to model an
SLS run length distribution as a two-component finite
mixture distribution

F (z; a,m) = π1(a,m)F1(z; a,m) + π2(a,m)F2(z; a,m).
(13)

Now, for the case ` = Pr(x∗), π1 and F1 represent ini-
tializations that are close to the MPEs X∗, while π2 and
F2 represent initializations farther away from X∗. The
characteristics of π1, F1, π2, and F2 will depend on the
RLD at hand, which again depends on the BN, the SLS
initialization algorithm, and the other SLS parameters.

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 8

The idea is that a strong initialization algorithm yields a
larger π1 and an F1 that is more skewed towards shorter
run lengths compared to a weak initialization algorithm.

The formalization above, using finite mixtures, im-
proves our understanding of the following well-known
strategy: Initialize and then run the SLS algorithm for
a “small” number of steps. If the initial explanation
x turned out to be “close” to an optimum, then the
SLS algorithm exhibits the π1F1(z) case. If the initial
explanation x turned out to be “far away” from an
optimum, then we have the π2F2(z) case. In (13), the
term π1F1(z) will in general be of greatest interest to us
since it represents successful initializations. Intuitively,
the idea is to set MAX-FLIPS such that the SLS algorithm
uses, in (13), the F1 distribution repeatedly rather than
“wait around” till the F2 distribution takes effect.

4.2.2 Special Cases of Finite Mixture Models

The specific mixture models we discuss below are for
continuous random variables, while in Section 4.1 we
considered discrete random variables. Consequently, we
note that E(Z(m)) (see Theorem 4) can be approximated,
using continuous random variables, as

E(Z(m)) ≈
m (1− F (m)) +

∫m
0
zf(z)dz + 1

F (m)
, (14)

where F (z) is a cumulative distribution function and
f(z) the corresponding probability density function.

We now discuss finite mixtures of exponential distri-
butions, which is of interest for several reasons. First,
RLDs that are close to exponential have been observed in
experiments [23], [26], [12]. For example, an empirical
RLD for a hard SAT instance containing 100 variables
and 430 clauses was generated using WALKSAT and
found to be well-approximated by an exponential distri-
bution with µ̂ = 61, 081.5 [12]. Second, the exponential
distribution, and its discrete counter-part the geometric
distribution, are memoryless. Restarting SLS algorithms
whose RLDs almost follow these distributions is there-
fore of little use [40], and they are thus interesting as
bounding cases for restart. Third, it is relatively easy to
analyze the exponential distribution.

The exponential distribution has only one parameter
and its mode is at zero. The probability of finding x∗`
within zero or a few flips is, on the other hand, often
extremely small (see Figure 4 and Figure 6 for exper-
imental evidence). For such situations, the normal (or
Gaussian) and log-normal distributions, and their finite
mixtures, may be more suitable and are used extensively
in Section 5, see Table 1 and Table 2. A random variable
is log-normal if its logarithm is normally distributed.
The normal and log-normal distributions both have
two parameters, controlling location and spread, making
them well-suited to handling the type of right-shifting
needed to model the low-probability left tails that can be
empirically observed for SLS algorithms including SGS.

5 EXPERIMENTS WITH SLS

We now consider experimental results for SGS. Section
5.1 discusses our experimental approach. In Section 5.2
we characterize the behavior of different SLS initial-
ization algorithms, including our novel Viterbi-based
approach, using finite mixture models and other tech-
niques. In Section 5.3 and Section 5.4 we empirically
investigate the effect of restarts, and in particular vary
and optimize the MAX-FLIPS parameter in the context
of different initialization algorithms. We compare the
performance of SGS and clique tree clustering, a state-
of-the-art exact method, in Section 5.5.

5.1 Experimental Methodology

The main purpose of the empirical component of this
research is scientific experimentation rather than compet-
itive experimentation [41].4 While we have highlighted
the importance of initialization and introduced a novel
Viterbi-based initialization approach, the purpose of our
experiments is not to show that this approach is faster
than existing algorithms on all problem instances (com-
petitive experimentation). Rather, we aim to complement
the discussion earlier in this article (scientific experimen-
tation), and in particular provide further details regard-
ing the effect of using different initialization algorithms
and varying MAX-FLIPS.

There is evidence that a problem instance that is hard
for one SLS algorithms is also hard for other SLS algo-
rithms [24], therefore we here investigate one SLS system
in depth instead of performing superficial experiments
with a large number of SLS systems. The SLS system
used for experimentation was an implementation of Sto-
chastic Greedy Search (SGS) [14], [15]. Initialization algo-
rithms discussed in Section 3 were used in I , namely UN
- based on uniform initialization; FS - based on forward
simulation; BDP - based on GRAPHBDP; and FDP -
based on GRAPHFDP. Instance-specific search portfolios
S were used in the experiments. These S always con-
tained noisy search algorithms with non-zero selection
probabilities (see Definition 5.5), thus SGS could always
escape local but non-global maxima even for MAX-FLIPS
= ∞. Input parameters ` = Pr(x∗), e = {}, and MAX-
TRIES = ∞ were given to SGS (except in Section 5.5
where MAX-TRIES <∞ was used). The benefit of MAX-
TRIES = ∞, often called the Las Vegas approach [42],
[43], [12], is that one does not confound empirical results
with the question of when to terminate. Using SGS, at
least 1,000 repetitions (with different random seeds) were
performed for each experiment reported here. In some
cases, up to 10,000 or 100,000 repetitions were run.

