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ABSTRACT 

Smart medical systems are being developed to allow medical treatments to address 

alterations in ·chemical and physiological status in real time. In a smart medical system sensor 

arrays assess subject status, which are interpreted by computer processors which analyze 

multiple inputs and recommend treatment interventions. The response of the subject to the 

treatment is again assessed by the sensor arrays, closing the loop. An early form of "smart 

medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food 

frequency questionnaires, which are interpreted by flight surgeons to recommend in-flight 

alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near infrared 

spectroscopy can be used to noninvasively measure several blood and tissue parameters which 

are important in the assessment of nutrition and fitness. In particular, this technology can be used 

to measure blood hematocrit and interstitial fluid pH. The noninvasive measurement of 

interstitial pH is discussed as a surrogate for blood lactate measurement for the development and 

real-time assessment of exercise protocols in space. Earth-based application of these sensors are 

also described. 
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Smart Medical Systems - A DefrnitioIi 

Medicine has always been practiced through a close and pe~sonal relationship between 

patient and physician. While nothing can replace this important emotional bond, there are certain 

circumstances where direct contact between the patient and his or her doctor can, at times; be 

difficult to accomplish. An example of this is space travel and exploration. In the current space 

station program, astronauts have limited confidential time to discuss health issues with the flight · 

surgeons on the ground. This situation will become even more difficult dlIDng a multi-year 

mission to Mars, where there will be periods of time where astronauts are out of communication 

with support personnel on the ground, and even nominal communication from Mars will be 

delayed 22 minutes in each direction. In addition to receiving advice from personal physicians, 

patients in extreme environments sometimes need to be treated for medical· emergencies. 

Recently a scientist at the South Pole had to be evacuated under extremely harsh conditions in 

order to receive treatment for breast cancer. Evacuation of personnel during interplanetary 

exploration may be impossible. Evacuation from the International Space Station, in low earth 

orbit, would be difficult, costly, and time consuming, and further may not be feasible in 

emergency situations. Smart medical systems will provide tools for space travelers and others in 

remote environments to receive medical advice and treatment at times when they cannot have 

personal contact with their physician. 

- Smart medical systems are composed of multiple feedback control systems, each containing 

3 basic components (Figure 1) (a) sensing elementsto assess physiological or medical status, (b) 

processing units to analyze sensor inputs to determine if health status is normal, or whether 
" 

treatment is required, and (c) treatment effectors, possibly accompanied by an embedded 

intelligent system, that supervises the application of treatment. Within each control system, 
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multiple sensors assess the status of a subject and feed information to a computer processor for 

analysis. Treatment recommendations are made and implemented, thereby impacting patient 

outcome. Results of an intervention are assessed by the sensors, and hence close the loop. Each 

feedback control system has the capability to act as a smart medical system itself, wherein 

pattern recognition of sensor data and medical decision making allow for effectors to deliver 

treatment with minimal human intervention. However, parallel and cooperative activity among 

many such systems creates a system of systems, which will function as a larger smart medical 

system. In this case, analysis of real time data involves input from multiple system sensor arrays, 

which may be using different technologies to assess physiological measures .-Treatment decisions 

and the delivery of interventions occur in a coordinated way across systems to maximally 'benefit 

patient outcome. 

As an illustration of a basic smart medical system, we will consider control of glucose in a 

diabetic patient. In these patients the inherent, biological feedback mechanism that regulates 

r 

plasma glucose concentration by controlling insulin secretion rates is defective because the 

treatment effector (the pancr~as) is inoperable. A smart medical system could potentially 

·overcome this defect and improve the quality of life for these patients. Currently diabetic patients 

must test themselves 4-5 times per day, and manually adjust their insulin dose in response to the 

sensed glucose level. This is a primitive form of a smart medical system. The patients draws their 

own blood, which is measured by the glucose meter (one of the sensors in Figure 1). The 

processor, in this case, is the patient, who is trained, by the physician, to adjust their insulin 

dosage or food intake (the treatment) in response to the sensed level of glucose. The effect of the 

treatment is assessed by the next sensor measurement, several hours later. While the landmark 

Diabetes Control and Compliance Trial illustrated significant reduction in long term 
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complic~tions with frequent measurement of blood glucose1
, fingersticks several times per day 

are difficult for many patients. This smart medical system is evolving with the development of 

innovative sensing and therapeutic technology. There are . now implantable sensors that can 

continually monitor glucose levels and report them to a computer every 5 minutes2
, requiring no 

intervention from the patient. Furthermore, these sensors can be coupled with implantable insulin 

pumps. Currently, the pumps are programmed to provide a constant basal level of insulin. 

