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MAGNETOHYDRODYNAMIC TURBULENCE

ABSTRACT. Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence
consists of fluctuating vorticity and magnetic fields, which are represented in terms of
their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical
simulations of two-dimensional (2-D) MHD turbulence on a 512 2 grid is described. Each
simulation is a numerically realized dynamical system consisting of Fourier modes
associated with wave vectors k, with integer components, such that k = kI < k,,,a,. The
simulation set consists of one ideal (non-dissipative) case and four real (dissipative)
cases. All five runs had equivalent initial conditions. The dimensions of the dynamical
systems associated with these cases are the numbers of independent real and imaginary
parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each
real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl
number PM, with Pm E {0. 1, 0.25, 1, 4). In the results presented here, all runs have been
taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite
different at high k, they are similar at low values of k. Their low k behavior indicates the
existence of broken symmetry and coherent structure in real MHD turbulence, similar to
what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic
to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of
these results to 3-D Navier-Stokes and MHD turbulence is discussed.
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MAGNETOHYDRODYNAMIC TURBULENCE

I. Introduction. Sufficiently energetic continuum flow, whether it consists of liquid,
gas, or plasma, tends to develop instabilities that lead to the large-scale chaotic motion
called turbulence. Although fluid compression may be present initially, density
fluctuations can radiate away as sound waves or damp out due to bulk viscosity, leaving a
large-scale flow that is essentially incompressible. This incompressible limit is
characterized by its fluid vorticity, and additionally, in the case of plasma, by its
magnetic field. Understanding magnetohydrodynamic (MHD) turbulence requires solving
the equations describing the evolution of the vorticity and magnetic induction. However,
due to the inherent non-linearity of these equations, there are no general analytical
solutions (as linear equations have) and they must be solved numerically.

A fundamental focus for research is 'in  an area termed homogeneous turbulence [1],
where the region of fluid under consideration is assumed to be remote from any physical
boundaries. In this case, the appropriate numerical boundaries are periodic and Fourier

series are used as the basis for analytical approaches and computational techniques.
Fourier transformation turns the few basic partial differential equations describing the
flow in physical space (x-space) into many ordinary differential equations (ODES) in the
Fourier transform space (k-space). To enable numerical solution, these ODES must be
finite ill requiring that finite Fourier series be used. Typically, the truncation is
done by retaining only those Fourier modes whose wave vectors k (with integer
components) have magnitudes less than or equal to some maximum value, k = IkI < k,,,ax
(for dissipative turbulence k,,,,,, = kD, the dissipation wave number). The number of
independent real and imaginary parts of the Fourier coefficients within the ball k < k,,,"x
determines the dimension of the dynamical system embodied by these k-space ODES.

Since each discrete Fourier mode in k-space represents a continuous function in x-space,
we have a discrete dynamical system (the Fourier modes) representing, to a certain level
of resolution, a continuous physical system. Although the Fourier modes are the ►nselves
continuous analytical functions of time, the actual values they can take are discrete, being
drawn from the possible digital states of a computer word (of 64 bits in the numerical
simulations to be described herein). Thus we have, in computational physics, the
unavoidable result that continuum systems are always represented by discrete dynamical
systems, consisting, as they do, of algorithms, their numerical implementation, and the
digital hardware on which they are run. The viability of these simulations is ultimately
determined through comparison with theoretical prediction and experimental
measurement.