We investigate the performance of SGS on BNs from
applications; see elsewhere for synthetic BN results
[17], [18]. The 10 distinct application BNs considered,
most of which are taken from Friedman’s Bayesian

4. Hooker in fact uses the term “testing” rather than “experimenta-
tion” [41]; however we here prefer the latter term.

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 9

Network Repository, are shown in Table 5. (At the
time of this writing, the location of the Bayesian Net-
work Repository is at http://www.cs.huji.ac.il/labs/
compbio/Repository/.) We discuss in greatest detail the
Munin1, Pir3, and Water BNs. The Munin BNs are from
the medical field of electromyography. The Pir BNs
perform information filtering for the purpose of improv-
ing battlefield situation awareness [44]. The Water BN
models the biological processes of water purification.

An Intel Pentium 4 2GHz CPU with 1GB of RAM,
running Windows XP, was used in experiments.

5.2 Varying the Initialization Algorithm

The purpose of the initialization experiments was to
study in detail the effect, on empirical RLDs Ẑ(a,∞), or
Ẑ(a), and Ŷ (a,∞) = Ẑ(a,∞) − 1, or Ŷ (a), of using dif-
ferent initialization algorithms. Three variants of SGS/a,
namely SGS/UN, SGS/FS, and SGS/BDP, were used
[14], [15]. Each SGS variant was tested using three BNs
— Munin1, Pir3, and Water — giving a total of nine
combinations. For each combination, 1,000 repetitions
were executed. Following standard SLS methodology,
no restarts were done at this stage [26], [12].

Results of these experiments are presented in Figure
4, Table 1, and Table 2. Table 1 and Table 2 were created
using the WEKA implementation [45] of the expectation
maximization (EM) algorithm. WEKA was used in two
different modes, namely (i) to compute the optimal num-
ber of finite mixture components κ∗ by means of cross-
validation (see Table 1) and (ii) to compute the mixture
parameters for a fixed number of mixture components
(see Table 2). Since normality is assumed by this variant
of EM, the ln-transformation performed as indicated
in Table 1 means that log-normality is implied. These
experiments are complementary to previous experiments
by Hoos, where finite mixtures were used to model SLS
performance on SAT instances from the hard region [26].
In particular, Hoos’ experiments focused on synthetic
SAT instances rather than application BNs and used at
most two mixture components in experiments [26].

For the Munin1 BN, SGS/FS is the best performer. On
average, SGS/FS, uses only 32% of the flips required for
SGS/UN in order to find an MPE in these experiments.
By investigating the RLDs in Figure 4, it becomes clear
that SGS/FS has a significant portion of much shorter
searches than SGS/UN and SGS/BDP. This is reflected
in Table 1, where the left-most mixture component has
for the raw data π̂1 = 0.43, µ̂1 = 21.84, and σ̂1 = 21.84.
For SGS/UN and SGS/BDP, there is no similar effect of
short search lengths. The 25th percentile is 87,215 flips
for SGS/UN and 65,215 flips for SGS/BDP. In Table 2,
there is for SGS/FS and Munin1 a prominent drop in the
log-likelihood from κ = 1 to κ = 2, indicating that much
RLD probability mass is quite accurately accounted for
when there are two components in the mixture.

For the Pir3 BN, SGS/BDP is extremely strong. In fact,
in over 50% of the cases an MPE is found as a result

Fig. 4. Varying the initialization algorithms for three BNs.

For each BN, three different variants of SGS are tested,

namely SGS/UN, SGS/FS, and SGS/DP. An empiri-

cal run-length distribution (RLD) is displayed for each

combination. Each BN has a best initialization algorithm,

namely SGS/FS for Munin1 (top), SGS/BDP for Pir3

(middle), and SGS/FS for Water (bottom).

of initialization (zero flips). Table 1 reflects this strong
performance, with π̂1 = 0.74 and µ̂1 = 0.46. In contrast,
the averages for Pir3 for SGS/UN and SGS/FS are
E(Ŷ (a,∞)) = 34,469 flips and E(Ŷ (a,∞)) = 32,249 flips
respectively. Pir3’s backward tree-like structure appears
to explain the strong results for SGS/BDP.

For the Water BN, SGS/FS is on average approxi-
mately twice as fast as SGS/UN and SGS/BDP. For
SGS/FS, we see in Figure 4 a rapid increase in the
empirical RLD until approximately 10 operations. In
fact, for Water the 1st percentile is 3 flips and the 5th
percentile is 6 flips. Table 1 and Table 2 reflect similar
trends for SGS/FS compared to its alternatives.

