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Recently a new optimal control modification has been introdged that can achieve robust adaptation with a
large adaptive gain without incurring high-frequency oscilations as with the standard model-reference adap-
tive control. This modification is based on an optimal contrd formulation to minimize the % norm of the
tracking error. The optimal control modification adaptive | aw results in a stable adaptation in the presence of
a large adaptive gain. This study examines the optimal contl modification adaptive law in the context of a
system with a time scale separation resulting from a fast plat with a slow actuator. A singular perturbation
analysis is performed to derive a modification to the adaptie law by transforming the original system into a
reduced-order system in slow time. The model matching contions in the transformed time coordinate results
in increase in the feedback gain and modification of the adapte law.

[. Introduction

In recent years, adaptive control has been receiving afgignt amount of attention. There has been a steady
increase in the number of adaptive control applicationsviide range of settings such as aerospace, robotics, process
control, etch:2 The ability to accommodate system uncertainties and toawegfault tolerance of a control system
is a major advantage of adaptive control. Nonetheless tadagpntrol still faces significant challenges in proviglin
robustness in the presence of unmodeled dynamics and paioreertainties. The ability for an adaptive control
algorithm to modify a pre-existing control design is comsi&ll a strength and at the same time a weakness. The
crash of the X-15 aircraft in 196%erves as a reminder that adaptive control is still vieweti @dme misgivings
despite enormous advances ever since. Over the past sgvars] various model-reference adaptive control (MRAC)
methods have been investigafed.

In the conventional MRAC framework, the tracking error isgeally inversely proportional to the magnitude of
the adaptive gain. However, a large adaptive gain can leagjtefrequency oscillations which can excite unmodeled
dynamics that could adversely affect the stability of an MRAw 1° Various modifications were developed to increase
robustness of MRAC by adding damping to the adaptive lawdaoce high-frequency oscillations. Two well-known
modifications in adaptive control are tlemodificatiort! and £;:- modification!? These modifications have been
used extensively in adaptive control. Recently, a new meatiin has been introduced that is based on an optimal
control formulation to minimize the,-norm of the tracking errol® The optimality condition results in a damping
term in the adaptive law proportional to persistent exigtat The optimal control modification has been shown to be
able to achieve fast adaptation with a large adaptive gaimont compromising stability robustness while preserving
tracking performance. This study extends the developnféhemptimal control modification adaptive law to the case
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when there exists a time-scale separation between a fadtagrid a slow actuator which prevents the plant to follow
a reference model even in the presence of adaptive contrsingular perturbation approach is used to separate the
time scales of the plant and actuators and then modify thiemaptontrol modification adaptive law to account for
the slow actuator in the singularly perturbed system. Thgudar perturbation approach transform the original syiste
into a reduced-order system in slow time. The model matchiomition is applied to the reduced-order system
and the reference model in the transformed slow time coatdithat results in changes in the actuator command to
accommodate the slow actuator dynamics. The resulting@aignal can then track the reference model better than
if the actuator command is not modified.

Il. Singularly Perturbed Systems with Slow Actuators

A direct MRAC problem is posed as follows:
Given a nonlinear plant as

%=Ax+ B u+e*ch(x)+v(t)] )

wherex(t) : [0,00) — R" is a state vecton(t) : [0,0) — R" is a control vectorA € R™" andB € R"™" are known

matrices such that the paiA, B) is controllable and furthermor is Hurwitz, ©* € RP*" is an unknown constant

weight matrix, andp (x) : R" — RP is a known bounded bounded basis function and is at leastyise smooth irx,

andv(t) : [0,00) — R" is a small unknown bounded disturbance and is differergiafith ||v(t)|| < vo € R for all t.
The controller(t) is subject to linear dynamics

U=¢eA(u—ue) (2)

whereuc (t) : [0,00) — R" is an actuator command vecteris a positive constant, anle R™" is a known Hurwitz
matrix.
The objective is to design the controlleft) that enables the plant to follow a reference model

Xm = Ame + er (3)

whereAn € R™"is Hurwitz and knownBy, € R™" is also known, and(t) : [0,) — R" € %, is a command vector
with f € L.