Continuous monitoring provides information to the patient, who is still the "data processor", to 

adjust their insulin in response to daily changes in activity. The next evolution in this smart 

medical system will be the coupling of the glucose sensor to the insulin pump, through a smart 

computer processor, to provide minute-to-minute, unassisted control of blood glucose levels. 

Smart Medical Systems To Assess Nutrition During Spaceflight 

Inadequate food intake has been observed on most space missions4
-
6

. The obvious 
\ 

consequence of this -is inadequate intake of both macro- and micronutrients. The reasons for 

decreased consumption are unknown, however one possible explanation is that food may taste 

dlfferent in spac.e because of either nasal congestion from bodily fluid shifts or the effects of 

recirculated air on odor perception. Another possible explanation is that the lack of textural 

variety in early space food have may have discouraged adequate consumption4
. On shorter 

flights space motion sickness may have decreased astronaut appetite7
. 

Only during the Skylab missions was matronutrient consumption at recommc:nded levels. 

Astronauts on Skylab had more palatable food, since both fresh and frozen' foods were available 

to this crew4
. These crews were participating in metabolic experiments, which required daily 

discussions with ground personnel and reports of any uneaten food. To maintain experimental 
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requirements for intake of specific nutrients (e.g., calcium, protein), the nutritional value of 

uneaten foods were quickly calculated, and the crew was advised on supplements that were 
"\ 

required to maintain intake of these key nutrients. This system therefore ensured adequate 

dietary intake, and represents the effectiveness of reporting consumption to the ground crew to 

ensure adequate dietary intake. 

Daily reports from the crew of exact dietary intake are not feasible on the International Space 

Station (due to the amount of time required), and would be even harder on planetary mission. 

Nonetheless, this early work provided the model for the development of a smart medical system 

- a means to quickly, and easily assess dietary intake during long-duration space station 

IlllsslOns. 

The utritional Biochemistry Laboratory at the Johnson Space Flight Center developed a 

food-frequency questionnaire (FFQ) that is used by astronauts during space flight to assess 

dietary intake. This was developed toward the end of the ASAJMir program in the late 1990's, 

and is currently in use on the International Space Station6
. The FFQ is a computerized program 

and is scheduled for completion weekly by the ISS crewmembers (Figure 2). Foods are grouped 

in categories (e.g., beverages, meats, vegetables), and food items with similar nutrient content 

are combined for a single response. The crewmembers enter the number of food packages 

consumed over the past week. The data are stored in a file, which is down-linked to the ground 

soon after completion. The data are then processed through a computer database to provide 

estimates of the intake of six key nutrients (water, calories, protein, iron, calcium, and sodium), 

and reports are prepared and submitted to the flight surgeon on the ground. The intent of the 

FFQ is that during the mission flight surgeons will review the questionnaires and make near real~ 

time recommendations on how astronauts could improve dietary intakes. In addition, astronauts . 
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monitor their body mass on a regular basis, and this data is interpreted along with the dietary 

intake data - to provide a more complete understanding of nutritional status. In this example of a 

smart medical system, the FFQ and the body mass analyzer are the data collection elements, or 

sensors, in the smart medical system. The FFQ data are processed by a computer into the key 

components (nutritional elements), which were then · used by the flight surgeon to make 

"treatment" or dietary corrections. The success of treatment may be, evaluated with the 

successive questionnaires and body mass measurements. 

One could envision that this system rnlght evolve to remove the flight surgeon from the loop. 

An intelligent computer program could evaluate the FFQ, and make recommendations to the 

astronaut, based on available food stores in the spacecraft. However, the psychological aspects of 

taking advice from a machine, compared to a remotely located physician, would certainly have to 

be studied. Other nutritional issues in space may also lend themselves to the development of 

smart medical systems. These include bone and muscle loss, renal stone risk assessment, iron 

and hematological changes, and the need to adjust dietary intake for the energy costs of exercise 

. 4 8 
ill space ' . 