These experiments show that initialization algorithms
can have a major positive impact on the SGS inference

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 10

BN Init. Ln κ∗ π̂1 µ̂1 σ̂1 π̂2 µ̂2 σ̂2 LL∗ AIC∗
Munin1 UN n 5 0.22 58,206.54 21,709.53 0.31 113,821.39 25,923.72 -12.81 53.61
Munin1 UN y 2 0.31 11.45 0.80 0.69 11.93 0.57 -1.03 12.06
Munin1 FS n 8 0.43 21.84 7.00 0.07 979.74 766.79 -9.15 64.30
Munin1 FS y 5 0.43 3.04 0.32 0.03 5.14 1.43 -1.88 31.75
Munin1 BDP n 5 0.26 51,803.76 16,944.68 0.36 96,441.14 27,014.92 -12.62 53.25
Munin1 BDP y 1 1.00 11.58 0.69 -1.05 6.09
Pir3 UN n 5 0.21 8,311.19 3,047.46 0.35 20,489.07 7,239.97 -11.36 50.72
Pir3 UN y 3 0.36 9.25 0.57 0.37 10.25 0.39 -1.24 18.49
Pir3 FS n 6 0.22 7,830.90 2,911.51 0.25 16,735.10 4,370.79 -11.29 56.58
Pir3 FS y 2 0.54 9.53 0.71 0.46 10.65 0.58 -1.26 12.51
Pir3 BDP n 2 0.74 1.29 0.46 0.26 4.16 2.72 -1.48 12.96
Pir3 BDP y 1 1.00 0.47 0.61 -0.92 5.85
Water UN n 8 0.18 169.94 110.59 0.26 748.22 332.40 -9.00 64.00
Water UN y 5 0.06 3.79 0.40 0.23 5.69 0.66 -1.77 31.54
Water FS n 4 0.20 14.10 11.58 0.36 320.87 232.10 -8.08 38.17
Water FS y 5 0.20 2.28 0.66 0.29 5.15 0.73 -2.08 32.15
Water BDP n 8 0.17 441.78 217.74 0.31 1,252.41 411.89 -9.04 64.09
Water BDP y 2 0.44 7.00 1.08 0.56 8.01 0.84 -1.48 12.96

TABLE 1

Mixture models computed using the EM algorithm over SGS run length data, using three different initialization

algorithms and three different BNs. Cross validation results for both raw data and ln-transformed data are displayed

(Ln column), as are the number of mixture components (κ∗), the statistics for the one or two left-most mixture

components, as well as the log-likelihoods (LL∗) and Akaike information criterion (AIC∗) values.

BN Init. Ln κ = 1 κ = 2 κ = 3 κ∗ LL∗
Munin1 UN n -13.02 -12.85 -12.82 5 -12.81
Munin1 FS n -12.82 -9.50 -9.31 8 -9.15
Munin1 BDP n -12.94 -12.70 -12.64 5 -12.62
Pir3 UN n -11.65 -11.44 -11.38 5 -11.36
Pir3 FS n -11.65 -11.40 -11.33 6 -11.29
Pir3 BDP n -2.06 -1.48 -1.98 2 -1.48
Water UN n -9.71 -9.28 -9.11 8 -9.00
Water FS n -9.41 -8.60 -8.30 4 -8.08
Water BDP n -9.60 -9.20 -9.11 8 -9.04

TABLE 2

Mixture models generated using the EM algorithm over

SGS run length data, using three different initialization

algorithms, for the BNs Munin1, Pir3, and Water.

Log-likelihoods (LLs) for κ = 1, 2, 3 mixture components

are shown. The two right-most columns show the

number of mixture components κ∗ and log-likelihood LL∗

computed by cross validation.

time. For each of these BNs, there is one initialization
algorithm that substantially outperforms the traditional
approach of initializing uniformly at random, here im-
plemented in SGS/UN. For some initialization algo-
rithms, a non-trivial percentage of searches turned out
to be relatively short as shown in Figure 4. For Pir3,
SGS/BDP has a 99th percentile of 9 flips; for Munin1,
SGS/FS has a 25th percentile of 21 flips; and for Water,
SGS/FS has a 25th percentile of 91 flips.

These experiments exhibit clear evidence of mixture
distribution behavior, aligning well with the discussion
in Section 4.2. We see in Table 1 that the optimized
number of mixture components, κ∗, ranges from 1 to
8. In particular, in Table 1, the use of two or more
mixture components was found to be optimal in most
cases: κ∗ ≥ 2 in 16 out of 18 rows in the table.

5.3 Varying the Restart Parameter

The purpose of the restart experiments was to investi-
gate the effect, on empirical RLDs Ŷ (a,m), of varying
the SLS restart parameter MAX-FLIPS. The MAX-FLIP
parameter was set to MAX-FLIPS = 20, MAX-FLIPS = 30,
MAX-FLIPS = 50, MAX-FLIPS = 100, and MAX-FLIPS
= 200, and for each condition the MPE was computed
1,000 times using SGS while gathering statistics for RLD
estimates Ŷ (a,m).