If the actuator dynamics are sufficiently fast relative te teference model dynamics, thatdgA|| > ||Am||, then
the effect of actuator dynamics may be negligible. Then veggaea controllen(t) to follow an actuator command as

Ue = KX+ KT — Uag (4)

whereKy € R™" andK; € R™" are known nominal gain matrices, angy € R" is a direct adaptive signal.
Defining the tracking error as= Xy, — X, then the tracking error equation becomes

&= X — X = AnXin+ Bl — AmX+ AnX — AX— BKyx — BK + B [uad—eTqa(x) - 5(t)} (5)

Assuming the gain matricd§ andK; can be chosen to satisfy the model matching conditfordBKy = Ay, and
BK; = Bn, and the adaptive signaly chosen as

Uag = ©' P (x) (6)
whereQ is an estimated weight matrix a®l=0-0*isaa weight variation, then
é=Ame+B {(:)Td)(x)—v(t)} @)

The unknown weight matri® can be estimated by a standardnodification model-reference adaptive control as

O——r (qaeTPB+ o@) @)
In this study, we are interested in the case of slow actuatoamhics whene < 1 is a small parameter and

e|IN|| < |Al. Thenx(t) is a fast state and(t) is a slow state. To decouple the fast and slow states, werperfo
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a time-scale separation by applying the singular pertiobanethod. Toward that end, we consider a slow time
transformation
T=¢t (9)

wherer is a slow time variable.
Then, the plant and actuator models are transformed intogaulsirly perturbed system as

s% = Ax+B|u+ 0" Td(x) +v(t)} (10)
du
ar = A(u—up) (11)

The Tikhonov’s theorem can be used to approximate the soluf the singularly perturbed system with the
solution of a “reduced-order” system by setting- 0.2* Then,x(u, ) is on a fast manifold. Thus, the reduced-order
system is given by

B*leo+u0+G)*T<D(xo)+v(£) =uo+v(£)+f(xo):0 (12)
Z—L:) = A (Up— Uc) (13)

wherexg andug are the “outer” solution of the singularly perturbed system

The term “outer” is in connection with the concept of “boundkyer” or “inner” and “outer” solutions which
have the origin in boundary layer theory due to Prandtl. Theuhdary layer” solution for the singularly perturbed
system is defined by

X =A(Xo+x)+B (uo+ui)+e*ch(xo+xa)+v(£ﬂ —A)(()—B|:U0+6*TCD(X0)+V(£):|
= A% +B[ui +@*T¢(XO+Xi)—@*T(D(XO)} (14)
U = eA(Up+ Ui — Uc) — €Aug = €N (Ui — Ug) (15)

The solution of the original system can be obtained by a neat@symptotic expansion method applied to both
the inner and outer solutiod8.The outer solution is in fact the asymptotic solution of thiginal system as — oo.
The algebraic solution of Eq. (12) can be expressed in geagra

o oftns (D) -1 osv(D) =
assumingf 1 exists.

Differentiating Eg. (16) with respect to the slow time vémand then substituting the actuator model into the
result yield

dx dgdw dgdd dg dgdv
ar duwdr Tasdr  aug et aar 7
From Eg. (12), we have
T
o = —B 1A% — 0" Td (x) —v(g) (18)
Hence, we obtain the following reduced-order plant modakt@ined by the slow actuator dynamics
dx dg 1 T T dg dv
G~ auh B 0-0Te00)—v(g) —uf + e (19)
From Eqg. (12), we also have
_ d®(Xo) | 9%
1 *T 70 _
[B A+0O A ] s I (20)
_ d®(Xo) | 9%o
1 *T YT\ | YA —
[B A+0O A ] oy I (21)
Thus L
(?Xo o (?g o -1 *Tdcb(xo) -
T T [B A+0O i (22)
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9% _ @ - _ BflA_,_@*TM o

v av dxo (23)
Therefore ) )
g _ 99
dug  Ov (24)
Let
As =B 1AAB1A (25)

and if As is Hurwitz, then the Tikhonov's theorem guarantees thatréaeiced solution witte > O converge to the
solution of the original system with= 0 ase — 0.1

Note that Eq. (19) satisfies the outer solution of the noaliqgant model and the actuator dynamics. Because of
the slow actuators, the time scale of the response of th¢ gdamot exceed that of the actuators. Thus, if the reference
model is faster than the actuator model, the tracking eapnot be guaranteed to be small even with adaptive control
due to the model mismatch. A possible solution is to revigeréiierence model to match the actuator-constrained
plant model, or alternatively to re-design the actuatorm@md to reduce the tracking error.