New Technology for Smart Medical Systems 

Smart medical systems for nutrition would ideally involve little input from the astronauts 

themselves, since the astronauts are very busy with other tasks. In this regard, sensors which 

could evaluate the effect of nutrition on the astronaut's body might be the next step in the 

evolution of smart medical systems for nutrition. These sensors should be able to evaluate blood 

and urine chemistry frequently and in real-time. Currently, NASA flies a commercially available 

clinical blood analyzer that is capable of accurately measuring blood pH and ionized calcium 

using capillary blood taken from a finger stick. The system has the potential to also measure 
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glucose, sodium and potassium, though superior results were obtained from a venous, rather than 

capillary blood samples9
. 

The ideal sensor systems would not require a blood draw and would be able to make 

measurements on a frequent basis, such as during exercise or severe exertion (e.g. during a 

extravehicular activity). Near infrared spectroscopy (NIRS) provides the techl"1ology for such 

I 

noninvasive measurement. Near infrared light passes through skin and bone and analysis of the 

light that passes through a finger or is reflected back from a muscle can be used to assess blood 

and tissue chemistry. Arterial oxygen saturation and heart rate are routinely measured 

noninvasively using NIRS (pulse oximetry). Recent research into medical applications ofNIRS 

has extended the range of blood and tissue parameters that can be measured. Many of these are 

relevant to smart medica1'systems for nutrition assessment in space. 

Spaceflight anemia has been observed on almost all space missions. Red blood cell mass is 

decreased approximately 10-15% below preflight levels, and this is attained after approximately 

2 weeks of flight4,lo. Early results from NIRS-based systems that noninvasively measured total 

hemoglobin concentration and hematocrit levels for human subjects have recently been reported. 

Jeon et al showed that hemoglobin could be measured using 5 light emitting diodes in the 

wavelength region between 569 - 975 nm. The authors reported an estimated accuracy of 

approxirllately 1 g/dL in their initial studyll. Noninvasive hematocrit measurement has been 

demonstrated on surgical patients with large variations in blood hematocrit. These measurements 

were made with a full spectrum fiber optic sensor in the wavelength region between 581 and 

1000 nrnl2 . The sensor used in this study is shown in Figure 3. Measurem~nts were made simply 

by placing the sensor on the surface of the skin. Within single subj ects, the measurement 

accuracy was excellent, 1 Hct %, however measurements between subjects were degraded due to 
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variation ill subject skin color, fat content, and instrument variability. ewent research is 

focusing on developing methods to eliminate these factors and improve measurement accuracy 

for all NIRS-based chemical measurements. These noninvasive measurement techniques may 

have application in assessing hematology during spaceflight, and help to · ensure astronaut health 

and safety. 

The advantage of these spectroscopic-based measurements is that they do not require any 

blood to be withdrawn from the subject. This facilitates mUltiple measurements over time, and 

even continuous measurements, as the sensor can be attached directly to the subject. Another 

advantage of the · spectroscopic approach is that it provides a platform for sensing multiple 

species. Once the spectra are acquired from the subject, they can be processed through different 

calibration equations that calculate several different blood or tissue analytes from the same 

spectral information. ,It has been recently demonstrated, in an in-vitro study, that it is feasible to 

simultaneously measure the concentration of sodium, potassium and calcium ions in whole biood 

from spectra collected in the range of 500 - 2200 run 13 . A device to measure these ions 

transdermally in blood, or automatically in urine through a spectroscopic cell in the waste 

evacuation line might be important in a smart medical system for spaceflight. Loss of plasma 

volume and bone degradation during space flight result in an increase in serum and urinary 

calcium levels, increasing the risk for renal stone formation4. Blood levels of sodium and 

potassium have also been noted to change during spaceflight. This bears watching since sodium 

intake may be increased through food preservatives used in packaged space food and excessive 

sodium exacerbates calcium loss14. Noninvasive sensors that can monitor either urinary or blood 

levels of these important electrolytes could be used to guide application of nutritional therapies 