In Figure 5, the Ŷ (a,m) results for SGS/FS using the
Munin1 BN are shown. Varying MAX-FLIPS has a major
impact, since for the unbounded case MAX-FLIPS = ∞
the RLD is almost horizontal for RLD-values slightly
greater than 0.4. For the larger values of MAX-FLIPS,
except for the unbounded MAX-FLIPS case, we observe
a stair-case-shaped RLD, where steps get progressively
smaller as the number of flips increases. Clearly, the
reason for this pattern is the substantial probability mass
in the left tail. This is also shown in Table 1, where the
left-most mixture component has for SGS/FS π̂1 = 0.43,
µ̂1 = 21.84, and σ̂1 = 7.00.

Results for Ŷ (a,m) for SGS/FS using the Water BN
are shown in Figure 5. While the effect here is not
as dramatic as for Munin1, MAX-FLIPS = 20 gives, in
general, visibly better performance than the other MAX-
FLIPS settings. Again, this behavior reflects Table 1,
where the left-most mixture component has for SGS/FS
π̂1 = 0.20, µ̂1 = 14.10, and σ̂1 = 11.58.

For Pir3, varying the restart parameter had a minimal
effect on Ŷ (a,m), as one might expect given the similar-
ity of the RLD to an exponential distribution (see Figure
4), and to save space we do not report details.

In summary, we have seen that varying the MAX-
FLIPS parameter can have a substantial impact on SGS
run lengths for certain BNs. This leads to the following

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 11

Fig. 5. Empirical run length distributions (RLDs) for SGS

when varying the restart parameter from MAX-FLIPS=20

to MAX-FLIPS unbounded.

question. What are the optimal or near-optimal values of
MAX-FLIPS for such BNs? This issue is what we turn
to in the experiments of the next section.

5.4 Optimization of Initialization and Restart

The purpose of the optimization experiments was to
empirically find optimal or near-optimal values m̂∗f of
MAX-FLIPS, thus minimizing E(Ŷ (a,m)). The speed-
up that can be obtained by optimizing both initialization
and restart was of interest. Compared to traditional
optimization, we note that SLS restart parameter opti-
mization is complicated by the noise in the objective
function caused by SLS randomization.

Based on pilot studies reported in Section 5.3, we
investigated optimization of SGS for Munin1, Pir3, and
Water in detail. Using SGS/FS and Munin1, MAX-
FLIPS was varied from MAX-FLIPS = 20 to MAX-FLIPS
= 40. For each setting, 10,000 Las Vegas run length
experiments were performed. Both the number of flips
and computation times were recorded, and then the
sample averages for number of flips E(Ŷ (a,m)) and
execution times E(Ĉ(a,m)) were computed.

Results from these Munin1 experiments are shown in
Figure 7. Figure 7 contains, in addition to the data points,
4-th order polynomial regression results. Similar results
are reported for the Water BN. Given the approximate
polynomials above one can find approximate optima by
setting the derivative to zero, f ′(x) = 0, and solving for
x, giving results that are very similar to those obtained

Fig. 6. Empirical run length distribution (RLD) for

SGS/FS for Munin1 along with four mixture models, with

varying number of mixture components.

Baseline SGS Optimized SGS Speedup ratio
BN Flips MF Flips MF Flips Time

Munin1 162,373 ∞ 61.09 30 2,680:1 2,656:1
Pir3 34,469 ∞ 0.8621 6 39,982:1 6,629:1
Water 3,121 ∞ 70.59 9 44.2:1 38.34:1

TABLE 4

Optimizing performance of SGS for three BN instances.

using just run length. Further insight and confirmation
is provided by Figure 6 and Table 3, which show raw
data along with normal mixture models. Using the prob-
abilistic approach discussed in Section 4, in particular
(14), these mixture models were used to obtain estimates
m̂∗o(FS) as summarized in Table 3.

A summary of the results for the different BNs is
provided in Table 4. The baseline SGS system is using
uniform initialization and no restart. Optimized SGS is
using the best initialization algorithm (for that particular
BN) and an optimized value for MAX-FLIPS (MF). For
the Pir3 BN, the mean of the baseline approach SGS/UN
was 34,469 flips while optimized SGS/BDP used 0.8621
flips. In terms of wall-clock time, optimized SGS/BDP
was 6,629 times faster than unoptimized SGS/UN.
There are similar, but less dramatic, speedups for the
Munin1 and Water BNs.

Overall, the speedups obtained by carefully optimiz-
ing initialization and restart are quite dramatic for these
application BNs. Initialization is more important than
restart, in the sense that strong performance can be
obtained for a particular initialization algorithm a for
SGS/a even without optimizing MAX-FLIPS.