In this study, we will consider asymptotic solution of thegularly perturbed system. In effect, the inner solution
is neglected so that

X~ X (26)
U~ Ug (27)
In slow time, the reference model is expressed as
d 1
= = (Arkn+ B (28)

Note that sinc@g/dug contains the uncertainty, the control design is quite cazaf#d. In order to simplified the
solution, we make an assumption that the uncertainty tesmall. That is

HG*T dq) (X)

—1
o || < [BA| (29)

Then, using the matrix inversion lemma, we obtain

-1

-1 -1
Blare W] _a1g_atg|(e7X) @At Als
dx dx
~AB— A*lse*qu;—)((X)Afls (30)
Then, we make the following choice for the actuator comméagod
UC = Kxx+ Krr - Uad (31)
where 1

Ky = A*lsflAgAm— BA (32)
K, = /\*lsflA% Bm (33)

Comparing this controller with the controller when actuatgnamics are fast, the increase in the control gain is

estimated as
[Kxll (A

1Kzl €l
whereK; is the control gain for fast actuator dynamics.
The closed-loop singularly perturbed system now becomes

(34)

1 -1
dx _ B-1A +@*qu’_(><) B,lA% (AmX—+ Bnf) — BlA+e*qu°—(X)] /\[uad—e”qa(x)]

dr dx dx
dg [dv T
+E{E—/\v(g)} (35)
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Using the result of the matrix inversion lemma, we get

-1
WX _ 1) _a1gerTd®X) %(Amx+8mr)— BlA+G)*Td(D—(X)} /\[uad—e”qa(x)}

dr dx dx
dg [dv T
+E{E—/\v(g)} (36)

Then, the adaptive signaly can be designed to keep the following expression small bdiaipus choice of new
basis functiortdy (x,r) that spans the unknown parameter sp@¢euch that

-1
Td®09 1 (AmX+ Bmr) — [BlA+ O*TdCD—(X)} A [uad -0’ (x)} = —AIBAO] D1 (1) + ¢ (x,1)

a1 *
A BO dx ¢ dx
(37)

where¢ (x,r) is an approximation error which is to be kept small by a slgahoice of basis functions.
Solving foruyg, we get

Usg=—A"1|B A+ e*T%] A-lBo*T dq;)((x) % (AmX—+Bpf) + 0" @ (x) — A 1BAG] &1 (x,1) + ¢ (x,r) (38)
2
From the assumption in Eq. (29), we can neglect the t T%) . Then, one possible choice for the new
basis function could be -
Dy (X,1) = [ B(x) Wy 9o, ] (39)

Alternatively, we can use the universal approximation thaoto approximate the uncertainty with a suitable
choice of basis functions such as radial basis functiongeoraidal basis functiort§

dx 1 1~ 1 T
5 = & (Amxt-Bur) — B18] 1 () + ZB1d (x, E) (40)
whereB; = eA1BA andd (x, 1) = A*lB*lA{qb (xr () +28 [ _Av(D)] }

SinceAn, is Hurwitz and ifé[ is bounded, then the Tikhonov’s theorem guarantees thaetheed solution with
€ > 0 converge to the solution of the original system wdtk 0 ase — 0.

[ll.  Optimal Control Modification Adaptive Law

The tracking error equation in slow time is obtained as

de dxn dx 1 1 ~ T T
o d g = Amet B [elqnl(x,t)—é(xag)} (41)

We are interested in seeking an update landdhat minimizes the following cost function in slow time

—iim L e AT Oe
J_J:Enw2€/() (e—0)TQ(e—A)dr (42)

subject to Eq. (41) whera represents the unknown theoretical lower bound of the ingokrror andQ = Q' > 0¢
Rnxn.
This optimal control problem can be formulated by the Paadig’'s Maximum Principle. Defining a Hamiltonian

. 1 1 -
H (e, qual) — 2 (e=0)"Q(e—8)+p’ (Ame+ B.0] &y — 815) (43)

wherep(7) : [0,%0) — R" is an adjoint variable, then the necessary condition isiobtbas

dpi_ Ti_} - _}T
= ~OH] = —2Q(e—2)~ SALp (44)
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with the transversality conditionp(rf) = 0 sincee(0) is known. Treatng:)Iqbl as a control variable, then the
optimality condition is obtained by

1
DHé]cpl =2 p'Bi (45)
The adaptive law which provides an optimal control soluttan be formulated as a gradient update law as
del 1
g = TOHgr = —T®10Hg g, = —EFCI)lpTBl (46)

wherel =TT > 0 € R™" is an adaptive gain matrix.
The solution ofp can be obtained using a “sweeping” methobly letting p = Pe+ SO ®;, whereP=P" >0¢
R™M andSe R™N, Substituting into the necessary condition yields

3Pe+ p (Ane+BO @ - 515) - BSer0, + s@ = —%Q(e—A) - %A; (Pe+sofe:)  (47)
This results in the following equations obtained by a metbiogkeparation of variables

o 2 (PAntATP) +2Q=0 48)

STS 1 = (AlS+PBL) =0 (49)

—%PBl(G)ITqJ—i—cS)—i—S@—%QA:O (50)