Here, we will concentrate our efforts on examining certain aspects of two-dimensional,
homogeneous, magnetohydrodynamic turbulence (hereafter simply called 2-D MHD
turbulence). In particular, we will consider both ideal (non-dissipative) and real
(dissipative) 2-D MHD turbulence. In the ideal case, there is a statistical theory with
which to compare numerical results [7, 10, 16, 17, 30-37], and in the real cases we
compare the distribution of energy with inertial decay laws [14, 24] and with the
distribution found in the ideal case. However, we do not add energy through spectral
forcing to the real case, so that the dissipative simulations are autonomous dynamical
systems [38] in which energy decays with time.
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The one ideal and four real cases presented here all start from equivalent initial
conditions, so that a controlled comparison can be made. The real cases differ in their
values of kinetic viscosity v and magnetic diffusivity il (so that the runs are identified by
their magnetic Prandtl number, PM = 01). These five runs took about three months of
cpu-time on a DEC Alpha, allowing each simulation (with 64-bit words) to be taken up to
a simulation time of t = 25. (In the future, we plan to extend these times by an order of
magnitude to study long-term states of decaying 2-D MHD turbulence with varying PM;
the runs to be presented contain significant new results that motivate this extension).

The growth and quasi-stationarity of low-k modal values in decaying 2-D MHD
turbulence, similar to the behavior seen in the ideal case, is a primary result. In particular,
in the real runs those Fourier modes with low values of k exhibited manifestations of the
dynamically broken symmetry and associated coherent structure that has been found in
ideal turbulence [32, 33, 35]. Thus, although the ideal and real Fourier spectra are quite
different at high k, their similarity at low-k, indicates an area of overlap between ideal
and real MHD turbulence.

These results are also relevant to 3-D homogeneous Navier-Stokes and MHD turbulence.
The reason is that homogeneous 2-D and 3-D MHD turbulence, as well as 3-D Navier-
Stokes, each have, in addition to energy, an ideal integral invariant called a helicity [2, 6,
23, 39]. It is the presence of helicity that dynamically breaks the symmetry of the basic
equations[32, 33, 35]. (The ideal invariants for homogeneous 2-D Navier-Stokes
turbulence are energy and enstrophy, neither of which is helical.) In this regard, 2-D
MHD turbulence serves as representative of 3-D turbulence, one that allows a
substantially greater k,nax than possible in 3-D simulations.

In outline, the following sections contain a brief, but thorough discussion of the basic
MHD equations, their 2-D form, and their 2-D integral invariants. Fourier transforms are
then discussed, along with some aspects of 2-D MHD turbulence as a dynamical system.
Next, the statistical mechanics of ideal 2-D MHD turbulence, the spectral laws for real
turbulence, the numerical method and results, and finally, concluding remarks are
presented.

2. Basic equations. The first of the basic equations of MHD turbulence is the Navier-
Stokes equation with the electromagnetic force term jxB [20, 28] (where j is the electric
current and B is the magnetic induction):

P
a 11

	 = —Vp+µV z u+jxB	 (I)
^ 5,

Here, p is the mass density,p is the pressure and µ is the dynamic viscosity. The dynamic
viscosity is related to the kinematic viscosity v through µ = pv. The assumption of
incompressibility means that p = po = constant or equivalently that V . 0 = 0.
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The magnetic evolution equation originates in Maxwell's equations [12], which in SI
(Syst&me International) units (i.e., the MKSA system), are

a) a
B

=—VxE	 b) V . B=0	 (2)

a) a
D

=VxH—j	 b) V. E = p,	 (3)

Above we have the electric field E. the electric displacement D, the magnetic field H and
the magnetic induction B. We assume that the fluid is neither dielectric nor permeable, so
that the electric variables E and D are related through the free space electric permittivity
Eo, and the magnetic variables H and B are related through the free space magnetic
permeability µ4 (both Fo and µo are constants), while a simple form of Ohm's law
connects j and E (here, the electrical conductivity 6 is assumed constant):

a) D=F, o E	 b) B =µ o H 	 c) j=aE.	 (4)

In MHD, incompressibility implies that velocities are small with respect to the speed of
sound and therefore also to the speed of light. Thus, electromagnetic radiation is ignored,
so that on the left side of (3a) the displacement current aD/at is set to zero. (Since the
addition of the displacement current was Maxwell's unifying, in dropping it, (2) and (3)
become the `no yet Maxwell equations' [12])

Neglecting the displacement current in (3a) and using (4b) gives the relation between
electric current and magnetic induction:

p j=VxB.	 (5)

Obviously, V-j = 0, so that both B and j have zero-divergence.