5.5 Comparison to Clique Tree Clustering

The purpose of these experiments was to compare SGS
with clique tree clustering [6], [7], [33], [8] as imple-
mented in the state-of-the-art system HUGIN. Clique tree
clustering is an exact algorithm that consists of two
phases, the clustering phase and the propagation phase.
The clique tree propagation (CTP) phase operates on a
clique tree, created from a BN by the clustering phase.

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 12

κ π̂1 µ̂1 σ̂1 π̂2 µ̂2 σ̂2 π̂3 µ̂3 σ̂3 π̂4 µ̂4 σ̂4 LL m̂∗
o(FS)

1 1.0 52,081 89,780 -12.82 -
2 0.433 21.94 7.166 0.567 91,795 102,816 -9.50 32
3 0.432 21.92 7.129 0.231 15,029 13,620 0.337 144,449 104,328 -9.31 32
4 0.432 21.91 7.108 0.157 7,384 7,025 0.211 55,954 31,719 0.200 19,5384 10,5862 -9.25 32

TABLE 3

Mixture models, with κ = 1 to κ = 4 components, generated using the expectation maximization (EM) algorithm.

Fig. 7. Varying the MAX-FLIPS restart parameter for

SGS/FS on the BNs Munin1 (top) and Water (bottom).

Average computation time is displayed for each BN. Ap-

proximations using 4-th order polynomials, based on the

experimental data points, are also shown.

Clique tree size upper bounds treewidth, a fundamental
graph-theoretic parameter [46] of a BN.

Table 5 presents experimental results for 10 distinct
application BNs for both SGS and clique tree propaga-
tion. In these experiments, where the SGS system was
optimized using our technique discussed earlier in the
article, we only account for on-line run time, not pre-
processing time. For HUGIN, pre-processing amounts
to compilation of a BN into a clique tree. For SGS,
pre-processing amounts to optimizing the parameters
controlling search. The results in Table 5 have for HUGIN
been averaged over 50 runs, for SGS over 1,000 runs.

Total clique tree size and inference time, as computed
by clique tree clustering, is an indication of BN hardness.
Among these BNs, Munin1 has the largest total clique
tree size and the slowest execution time. SGS clearly

BN SGS CTP
Name m/n Init. MF Time (s) Size (k) Time (s)

Mildew 1.31 FDP 200 0.257 9,566 3.88
Munin1 1.49 FS 30 0.0254 384,621 1824
Munin2 1.24 FS 113 1.98 4,862 2.75
Munin3 1.26 - - - 3,113 0.744
Munin4 1.34 - - - 14,340 3.19
Pigs 1.34 FDP 550 3.41 828 15.7
Pir1 1.02 BDP 2 0.0205 11 0.0197
Pir2 1.00 BDP 8 0.0100 8 0.0367
Pir3 1.17 BDP 6 0.00216 5 0.00096
Water 2.06 FS 9 0.00837 3,657 0.772

TABLE 5

Comparison of performance of SGS and clique tree

propagation (CTP) on different BN instances.

outperforms CTP on Mildew, Munin1, Pigs, Pir2, and
Water. CTP is clearly superior to SGS for Munin3 and
Munin4, as SGS did not terminate within the allocated
number of MAX-TRIES for these BNs.

We now compare the performance of the novel ini-
tialization algorithms proposed in this paper, BDP and
FDP, with FS. A key difference is that BDP and FDP
are structure-based, while FS is CPT-based. As a con-
sequence, BDP and FDP can be expected to perform
very well for BNs that are tree-structured or close to
tree-structured, and not so well otherwise. FS, on the
other hand, does not rely on structure. The experimen-
tal results confirm these qualitative statements: Table 5
illustrates how BDP and FDP are the best performers,
relative to FS, for BNs with substantial tree structure,
reflected in a small ratio m/n for a BN β = (X , E, P),
where n = |X| and m = |E|.

In summary, these experiments clearly show that
our stochastic greedy search algorithm — specifically
SGS/FS, SGS/BDP, and SGS/FDP — performs very
well on non-trivial BNs. In particular, these experiments
show competitive performance on BNs that are not triv-
ial for clique tree clustering, a state-of-the-art algorithm
for BN inference.

6 DISCUSSION AND FUTURE WORK

Stochastic local search (SLS) algorithms provide, for
certain classes of applications and problem instances, an
appealing trade-off of accuracy for speed and memory
requirements. Specifically, SLS algorithms require little
memory and are very fast for certain problem instances,
but are incomplete and may produce sub-optimal results.
By focusing on computing most probable explanations in

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 13

Bayesian networks, we have in this article presented al-
gorithmic, analytical and experimental results regarding
SLS initialization (where to start search?) and the SLS
restart parameter (when to re-start search?). In particu-
lar, we have discussed Viterbi-based initialization algo-
rithms, an analytical framework for SLS analysis, and
analysis of Stochastic Greedy Search (SGS) specifically,
and finally SGS’s competitive performance relative to
clique tree clustering. By carefully and jointly optimizing
the initialization algorithm and the restart parameter
MAX-FLIPS for SGS, we improved for application BNs
the search performance by several orders of magnitude
compared to initialization uniformly at random with no
restart (or MAX-FLIPS = ∞).