For an infinite time-horizon problem wheamn — o, thenP (1) — P(0) andS(t) — S(0) for allt € [0, ). So, both
P andScan be approximated by their constant solutions where

PAn+ALP = —Q (51)
S=-A,"PB (52)

Without loss of generality, a weighting constant- 0 € R is introduced to allow for adjustments of the modifica-
tion term in the adaptive law. Then,= 1 gives an optimal solution. Thus

S=—VvA,'PB; (53)
Then, the adjoinp is now expressed as
p=Pe— VA, PBO; ®; (54)
Substituting Eq. (54) into the gradient-based adaptiveiaids the adaptive law in slow time

do; do; 1 Ta. RTpA-1
== r (q>1 PB, — v, ®] O,B] PA- Bl) (55)

Converting to regular time by multiplying through Eq. (55) results in the optimal control modificataataptive
law
O, =T ((DleTPBl - vqalanelaIPA;lBl) (56)
A. Stability Proof

We now prove that the optimal control modification adaptize I(56) is stable and results in uniformly bounded
tracking error. Toward that end, choose a Lyapunov canglidaiction

V —e'Pet trace(éfr’lél) (57)
EvaluatingdV/dt in slow time yields

dv

o= Lo (PAm+AmP) et+ = e PB, (eTqal - 5) - gtrace(éanleTPBl - véIquqJI@lBIPAngl) (58)
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By the trace property
trace(xTY) —vx' (59)

whereX,Y € RN, then

av

2 ~ 2 2 ~ 2 .
== Qe+ EeTPBleICD— EeTPBlfs - EeTPB@Iqu—F qunIG)lBIPA;ﬁBqual

2 -
+ qunfe’{BIPA;lBefml (60)

PA,! can be decomposed into a symmetric part 3 (PAL+ A, "P) = — 1A, TQA ! < 0 and an anti-symmetric
partN = % (PA,;1 — A,;TP). Then,PA L = M+ N. By the property of a symmetric matrix, if the symmetric pafra
matrix is negative definite, then the matrix is also negatisfinite. SinceM < 0, thereforePA;! < 0. Thus

3—\: = —%eTQe— %eTPBltﬂ— gvcbfélsI (—%AmTQAml—i- N) B1O] ®1 + quaIejBIPA;lBléIqal (61)

Using the property of an anti-symmetric matyixNy = 0, dV/dt becomes
dav
dr

dV/drt is then bounded by

2 1 1= ~ 2 ~
=—2 " Qe— geTPBlé - EVGJIOlBIA,;TQA;lBl(DICDl + qunfe;BIPA,;lBlqunl (62)

dv 1 2 1 _ _ =
7= < = min(Q) 16+ Amax(P) €] [Brl| & — S vAmin (B Ay QA By ) [|61 | s

2 ~
+ S vOmax(B] PA,'B1) 5|8 @) (63)

wheredy = sup ||0]|, ©f = sup ||©;]|, andA ando denote the eigenvalue and singular value, respectively.
dV/dt can also be expressed as

av 1
a7 =~ gmin(Q) el il — 2Amax(P) [|B1 ] o]

1 - o
— ZVAnin (BIA;JQA#Bl) IR [||elu - 2vamax(BIPA;151) ez;] (64)

To show that the tracking errerand the weight variatio® are bounded, we requit®//dt < 0. Thus, it follows

that
184]| > 20max(B] PAY'B1) 95 (66)
Anin (B{ An” QA B1)
Hence, there exists a compact gewhere
. {(ejé) o < PSS 5 Zonen(BEPA) O } -
min(Q) Anin (B] An' QA 'B1 )

that contains the origia= 0 and®; = 0.

ThendV/dt < 0 outside the compact s&t. Thus, any trajectorg and®; starting in& will remain in¢’ for all
t.18 Therefore, the compact setis an invariant set® Also , any trajectorye and®; starting outside the compact set
% will approach the largest invariant sétast — .18 It follows by the LaSalle’s Invariance Principle thaand®;
are uniformly bounded. Thus, the optimal control modificatadaptive law is stable.

From the Lyapunov stability analysis, it is noted that in&sence of persistent excitation, isal,CDI =0forallt
and if & = 0, then it can be shown by the Barbalat's lemma thatdr is uniformly continuous and — 0 ast — c0,?
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In contrast with theo-modification adaptive law, even when the persistent etioitas removed, the tracking error
does not tend to the orig#.

Sincee and®; are bounded, the unknown theoretical lower bound of thekitngoerrorA att =t; — o is also
bounded by
Amax(P) ||Ba|

/\min (Q)
d(e'o)

where||©*T®|| < B e Rand||—5—| < n eRforallt.