Now, combining Faraday's law of magnetic induction (2a), Ohm's law (4c), and the
current-magnetic induction relation (5), yields the second basic equation of MHD, the
magnetic induction equation:

aB =ox(uxB)+rlo 2 B.	 (6)
at

The magnetic diffusivity rl = (µa6)- ' is also a constant (TI and v have the same units: m21s
in SI units). In MHD, equation (6) determines B and `B determines j' through equation
(5), rather than the usual j determines B' of Maxwellian electrodynamics.

Equations (1) and (6) are the basic equations of MHD. Since incompressibility is
assumed, the system of equations can be non-dimensionalized, so that the constant p is
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eliminated from (1). The pressure p is removed from consideration by taking the curl of
equation (1) (with p = 1) to yield an equation for the vorticity co = Vxu of the magneto-
fluid:

aW — Vx(ux(o+ jxB)+VV 2 (0	 (7)
at

The pressure, if required, can be found by taking the divergence of (1).

Equations (6) and (7) are the basic equations of MHD turbulence. In (7), the inverse of v
is the Reynolds number, while in (6) the inverse of rl is the magnetic Reynolds number.
Note that all of the fields u, cn, B and j appearing in (6) and (7) have zero divergence. In
the case of B, this leads to the well known magnetic vector potential A, i.e., B = VxA.

3. 2-D MHD. In the presence of a constant, externally imposed uniform magnetic
induction Bo, the total induction B can be split into B, and a fluctuating part b:

a) B=Bo+b	 b) V•b=0.	 (8)

In 3-D cartesian coordinates x, y, z, the corresponding orthonormal basis vectors are ex,
ey, e,, respectively. Let us choose Ba = Boez. In the limit Bo with fixed limits on
fluctuating magnetic and kinetic energies, equations (6) and (7) give

a	 _	 a co

a) at 

j	
Bo az j	

b) ± w = j = f (x, y, z ± VA t) .	 (9)

The Armen velocity is VA = B,, in these dimensionless equations. If the solutions (9b)
represent initially localized disturbances in an infinite medium, they propagate away,
leaving a 2-D flow field. In the case of a bounded flow, such as homogeneous MHD
turbulence, there is nowhere to go. However. in physical experiments [40] and in
numerical simulations [30, 31, 25], MHD turbulence has been seen to lose its z
dependence for increasing B0 . Thus, in the limit of large Bo, 3-D MHD turbulence
becomes effectively 2-1), and the use of 2-D simulations to represent physical phenomena
becomes viable.

Also, a 2-D approach is advantageous numerically, since a denser grid can be used than is
the case in 3-D. For example, if we use a 512x512 grid in 2-1), we have 512 points per
dimension, or 2 18 points overall. In 3-1), the same number of points would be distributed
evenly into a 64x64x64 grid, but with only '/8 as many points along each dimension.
Hence, restricting MHD to 2-D, in addition to being appropriate in the presence of a very
large mean magnetic field, also allows for a greatly increased spatial resolution. For these
reasons, we now develop and then numerically solve the 2-D MHD equations.

Since D-b = V j = V-u = V-w = 0, we can define for 2-D MHD the following:

7



MAGNETOHYDRODYNAMIC TURBULENCE

a) v= gAx,y,t)e, b) a = a(x,y,t)ez 	 (10)

a) u= Vxtp=—kXVvf b) b= Vxa=—e,xVa.	 (11)

The quantity tp(x,y,t) is the stream function and a(x,y,t) is the magnetic scalar potential.
In terms of these, the vorticity and current are

a) co = Vxu = cok	 b) j = Vxb = jez,	 (12)

a) CO _ -V' Vf	 b) j = _V2 a.	 (13)