We now consider, for SGS, the optimization of the
initialization algorithm a and the MAX-FLIPS parameter.
This optimization — which is reflected in the progression
of Section 5.2, Section 5.3, and Section 5.4 — is a heuristic
pre-processing step. First, as discussed in Section 5.2,
one typically optimizes the selection probabilities in
the initialization portfolio I. This optimization is partly
informed by the structure of the BN, such that the
probability of picking FDP (say) from the initialization
portfolio is set higher for a BN that is close to having a
forward-tree structure. The probabilities are then grad-
ually adjusted, as one sees the impact of the different
initialization algorithms on the progress of the stochastic
search process, until one is left with a homogenous ini-
tialization portfolio SGS/a. After a has been identified,
the emphasis typically shifts to the optimization of the
MAX-FLIPS parameter, utilizing the mixture distribution
properties of the run-length distributions identified in
this article. Empirical aspects of this optimization are
investigated in Section 5.3 and Section 5.4.

Our results appear to create new research opportuni-
ties in the area of adaptive and hybrid SLS algorithms.
One opportunity concerns the development of new ini-
tialization algorithms. For example, it would be of inter-
est to investigate more fine-grained hybrid algorithms,
where different initialization algorithms may be applied
to create different sub-explanations. Another question is
whether SGS performance can be further improved by
automatically optimizing the input parameters. Finally,
additional work on finite mixture models appears useful.
Most current approaches assume, as we have done here,
homogenous mixtures. We speculate that heterogenous
mixture models, where one distribution function F1 is
(say) normal while another distribution function F2 is
(say) exponential, could provide improved fits for certain
run-length distributions, and would be useful in other
contexts as well.

Acknowledgments

This material is based, in part, upon work by Ole J.
Mengshoel supported by NASA awards NCC2-1426 and
NNA08CG83C as well as NSF grants CCF-0937044 and
ECCS-0931978. Ole J. Mengshoel and David C. Wilkins
gratefully acknowledge support in part by ONR grant

N00014-95-1-0749, ARL grant DAAL01-96-2-0003, and
NRL grant N00014-97-C-2061. Dan Roth gratefully ac-
knowledges the support of NSF grants IIS-9801638 and
SBR-987345.

David Fried and Song Han are acknowledged for
their co-development of the Raven software, used in
experimental work reported here. Comments from the
anonymous reviewers, which helped improve the article,
are also acknowledged.

REFERENCES

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[2] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 498–519, 2001.

[3] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on (hyper)trees: Message-passing and linear program-
ming approaches,” IEEE Transactions on Information Theory, vol. 51,
pp. 3697–3717, 2002.

[4] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “Tree-
based reparameterization framework for analysis of sum-product
and related algorithms,” IEEE Transactions on Information Theory,
vol. 49, p. 2003, 2003.

[5] A. Darwiche, “A differential approach to inference in Bayesian
networks,” Journal of the ACM, vol. 50, no. 3, pp. 280–305, 2003.

[6] S. Lauritzen and D. J. Spiegelhalter, “Local computations with
probabilities on graphical structures and their application to
expert systems (with discussion),” Journal of the Royal Statistical
Society series B, vol. 50, no. 2, pp. 157–224, 1988.

[7] S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen,
“HUGIN—a shell for building Bayesian belief universes for expert
systems,” in Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, vol. 2, Detroit, MI, Aug. 1989, pp. 1080–
1085.

[8] C. Huang and A. Darwiche, “Inference in belief networks: A
procedural guide,” International Journal of Approximate Reasoning,
vol. 15, pp. 225–263, 1996.

[9] B. Selman, H. Levesque, and D. Mitchell, “A new method for
solving hard satisfiability problems,” in Proceedings of the Tenth
National Conference on Artificial Intelligence (AAAI-92), San Jose,
CA, 1992, pp. 440–446.

[10] B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for
improving local search,” in Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94), Seatttle, WA, 1994,
pp. 337–343.

[11] P. W. Gu, J. Purdom, J. Franco, and B. W. Wah, Satisfiability
Problem: Theory and Applications, ser. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American
Mathematical Society, 1997, ch. Algorithms for the Satisfiability
SAT Problem: A Survey, pp. 19–152.

[12] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and
Applications. San Francisco: Morgan Kaufmann, 2005.

[13] K. Kask and R. Dechter, “Stochastic local search for Bayesian net-
works,” in Proceedings Seventh International Workshop on Artificial
Intelligence and Statistics. Fort Lauderdale, FL: Morgan Kaufmann,
Jan 1999.

[14] O. J. Mengshoel, “Efficient Bayesian network inference: Genetic
algorithms, stochastic local search, and abstraction,” Ph.D. dis-
sertation, Department of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, IL, Apr. 1999.

[15] O. J. Mengshoel, D. Roth, and D. C. Wilkins, “Stochastic greedy
search: Computing the most probable explanation in Bayesian net-
works,” Department of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, IL, Tech. Rep. UIUCDCS-R-2000-
2150, Feb. 2000.