(countermeasures) to address bone loss and other nutritional imbalances. 
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Another parameter that can be measured noninvasively using NIRS is tissue pH. Tissue pH, 

or in this case, pH of the interstitial fluid, is an indicator of anaerobic metabolism. Tissue pH has 

been measured transdermally with NIRS in muscle tissue during vessel ischemia in rabbits 15, 

hemorrhagic shock in swine16
, and recently in patients with mild hypotension induced by heart 

surgery under cardiopulmonary bypass 17
. The noninvasive measurement of interstitial fluid pH 

may have application in the development and assessment of exercise as a countermea~ure to 

improve muscle strength under micro gravity conditions. Carefully controlled exercise regimens 

will also require interventions in nutrition to match energy requirements. 

-
Skeletal Muscle and Cardiovascular Alterations with Space Travel 

Space travel has detrimental effects on skeletal muscle structure, metabolism and function. 

The lack of gravity in the space environment reduces the load on the muscles that support body 

weight and motion, leading to reductions in muscle size, strength and endurance, as well as to 

breakdown of muscle protein and changes in muscle fiber type distribution 1 
8. It has been 

reported that a brief (2-5 days) exposure to weightlessness can result in a 15% loss of strength in 

the postural muscles19. Experirn'ental studies have been conducted to investigate the genetic, 

cellular, and functional effects of weightlessness on skeletal muscle in humans and rodents . 

These studies have shown that just 5 or 6 days in micro gravity can cause significant atrophy in 

skeletal muscle, reducing motor capacity, strength, and endurance properties 18-20. 

In addition, space travel impairs the cardiovascular system's ability to readapt to partial or 

full Earth's gravity (lG). Following short (15 days) .and long-duration (> 3 months) missions, 

astronauts experience reduced exercise capacity upon reentry19,21 . Measurements of 

cardiopulmonary responses to exerCIse after space flight have consistently documented 
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reductions in exerCIse capacitYl. The combined effects of the functional reductions in the 

skeletal muscle and the cardiovascular system's capacity have detrimental effects on the 

astronauts' physical performance. In the case of an emergency, the lowered physical 

performance induced by space travel de conditioning could be task, mission, or life threatening. 

Exercise as a Countermeasure for Cardiovascular and Muscle Deconditioning 

The detrimental effects of weightlessness exposure can be counteracted to some extent with 

exercise training. However, the optimal amount (intensity, duration, and frequency) and type of 

exercise needed to counteract the detrimental effects of micro gravity on the astronauts ' work 

capacity is not known. The current Countermeasures System (eMS) in the International Space 

Station (ISS) includes a treadmill, a cycle ergometer, an interim resistive exercise device, and a 

hand grip dynamometer. Astronauts perform various exercise routines on these devices on a 

daily basis while their responses are assessed by means of a heart rate monitor, a blood 

pressurelECG monitor, and/or the medical equipment computer. The goal of exercising on these 

countermeasure devices is to maintain the astronauts ' physical fitnes&-as close to preflighflevels 

as possible. Recently, as a result of these countermeasures (and potentially others), astronauts 

have been able to exit the space shuttle unassisted, upon reentry to earth. However, the lengthy 

amount of time (- 2 hours/day) dedicated by the astronauts to maintaining fitness while at the 

ISS precludes them from performing other desirable scientific endeavors. Ideally, knowing the 

time course of certain physiological variables used as markers of fitness and the precise effect of 

various exercise training regimes on these markers would facilitate optimization of training 

programs to avoid dedicating excessive time to training. 

11 

". • ~ ,,· .. 1 . .. 

- ... 
-.. . • ~;"'!.! ,.,."' ..... 0" . 



Monitoring the Effects of Exercise Training Programs 

A practical and simple way of monitoring changes in fitness level is to track the slope of 

the linear relationship between heart rate and work rate at various exercise intensities (typically 

three) that do not result in blood lactate concentrations above resting levels22
. Consequently, the 

astronaut is required to perform an incremental exercise protocol with step increments of ~50 

watts and 5 min duration. Heart rate is typically measured using commercially available heart 

rate monitors which consist of a chest strap with electrodes and a coded transmitter and a wrist 

receiver. The average heart rate at the end (~ 15 sec) of each incremental step is recorded and 

plotted versus work rate. The slope of the heart rate-work rate relationship is then calculated 

and compared to pre-flight values to evaluate the effect of the astronaut's exercise training 

program in counteracting space travel deconditionirig. The number of opportunities for 

intervening and adjusting the exercise training regime depends on how frequent this evaluation is 

made. Even though this method is very simple and effective, the heart rate response is highly 

susceptible to variations due to multiple factors, such as, temperature, weightlessness, stress, 

time of the day, humidity, previous meal or physical activity, etc. 22
. 