{[ﬂ&ﬁﬂ] (68)

laf < Groin (o)

One unique feature of the optimal control modification ist s the adaptive gain increases andvoct 1, the
system is guaranteed to be bounded. To show this, the optom#iol modification adaptive law can be written as

O, = —Td, (eTP— vcbIelBIPA;l) B, (69)

Then
O] ®1 = —B] (Pe— VA;!PBLO] @1 ) &[Ty (70)

Note thatd] F'®; € R, so for larged| I ®;
O Py
@] TPy o0 CDIFCI)l

— ] (Pe_ vA,;TPEslechl) -0 (71)

the adaptive signa,; ®; remains bounded and tends to

1

B1O] ®; — UP*lArTnPe (72)
The tracking error then becomes
e— <Am+ %PlAInP> e—B10; T d; (x,t) — B (xt) (73)
which can be written as
6 _pl K%) Q- (%) s] e B(0] @1 (x1)+5(x1)) (74)

whereS= AJP — PAn.
In a special case whed(x,t) = 0 and®; (x) = X, the system tends to a linear systen®ds ®; — oo. Furthermore,
if v=1, then
e(s) — —H (s)BO; x(s) (75)

where system transfer function matkixs) = (sl+P~1Q) ~Lis strictly positive real (SPR) sind¢ (jow) +H T (- jw) >

0 as a result oP~1Q > 0. For a SISO system, the Nyquist plot of a strictly stablegfar function for a SISO system
is strictly in the right half plane with a phase shift lessrtloa equal toZ,*° corresponding to a phase margin of at least
7. Thus, one can deduce that the optimal control modificatataptve law is robustly stable with a large adaptive
gain.

B. Example

Consider the following simple scalar system
X = ax+bu+ 6"x+v(t) (76)

with actuator dynamics
U=¢€A (U—ue) (77)

wherea< 0,A <0,& >0, |eA]| < |a], andv(t) is a disturbance signal.
The reference model is
Xm = mXm + bmr (78)
8of21
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wherean < 0.
The actuator command is designed as
ab,

gmr_eTqa(x,r) (79)

UCZS(g_l)”b 2

.
where® (x,r) = [ X r

Note that if actuator dynamics are fast then the actuatoncand is

uczé(%—l)wrb—é“r—@x (80)

The optimal control modification update law for slow actuatgstem is

5P bA b%A2 p
O=-T (qJeph_ — v(DqJT@lbla) =—¢l (qJepE — evqaqﬂel?a (81)

whereby = "2 andp = — 1, and for fast actuator system is

1
aa
6=—r (xepb— vxzebzi) (82)

If aandA are nominally in the same order of magnitude, then we noteftinahe slow actuator system, the
effective adaptive gain is also reduceddfor a similar performance as that for the fast actuator.

For the numerical example.=—-1,b=1,0*=01,A =-1,¢=0.1,an= -5, bn=1,r(t) = sint, v(t) =
0.05sin1@. The responses due to the standard MRAC adaptive law anchalptontrol modification adaptive law
with the singular perturbation approach are plotted in Fig.The response for the standard MRAC exhibits more
initial transient than that for optimal control modificatiasing the same adaptive gain.

0.5 T T T T

Y
MRAC '=1000
Reference Model

-05 I I I I
0 20 40 60 80 100

0.5 T T T T

Vv V J \/ \/ \f
—"Opt. Cont. Mod.=1000, v=0.5 -
Reference Model

-05 ! ! ! !
0 20 40 60 80 100

t, sec

Fig. 1 - Responses due to MRAC and Optimal Control Modifigatio

Figure 2 is a plot of the control input and actuator commarntti tie singular perturbation approach. As can be
seen, the actuator command signal is quite large relatitleet@ontrol input. This is due to the fact that the actuator
dynamics are slow so a large actuator command does notatamsto the same amount of control input for a finite
time. The effectiveness of the optimal control modificatislemonstrated by reducing the amplitude of oscillation
in the control input significantly over that due to the staxddRAC.
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u, MRAC '=1000 |

-20
Uy MRAC N'=1000
-40 I I I I
0 20 40 60 80 100
t, sec
10

uc, Opt. Cont. Mod.I"'=1000, v=0.5

-10 I I I I
0 20 40 60 80

100

Fig. 2 - Control and Actuator Command due to MRAC and Optimahitol Modification

Figure shows the responses due to the unmodified actuatanantdhfor fast actuator dynamics. As can be seen,
the control input is insufficient to allow the plant to folldive reference model even with adaptive control.
0.2

