NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Handheld White Light Interferometer for Measuring Defect Depth in WindowsAccurate quantification of defects (scratches and impacts) is vital to the certification of flight hardware and other critical components. The amount of damage to a particular component contributes to the performance, reliability, and safety of a system, which ultimately affects the success or failure of a mission or test. The launch-commit criteria on a Space Shuttle Orbiter window are governed by the depth of the defects that are identified by a visual inspection. This measurement of a defect is not easy to obtain given the environment, size of the defect, and location of the window(s). The determination of depth has typically been performed by taking a mold impression and measuring the impression with an optical profiling instrument. Another method of obtaining an estimate of the depth is by using a refocus microscope. To use a refocus microscope, the surface of the glass and bottom of the defect are, in turn, brought into focus by the operator. The amount of movement between the two points corresponds to the depth of the defect. The refocus microscope requires a skilled operator and has been proven to be unreliable when used on Orbiter windows. White light interferometry was chosen as a candidate to replace the refocus microscope. The White Light Interferometer (WLI) was developed to replace the refocus microscope as the instrument used for measuring the depth of defects in Orbiter windows. The WLI consists of a broadband illumination source, interferometer, detector, motion control, displacement sensor, mechanical housing, and support electronics. The illumination source for the WLI is typically a visible light emitting diode (LED) or a near-infrared superluminescent diode (SLD) with power levels of less than a milliwatt. The interferometer is a Michelson configuration consisting of a 1-in. (2.5-cm) cube beam splitter, a 0.5-in. (1.3-cm) optical window as a movable leg (used to closely match the return intensity of the fixed leg from the window), and a mirrored prism to fold the optics into the mechanical housing. The detector may be one of many C-mount CCD (charge-coupled device) cameras. Motion is provided by a commercial nanostepping motor with a serial interface. The displacement sensor is a custom device specifically designed for this application. The mechanical housing and support electronics were designed to integrate the various components into an instrument that could be physically handled by a technician and easily transported.
Document ID
20100039419
Document Type
Other - NASA Tech Brief
Authors
Youngquist, Robert
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Simmons, Stephen
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Cox, Robert
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Date Acquired
August 25, 2013
Publication Date
November 1, 2010
Publication Information
Publication: NASA Tech Briefs, November 2010
Subject Category
Man/System Technology And Life Support
Report/Patent Number
KSC-13417
Distribution Limits
Public
Copyright
Public Use Permitted.

Available Downloads

NameType 20100039419.pdf STI

Related Records

IDRelationTitle20100039392Analytic PrimaryNASA Tech Briefs, November 2010
No Preview Available