Traditionally, maximum oxygen uptake, (V02max), the highest rate of oxygen uptake 

achieved dUring an incremental exercise test, is considered the best index of cardiovascular 

functional capacity. However, V02max depends on cardiovascular factors, such as stroke volUme 

and cardiac output, and can be sustained only for short periods of time « 1 min). An alternate 

index of fitness and predictor of endurance performance is the blood lactate response to 

. 23-25 hi exerCIse T s response is dependent on peripheral factors such as the muscle fiber type or 

the number of mitochondria, as well as cardiovascular factors . Exercise at intensities 

engendering steady blood lactate concentrations can be sustained for long periods of time (>30 
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mini4
,25. Since endurance exercise is typically performed at the highest sustainable intensity, the 

blood lactate response seems to be a better predictor of endurance performance than V02max23
. 

Several studies have showed that the blood lactate responses to maximal incremental or 

submaximal constant work rate exercise have characteristic time profiles which can be used as 

indicators of endurance performance23
-
26

. In many cases, parameters estimated from the lactate 

concentration dynamic response to ramp- or step-changes in work rate have showed better 

correlation and greater sensitivity to improvements in exercise performance than V02max. In 

particular, almost all investigations have shown that the work rate and V02 associated with 

various blood lactate parameters (e.g., lactate threshold, maximal lactate steady state) improve to 
/ 

a much greater extent with training than V02max 23-26. Furthermore, it has been suggested that 

training to improve the blood lactate response to exercise is the type of training required to 

. d fi 23 unprove en urance per ormance . 

The blood lactate response has also been used as a tool for exercise prescription23
. It has 

also been .suggested that training intensity be based on one or more parameters derived from the 

blood lactate response to exercise. Unfortunately, since estimation of desired lactate parameters 

from this response requires multiple blood samples, various noninvasive methods of identifying 

blood lactate parameters from alternate responses to exercise (e.g., heart rate or oxygen uptake) 

have been developed and evaluated22
,27-29. However, the most accurate application of blood v 

lactate concentration in developing exercise training programs comes still from direct 

measurements of blood lactate. Current availability of rapid-response, low-cost, portable blood 

lactate analyzers requiring minute amounts of blood has made the use of lactate parameters more 

accessible to field testing and to a larger athletic popUlation. In spite of these advances leading , . 

to a widespread use of blood lactate parameters for predicting performance, evaluating training, 

. ~ 
" . 
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and designing exercise programs on Earth, an alternate method not requiring mUltiple blood 

samples that provides similar information would be desirable for space travel applications. 

One of the reasons for the success of the blood lactate method in predicting, designing, 

and evaluating exercise outcomes is that it reflects to a great extent the pattern of the muscle 

lactate response to exercise. Since the latter requires the use of serial muscle biopsies to provide 

enough data to characterize the tissue lactate response to ramp- or step- changes in work rate, it 

is understandable why it is not commonly used, in spite of providing the most reliable method to 

assess muscle lactate parameters. It would be ideal to develop a smart medical system that could 

measure the lactate concentration in the exercising muscles noninvasively and continuously. The 

muscle lactate response to exercise could then be processed to estimate desired lactate 

. parameters, used to adjust training intensity or to simply monitor the response during an exercise 

session. To our knowledge, there are no such devices available or in development at the present 

time. 

Hydrogen ions are produced, stoichiometrically, when there is net lactate production by 
J 

the · cell. During exercise, accumulation of lactate reduces cellular pH and subsequently 

interstitial and venous pH. In skeletal muscle, hydrogen ions (Hl are some of the by-products of 

ce1l metabolism when ATP is hydrolyzed to provide energy for muscle contraction. In addition, . 

hydrogen ions are consumed during phosphocreatine breakdown and oxidative phosphorylation. 