Reference Model
U U

-0.2
0 20 40 60 80

t, sec

100

0.2

i

-0.2
0

v

Reference

1000, v=0.5
MeI

20

40

60

80 100

t, sec
Fig. 3 - Responses due to Un-modified Actuator Command fax Slgnamics

IV. Flight Control Application

Consider the following inner loop adaptive flight controtlaitecture as shown in Fig. 1. The control architecture
comprises: 1) a reference model that translates rate codsmato desired acceleration commands, 2) a proportional-
integral (PI) feedback control for rate stabilization analcking, 3) a dynamic inversion controller that computes
actuator commands using desired acceleration commands) ddlaptive controller with the conventional MRAC
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law and with or without the optimal control modification atiap law, and 5) a parameter estimator for actuator
dynamics as relative to its nominal dynamics via the paramet The adaptive controller is designed to increase
performance of the nominal dynamic inversion controlledemadverse flight conditions such as upsets and damage.
Under nominal fast actuator dynamics, both the dynamicagioa control and the adaptive law are computed without
any differentiation between actuator commands and coimpoits. As actuator dynamics degrade based on the value
of €, both the dynamic inversion controller and the adaptiverodier are modified accordingly to increase the actuator
command signals.

&

Estimator
X
r Model Xm Xe Pl +y Xg Dynamic U,
O O .
Reference - Controller = Inversion Actuator
Uad U
-
i X
Adf;?/ Aircraft

Fig. 4 - Adaptive Flight Control Architecture

The linearized equations of motion are expressed as

X = Ap1x+Agoz+ Biu+ f1(x,2) (83)
7= Ao1x+ Aoz + Bou+ f2(x,2) (84)
T
whereA;; andB;, i = 1,2 are knownx = [ p q r } is a vector of roll, pitch, and yaw rates;

-
z= [ Ap Aa AB AV Ah Ae} is a vector of perturbation in the bank angle, angle of attaclda, sideslip

-

angleAS, airspeed\V, altitudeAh, and pitch anglé\6; u = { AOy Ad AN } is a vector of additional aileron,

elevator, and rudder deflections; afdx,z), i = 1,2 are parametric uncertainties which can be expressed as
fi(x,2) = 6] T®(x,2) + & (X, 2) (85)

whered (x,2z) is an approximation error which is assumed to be small by @lslei choice of basis function®, =

-
[ Ct G G C } is a basis function for a sigma-pi neural network withi = 1,...,4, as inputs consisting of
control commands, sensor feedback, and bias terms; defirfetiavs:

cl:%p(h)vz[xT ax BxT | (86)
szgp(h)vz[l 9 6 a B a® p? ap] (87)
c3=%p(h)v2[u(x,z)T aux2’ Pux2’ | (88)

C4:%p(h)V2[ o | (89)

wherep = @+Ap, a = a +Aa, B = §+AB, V =V +AV, h=h+Ah, andf = 6 + AB; and the overbar symbol
denotes a trim state.
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These inputs are designed to model the parametric undsrthat exists in the damaged aircraft plant dynamics.
For example, the aerodynamic force in thaxis for an aircraft is given by

pb

1_ c rb
Fe=T+ EqS(CLO-FCLga +CLB+Clyny +CquW +CLoy +CL5a5a+CL585e+CL5r5r> a

1_ b C rb
_ EqS(CDO-i-CDO,G-i-CDppﬁ +CquW +Cp, +CD535a+CD585e+CD5, 5r) (90)

Thus,Cy, Cy, andC;3 are designed to model the product termg,af andu in the aerodynamic forces and moments
equations; an@, models the gyroscopic cross-coupling terms of the moment equations.

The inner loop rate feedback control is designed to imprineadt rate response characteristics such as the short
period mode and the dutch roll mode. A second-order referamadel is specified to provide desired handling qualities
with good damping and natural frequency characteristi¢slbsvs:

(S + 20 pepS+ 6B) @hn = Gpiat 91)
(S + 2Zquys+ WE) Om = Gqdion 92)
(8 +2¢ axs+ w?) B = —0r Bud 93)

whereg, 6m, andym, are reference bank, pitch, and sideslip angles; wy, andax are the natural frequencies for
desired handling qualities in the roll, pitch, and yaw ax@s{y, and{; are the desired damping ratia®, don, and
Sug are the lateral stick input, longitudinal stick input, andder pedal input; angp, gq, andg, are input gains.