[16] F. Hutter, H. H. Hoos, and T. Stützle, “Efficient stochastic lo-
cal search for MPE solving,” in Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI-05),
Edinburgh, Scotland, 2005, pp. 169–174.

[17] O. J. Mengshoel, “Understanding the role of noise in stochastic
local search: Analysis and experiments,” Artificial Intelligence, vol.
172, no. 8-9, pp. 955–990, 2008.

ACCEPTED, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 14

[18] O. J. Mengshoel, D. Roth, and D. C. Wilkins, “Portfolios in
stochastic local search: Efficiently computing most probable ex-
planations in Bayesian networks,” Accepted, Journal of Automated
Reasoning, 2010.

[19] J. D. Park and A. Darwiche, “Complexity results and approx-
imation strategies for MAP explanations,” Journal of Artificial
Intelligence Research (JAIR), vol. 21, pp. 101–133, 2004.

[20] B. Selman and H. Kautz, “Domain-independent extensions to
GSAT: Solving large structured satisfiability problems,” in Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI-93), Chambery, France, 1993, pp. 290–295.

[21] R. Lin, A. Galper, and R. Shachter, “Abductive inference using
probabilistic networks: Randomized search techniques,” Knowl-
edge Systems Laboratory, Stanford, CA, Tech. Rep. KSL-90-73,
November 1990.

[22] L. R. Rabiner, “A tutorial on hidden Markov models and se-
lected applications in speech recognition,” Proceedings of the IEEE,
vol. 77, pp. 257–286, 1989.

[23] H. H. Hoos and T. Stützle, “Towards a characterisation of the
behaviour of stochastic local search algorithms for SAT,” Artificial
Intelligence, vol. 112, no. 1-2, pp. 213–232, 1999.

[24] ——, “Local search algorithms for SAT: An empirical evaluation,”
Journal of Automated Reasoning, vol. 24, no. 4, pp. 421–481, 2000.
[Online]. Available: citeseer.ist.psu.edu/hoos99local.html

[25] D. Mitchell, B. Selman, and H. J. Levesque, “Hard and easy
distributions of SAT problems,” in Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92), San Jose, CA, 1992,
pp. 459–465.

[26] H. H. Hoos, “A mixture-model for the behaviour of SLS algo-
rithms for SAT,” in Proceedings of the Eighteenth National Conference
on Artificial Intelligence (AAAI-02), Edmonton, Alberta, Canada,
2002, pp. 661–667.

[27] I. P. Gent and T. Walsh, “Easy problems are sometimes hard,”
Artificial Intelligence, vol. 70, no. 1-2, pp. 335–345, 1994.

[28] A. J. Parkes and J. P. Walser, “Tuning local search for satisfiability
testing,” in Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), Portland, OR, 1996, pp. 356–362.
[Online]. Available: citeseer.ist.psu.edu/parkes96tuning.html

[29] C. P. Gomes, B. Selman, and H. Kautz, “Boosting combinatorial
search through randomization,” in Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), Madison,
WI, 1998, pp. 431–437.

[30] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and D. Chick-
ering, “A Bayesian approach to tackling hard computational prob-
lems,” in Proceedings of the 17th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-01), Seattle, WA, 2001, pp. 235–244.

[31] Y. Ruan, E. Horvitz, and H. Kautz, “Restart policies with de-
pendence among runs: A dynamic programming approach,” in
Proceedings of the Eighth International Conference on Principles and
Practice of Constraint Programming, Ithaca, NY, 2002, pp. 573–586.

[32] ——, “Hardness-aware restart policies,” in IJCAI-03 Workshop on
Stochastic Search Algorithms, Acapulco, Mexico, 2003.

[33] A. P. Dawid, “Applications of a general propagation algorithm
for probabilistic expert systems,” Statistics and Computing, vol. 2,
pp. 25–36, 1992.

[34] E. Shimony, “Finding MAPs for belief networks is NP-hard,”
Artificial Intelligence, vol. 68, pp. 399–410, 1994.

[35] A. M. Abdelbar and S. M. Hedetnieme, “Approximating MAPs
for belief networks is NP-hard and other theorems,” Artificial
Intelligence, vol. 102, pp. 21–38, 1998.

[36] A. Viterbi, “Error bounds for convolutional codes and an as-
ymptotically optimal decoding algorithm,” IEEE Transactions on
Information Theory, vol. 13, pp. 260–269, 1967.

[37] M. Henrion, “Propagating uncertainty in Bayesian networks by
probabilistic logic sampling,” in Uncertainty in Artificial Intelligence
2. Amsterdam: Elsevier, 1988, pp. 149–163.

[38] R. Dechter and I. Rish, “Mini-buckets: A general scheme for
bounded inference,” JACM, vol. 50, no. 2, pp. 107–153, 2003.