Therefore, when the total rate of ATP formation is mainly provided by these two energy systems 

and matches the rate of ATP hydrolysis, no net accumulation of H+ occurs. On the other hand, 

anaerobic glycolysis (i.e., resulting in lactate formation) does not consume W and under 

conditions of ATP homeostasis, will result in H+ accumulation. 
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The availability of noninvasive techniques that can measure intracellular pH in working 

muscle continuously, such as magnetic resonance spectroscopy (MRS), has 'provided dynamic 

information on tissue pH changes. Indeed, Zanconato et al30 have measured the time profile of 

intracellular pH in calf muscle of adults performing incremental plantar flexion exercise using 

3lp_MRS and showed a slow (7.07 to 7.05 at moderate intensities) and a fast phase (7.05 to 6.75 

at high intensities) of pH decrease in 75% of the SUbjects. This biphasic behavior is similar to 

the one observed in arterial pH during incremental exercise on a cycle ergometer and mirrors the 
r 

changes in muscle lactate concentration3l
. 

In summary, under resting conditions or during exercise of moderate intensity most of the 

ATP synthesized to sustain muscle activity is derived aerobically. The glycolytic contribution to 

ATP fonnation during moderate exercise is minimal «2%). When the glycolytic contribution to 

muscle ATP fonnation increases, such as during high intensity exercise that engenders blood 

lactate values between 1 mM and 4 mM, the [if] in the exercising muscles also increases. 

Smart M edical Systems Involving Noninvasive Interstitial pH Sensors 

Continuous monitoring of tissue pH in working muscles requires serial biopsy samples 

every 10 sec or the use of MRS on a large muscle mass32
,33. However, in space, both methods are 

impractical and thus cannot be used on a routine basis. Nevertheless, during high intensity 

exercise, the pH of the parenchymal cells, the interstitial fluid, and the venous blood surrounding 

the muscle decreases in proportion to the exercise intensiry34. In addition, there is a good 

correlation between muscle pH and lactate conce'utration during exercise34
,35 . Therefore, the 

venous blood or interstitial pH response to exercise can be used as a potential marker to monitor 

fitness level or exercise training programs. 
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The time profiles of th~ decrease in arterial blood pH observed during incremental 36,37 or 

constant work rate37,38 exercise are highly correlated with the increase in arterial lactate 

concentrations. However, regulation of arterial pH depends on the magnitudes of the exercise 

intensity and ventilatory response, changes in arterial PC02, and varies from subject to subject. 

Venous blood pH, on the other hand has the advantage of representing only the muscle capillary 

bed and consequently is more representative of tissue pH changes than arterial pH. At rest, the 

femoral venous (7.37- 7.43), arterial (7.40 ± 0.03), and interstitial (7.38 ± 0.02) pH values are 

very similar, while tissue pH (7.04 - 7.17) is typically a few units lower than interstitial pH, both 

at rest and during exercise34. The amplitudes of the exercise induced decreases in venous blood 

and interstitial pH are similar during moderate and heavy intensity exercise34. However, during 

very heavy exercise, interstitial pH decreases to a larger extent than femoral venous pH34. This 

may be in part due to the fact that a fraction of femoral venous blood comes from inactive tissues 

and inactive parts of the quadriceps. Thus, continuous monitoring of interstitial pH during 

exercise might provide alternate markers of fitness that can be used in the design and evaluation 

of exercise training programs. The main advantages of monitoring interstitial pH during exercise 

instead of blood lactate are: (a) the interstitial space is anatomically closer to the working 

muscles than the blood compartment and (b) interstitial pH can be mqnitored noninvasively and 

on a continuous basis. 

Therefore, a smart medical system could be dev.eloped to measure interstitial pH in the 

exercising muscles noninvasively and continuously using NIRS technologyl5. The interstitial pH 

response could then be processed to identify and estimate new sensitive markers of fitness that 

are based on its characteristic time profile to various exercise stimuli. This information would be 

valuable in providing guidelines for adjusting training intensity and for simply monitoring the 
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response during an. exercise session, either in space or on earth. Once the relationship between 

interstitial pH and energy expenditure is developed, this information could be used as part of a 

smart medical system to link nutritional intake to demand. 