Let Pm= @n, Om = Om, andrm = —Bm be the reference roll, pitch, and yaw rates. Then the reéererodel can be
described as

t
0

.

wherexy = [ Pm Om Tm } , Kp = diag(2Zpwp, 2{qay, 24 ax ), Ki = diag(w?, w§, wf), G = diag(gp, 9, 9 ), and
T

r= [ Aat Aon  Orud }

Suppose, the elevator actuator is a slow actuator where

e = €Ae (0 — Gec) (95)

where e < 0 is the original elevator actuator rai& is the elevator deflection command, and> 0 is unknown

but can be estimated by a suitable parameter estimationiteeh such as the recursive least-squares method if the
control signalu(t)and its derivative (t) is available by estimation, in which cagé) is replaced by (t), or by direct
measurement. A recursive least-squares algorithm candattaestimate as follows:

£ — RAU (GT - AuTATe) (96)

R= —RAUAu'R (97)

whereAu = U0 — ue.
Assuming the paifAs1,B1) is controllable and is stabilizable, the reduced-order equation for the pi&th is

0= E;B; *Ar1x+ EoB; *Aroz+ Epu+ EoBp g (98)

whereE;=|1 0 0|,Eb=|0 1 0/,andEs=| 0 0 1 } are basis vectors.
Note thatEou = & andEaue = dec, then differentiating the reduced-order equation gives

E2By *A1iX+ EoBy tA1oz = €6 (E2By 'Arax + EoBy YAz + EoB 1 + Eouc) (99)
SettingX= — (Kp + %) x+ Gr, then the actuator commands can be computed as follows
E:B;t K 0
Ue = ﬁleEnglAll [— (Kp + EI) X+ Gr] + ﬁleEnglAlz 7—B! (A11x+A122+ OICD) (100)
EsB;t 0
3P1 3x3 3x3
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-
whereu; = [ Adac AOec Adrc } .
The closed-loop angular rate dynamics are then given by

=]
. Ki B -7
X—=— (Kp+ ;) x+Gr— | eAoAf | (B]0-a) (101)

Es 3x3

-
Lete= [ fé (Xm—X)dT  Xm—X } be the tracking error, then the tracking error equationvsmgby

e=AnetB (éch - 51) (102)
where
| o0 |

A= [ KK, ] (103)

0
B= [ e 1 (104)

E1
E=| eAeE2Al} (105)

Es 3x3

LetQ = 2I, then the solution of Eq. (51) yields

P= [ Ki’le+*§;711(Ki+l) . Kt B ] >0 (106)
K; Kol (1KY
AL lis computed to be
_ KK, —K?
Al l II P OI 1 (107)
Evaluating the ternB" PA!B yields
B'PA'B=-E'K?E<0 (108)

Applying the adaptive optimal control modification (56)etiveight update law is then given by

O =T (eTPB+ Vo TOET K;ZE) (109)

A. Simulation Results

A simulation study was conducted using a generic transpodaeih(GTM) which represents a notational twin-engine
transport aircraft as shown in Fig.?5 An aerodynamic model of the damaged aircraft is createdjusirortex lattice
method to estimate aerodynamic coefficients, and staldlity control derivatives. For the simulation, a damage
configuration is modeled corresponding to a 28% loss of tfieMieg. The damage causes an estimated C.G. shift
mostly along the pitch axis witAy = 0.038& and an estimated mass loss of 1.2%. The principal momenedian
about the roll axis is reduced by 12%, while changes in theimealues in the other two axes are not as significant.
Since the damaged aircraft is asymmetric, the inertia tehas all six non-zero elements. This means that all the
three roll, pitch, and yaw axes are coupled together througtine flight regime. In addition, the elevator actuator is
simulated as an impaired flight control actuator with a munhlier bandwidth than that for a healthy actuator.
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Fig. 5 - Left Wing Damaged Generic Transport Model

A level flight condition of Mach 0.6 at 15,000 ft is selectedpdsh damage, the aircraft is re-trimmed with=
13,951 Ib, a0 = 5.86°, ¢ = —3.16°, &, = 27.32°, & = —0.53°, & = —1.26°. The remaining right aileron is the
only roll control effector available. In practice, somecaaft can control a roll motion with spoilers, which are not
modeled in this study. The reference model is specifietbpy= 2.0 rad/secey = 1.5 rad/secw = 1.0 rad/sec, and
(=0=4(= 1/+/2. The simulations also include a random signal to represargor noise.

The actuator dynamics are modeled with= Ae = A; = 50 /sec with position limits of=35° for the aileron and
elevator andt10° for the rudder. Theparameter for the elevator is set to 0.01.

The pilot pitch rate command is simulated with a series ofgranput longitudinal stick command doublets,
corresponding to the reference pitch angi®.81° from trim. Att = 10 sec, a wing damage and elevator actuator
degradation occur. The tracking performance of the basélght controller, which is a proportional-integral fe exix
type with no adaptation, is compared against the optimatrobmodification adaptive law with and without the
singular perturbation approach for slow actuators. Boghditlaptive laws are implemented as an augmentation to the
baseline controller. An adaptive gainlof= 60 and a weighting factar = 0.2 are selected.