[39] R. Dechter, “Bucket elimination: A unifying framework for
reasoning,” Artificial Intelligence, vol. 113, no. 1-2, pp. 41–85, 1999.
[Online]. Available: citeseer.nj.nec.com/article/dechter99bucket.
html

[40] D. Schuurmans and F. Southey, “Local search characteristics
of incomplete SAT procedures,” Artificial Intelligence, vol. 132,
no. 2, pp. 121–150, 2001. [Online]. Available: citeseer.ist.psu.edu/
article/schuurmans00local.html

[41] J. Hooker, “Testing heuristics: We have it all wrong,” Journal of
Heuristics, vol. 1, pp. 33–42, 1996.

[42] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
UK: Cambridge University Press, 1995.

[43] B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics
approach to hard computational problems,” Science, vol. 275,
no. 3, pp. 51–54, 1997.

[44] P. Jones, C. Hayes, D. Wilkins, R. Bargar, J. Sniezek, P. Asaro,
O. J. Mengshoel, D. Kessler, M. Lucenti, I. Choi, N. Tu, and
J. Schlabach, “CoRAVEN: Modeling and design of a multimedia
intelligent infrastructure for collaborative intelligence analysis,”
in Proceedings of the International Conference on Systems, Man, and
Cybernetics, San Diego, CA, October 1998, pp. 914–919.

[45] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques, 2nd ed. San Francisco: Morgan Kaufmann,
2005.

[46] H. L. Bodlaender, “A tourist guide through treewidth,”
Acta Cybernetica, vol. 11, pp. 1–21, 1993. [Online]. Available:
citeseer.nj.nec.com/bodlaender93tourist.html

Ole J. Mengshoel holds a Ph.D. degree in Computer Science from
the University of Illinois, Urbana-Champaign. His undergraduate degree,
also in Computer Science, is from the Norwegian Institute of Technology,
Norway (now NTNU). He is currently a Senior Systems Scientist with
Carnegie Mellon University (CMU), Silicon Valley, and also is affiliated
with the NASA Ames Research Center, Moffett Field, CA. Prior to
joining CMU, he was a Senior Scientist and Research Area Lead at
USRA/RIACS; a Research Scientist in the Decision Sciences Group at
Rockwell Scientific; and a Research Scientist in the Knowledge-Based
Systems Group at SINTEF, Norway. At NASA, he has a leadership role
in the Diagnostics and Prognostics Group in the Intelligent Systems
Division, where his current research focuses on reasoning, machine
learning, diagnosis, prognosis, and decision support under uncertainty -
often using Bayesian networks – with aerospace applications of interest
to NASA. Dr. Mengshoel is a member of IEEE, AAAI, and ACM, and
has numerous times served as Reviewer and on Program Committees.
He has published over 35 articles and papers in journals, conferences,
and workshops, and holds four U.S. patents.

David C. Wilkins obtained a Ph.D. from University of Michigan in 1987.
His Ph.D. dissertation research was carried out in the Department of
Computer Science at Stanford University between 1982-1987. His
current affiliations at Stanford are with the Symbolic Systems Program,
which focuses on a Science of the Mind, and the Stanford Center for
Creativity in the Arts (SICa), where he serves on an Advisory committee.
He has a senior research affiliate position at the Institute for the Study
of Learning and Expertise (ISLE) in Palo Alto. Prior to returning to
Stanford, he was on the faculty at the University of Illinois at Urbana-
Champaign from 1988-2005, with faculty appointments in Computer
Science, Psychology, Aviation Institute, and Beckman Institute. Dr.
Wilkins’ research area within Artificial Intelligence and Cognitive Science
is computational models of human learning, decision making, and
expertise. His research specialty is interactive learning environments,
especially apprenticeship learning systems for learning and teaching
expert decision making, and his research projects typically involve
faculty collaborators from Psychology, Computer Science, or Linguistics.

Dan Roth obtained a B.A. Summa cum laude in Mathematics from the
Technion, Israel and his Ph.D. in Computer Science from Harvard Uni-
versity in 1995. Dan Roth is a Professor in the Department of Computer
Science and the Beckman Institute at the University of Illinois at Urbana-
Champaign. He is the director of the DHS funded center for Multimodal
Information Access & Synthesis (MIAS) and has faculty positions also at
the Statistics and Linguistics Departments and at the graduate School of
Library and Information Science. Prof. Roth is a Fellow of AAAI, and has
published broadly in machine learning, natural language processing,
knowledge representation and reasoning and learning theory. He has
developed advanced machine learning based tools for natural language
applications, including an award winning Semantic Parser. Prof. Roth
has given keynote talks in major conferences, including AAAI, The Con-
ference of the American Association for Artificial Intelligence, EMNLP,
The Conference on Empirical Methods in Natural Language Processing,
and ECML & PKDD, the European Conference on Machine Learning
and the Principles and Practice of Knowledge Discovery in Databases.
Roth was the program chair of CoNLL’02 and of ACL’03, and is or has
been on the editorial board of several journals in his research areas. He
is currently an associate editor for the Journal of Artificial Intelligence
Research and the Machine Learning Journal.