Earth-Based Applications of Smart Medical Systems Developed for Space 

Smart medical systems for assessing interstitial fluid pH would not only have application for 

assessing and guiding exercise protocols in space, but would also be applicable to the training of 

athletes on earth. The same sensor system will also have utility both in space and on earth for the 

assessment and treatment of traumatic injuries. Muscle pH has been shown to be correlated with 

blood loss during hemorrhage in swine and has the promise of providing an indication of 

successful resuscitation39
,4o. One can envision the day where a NIRS-based sensor measuring 

tissue pH, hematocrit and blood sodium concentration might be used to assess the severity of 

shock and guide the administration of resuscitation fluids so that just enough fluid is given to 

restore aerobic metabolism, but not too much to cause anemia and increased sodium levels. This 

sensor might be used in a feedback loop with an automated pump which controls the ~e and 

rate of fluid administration, adjusting on a minute-to-minute basis, as determined by the tissue 

and blood sensors. 

Sensors developed to assess hematocrit during spaceflight can also have significant impact 

on earth. Anemia is a world-wide problem4 1
. In many countries over 40% of the Women of 

reproductive age are anemic, increasing the risk of maternal and child mortality. Anemia 

negatively impacts child developme~t and behavior. Anemia in young adults impairs work 

capacity and productivity, especially in agricultural communities42
. There are several causes for 

anemia, particularly in economic and socially disadvantaged populations. These include 1) 

nutritional deficiencies, particularly in iron-rich foods, 2) malaria, 3) intestinal parasites, 4) HN 
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and other infection diseases, and 5) genetic hemoglobinapthies41
. Screening is an important first 

step in identifying populations at risk and implementing strategies to correct nutritional 

deficiencies and other health problems. The only portable technology currently available to 

measure blood hemoglobin concentration in the field is the HemoCue system; a 

spectrophotometric system requiring a blood sample. This system has been found to provide 

good data, however it exposes the health care worker to blood-borne diseases and the disposable 

cuvettes required for the system are expensive42
, limiting it's use. The NIRS hematocrit sensors 

being developed to assess spaceflight anemia may provide a noninvasive, lightweight, portable, 

and hopefully inexpensive method to effectively field screen significant populations for anemia. 
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Figure Captions 

Figure 1. Schematic diagram of a smart medical system sho·wing two feedback control systems. 

Within each system multiple sensors assess the ·status of the subj ect and feed 

information to a computer processor for analysis. Treatment recommendations are 

made and implemented, impacting patient outcome. Result of the intervention is 

assessed, closing the loop. 

Figure 2. Computerized Food Frequency Questioni"1aire used on the International Space Station. 

(a) Introductory screen, (b) top portion of the data input screen. 

Figure 3. oninvasive fiber optic sensor for measuring blood hematocrit and tissue pH. (a) 

Placed on forearm to make continuous measurements (b) Close-up of sensor. Outer 

ring of optical fibers carries illumination light to tissue. Inner bundle of fibers carries 

light to a spectrometer for analysis. 

24 
• ~ _7 • 

, ._' .. ,:" 



r: .' 
f" '-"," 
;: " 

1~~ > • 

. );~,: 
;; 

, 

'. r 
.{ 

.-. .' ~ ~- !: 
~.1 {, 

, . 

.~. 

{ 

• I 

.' ., (: 

'w:~: 

'- I ~, 

sensor 
array 

... --------, 
processor 

... --- - -:..:....=,-1 
1 

treatment h, 

... 1 • 1 _ --I' -+ 1 - - - " 
,... : (computer effector 

1 or PDA) 

t L i 

processor 
sensor 

-array (computer 
or PDA) 

L _________ ... 

'-

-------" 1 

treatment 

.-~ effector 

1 
1 I I 1 L____ 1 

- - --

_ h , 

" I _ _ _ I' 

-- - -----

patient 
outcome 

1 __ _ ___ -

------

patient 
outcome 

1_ .... _----

1 

·1 



-. -. 
.~. 

... :.,,{. .. 
0 •• ';"~" "J' -." 

...... :; .. ." " 
" 

_ ,-! .. I 

. ,~,:: ~ . . "~::h/::'" • ,_ ~ •• ;- .. " I • 