The aircraft angular rate responses are shown in Figs. 6 Eag@ire 6 illustrates the pitch rate responses. With
no adaptation, the baseline controller cannot follow thieremce pitch rate very well. The pitch rate response glearl
lags the reference model significantly due to the degrade@tdr actuator. The optimal control modification with and
without the singular perturbation approach significantipiove the tracking and reduces the lag between the response
and the reference model. The pitch rate is worse without#itinthe singular perturbation approach, as large initial
transients occur at failure. So, the singular perturbadigproach demonstrates an improved response due to the slow
elevator actuator.

Since the damage occurs to one of the wings, the roll axis s affected. With no adaptation, there is a significant
roll rate as high as Z@sec as shown in Fig. 7. There is a steady-state oscillafi@ri&°/sec in the roll rate. Both the
optimal control modification adaptive laws reduce the detidn to within+2°sec. However, there is a large initial
transient of about Z¥sec due to the sudden wing loss.

Figure 8 is the yaw rate response of the damaged aircraft. optimal control modification with the singular
perturbation approach slightly improves the yaw rate raspdhan that without. Both adaptive laws result in a much
lower yaw rate than the baseline controller.

Figure 9 is the plot of the tracking errdf, norms for the three axes in combination. Not surprisingiyheut the
adaptation, the baseline controller suffers a large tragkiror.
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Fig. 9 - Tracking Error Norm

The control surface deflections are plotted in Figs. 10 toTlt&e aileron actuator is a fast acting actuator, so in
all cases, the aileron deflection tracks the command as shokig. 10. With both the optimal control modification
adaptive laws, there is a large aileron command at the iostaffailure that causes the aileron to saturate. The spike
in the aileron command is larger without than with the siagplerturbation approach.
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Fig. 10 - Aileron Deflection

Figure 11 is a plot of the elevator deflection. Since the aileactuator is degraded, it is clear that the elevator
command cannot be tracked well by the elevator actuator.optinal control modification adaptive law without the
singular perturbation approach produces a large initigesin the elevator command of abou®5° while the initial
transient in the command is reasonable with the singuldug®ation approach.
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Fig. 11 - Elevator Deflection

The rudder deflection is shown in Fig. 12. With no adaptattbe, rudder deflection oscillates from abo§t 0
to —7°. Both the optimal control modification adaptive laws proglwery similar rudder deflections, which reduce

steadily from the initial transient to its new trim value-ef°.
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Fig. 12 - Rudder Deflection

The attitude responses of the damaged aircraft are showigsn E3 to 16. When there is no adaptation, the pitch
attitude could not be followed accurately as seen in Fig Vligh the adaptation on, the tracking is much improved and
the optimal control modification adaptive law performs eettith than without the singular perturbation approach.
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Fig. 13 - Pitch Angle

Figure 14 is the plot of the bank angle. Without the adaptatioee damaged aircraft exhibits a rather severe roll
behavior with the bank angle ranging fror#Q° to 2. With the adaptation on, the roll angle is drastically restlic
from an initial transient of about 30° without and—25° with the singular perturbation approach to almost zero.
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Fig. 14 - Bank Angle

Figure 15 is a plot of the angle of attack. The baseline cdietn@sults in a significantly large initial angle of attack
when the damage occurs. The maximum angle of attack is al28utvhich could be close to stall. The maximum
angle of attack is reduced t8 &hen the adaptation is on.
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Fig. 15 - Angle of Attack

Figure 16 shows a plot of the sideslip angle.The baselin¢raiter produces a steady oscillation in the sideslip
angle between:-2°. With both the optimal control modification adaptive lawse tsideslip angle is reduced to near
zero.
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Fig. 16 - Sideslip Angle

V. Conclusions

This paper presents a singular perturbation approach inemion with an optimal control modification adaptive
law for a time-scale separated system with slow actuatoashycs. The singular perturbation approach transforms
the system into a reduced-order system in a slow time coatelinThe actuator command is obtained by the model
matching condition in the slow time coordinate.The resgltactuator signal in effect is increased by the ratio of
the norm of the plant’s transition matrix to the norm of thevslactuator’s transition matrix. The optimal control
modification adaptive is derived and analyzed for stahilging the Lyapunov method. Under fast adaptation when the
adaptive gain is large, the analysis shows that the trakirogg remains bounded and stable. The singular perturbatio
approach with the optimal control modification adaptive lawxtended to a flight control application. Simulations of
a flight control performance for a damaged aircraft with apaimed elevator actuator demonstrates the effectiveness

of the method.
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