If we now put the expressions (10) through (13) into (7) and (6), we get

aw
+u•Vco=b•Vj-^-vV 2 ot	 (14)

at

as
+u . Va=r1V 2a.	 (15)

at

In these equations, the spatial derivatives are only taken with respect to x and y, e.g.,

u - Va — 
as ay	 s ax 

J(a,V)	 (16)
Y a Y

VZa— 
az a

+
a2 a	

(17)
ax2 aye

The basic equations of 2-D MHD turbulence are (15) and (16). Since we assume
homogeneity, the various scalar fields a, Vf j and w are expanded in terms of truncated
Fourier series, and Fourier transformation takes the two partial differential equations (14)
and (15) into a great number of ordinary differential equations. We will move on to this
topic in the next section.

First, however, we will demonstrate the existence of integral invariants in a periodic
domain in x-space. It is straightforward to show, using (IIa), that the Navier-Stokes
equation (1) (with p = 1) can be written as

aVV =
_Wo --xVV —et xV(p+ 1 u 2 )+ jez xVa—vVco.	 (18)

at

Taking the gradient of (16) gives a similar equation for Va:
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aoa 
= J(oV , a) + J (V/, va) - I] Vj 	 (19)

at

At this point, we take the dot product of (18) with V Vf,, and of (19) with Va, and adding
the results, to get the energy flux equation:

a) 
at 

=—V •[p l,u+(u• Va)Va] —vVgr •Vw—T1Va-Vj	 (20)

a) E= ; (I u 1 2 + I b l z)	 b) pu = p+ ; u 2	 (21)

Next, a times (15) plus co times (16) gives

aaw + V • (awu - ajb) = vaV 2 CO- T1Wj .	 (22)
at

Lastly, a times (16) yields

aa2
+ V • (a 2 u) _ —211aj . 	 (23)

at

Now, we integrate (20), (22) and (23) over a periodic square of side length 27C, to find the
volume averages of the quantities e, acw and a2 , respectively. The volume average of any
quantity q will be defined as

2,,	 27T

[q] -- (2Tt)-
z 

fdy f dx q (x , y) •	 (24)
0	 0

All of the diver gence terms will vanish because of the periodic boundary condition and
the terms containing v and T1 can be integrated by parts. The results are

dE
dt 

= -2(vQ + i1J)	 (25)

a) E=[E] 	 b) S2 = ' [w 2 ]	 c) J = ^ [ j 2 ] .	 (26)

d HC =
-(v+11)H3

dt 

a) HC = 2 [aw]	 b) H3 = z [jW ]	 (28)

(27)
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dA
= -2TIEm

dt 

a) A= 2[a2]
	

b) EM = 2 [1 b 1 2 ] .	 (30)

For completeness, we also define

a) EK ='-2 [I u 1 2 1
	

b) E = EK + Em.	 (31)

In the above equations, E is the total mean energy, while EK and E1,1 are the mean kinetic
and magnetic energies, respectively. The mean squared vorticity is S2 (called the
enstrophy), while J and A are the mean squared current and mean squared magnetic
potential, respectively. The integral HC is called the cross helicity, while Hj is also a
helicity (i.e., a pseudoscalar integral), though it is not an ideal invariant.

If we set the viscosity and diffusivity equal to zero, v = rl = 0, we have ideal MHD. In
this case, equations (25), (27) and (29) tell us that E, Hc and A are integral invariants. In
fact, these are the only ideal invariants in 2-D MHD (and they remain so when the fields
a and co are represented by truncated Fourier series, as will be demonstrated presently). If
v :^ 0 and rI :^ 0, we have real MHD, wherein E and A decay monotonically, while He
may increase or decrease. In what follows, we present results from numerical simulations
of both ideal and real MHD turbulence. First, however, we discuss the transformation to
k-space and the explicit dynamical systems that ensue.

4. Fourier transform methods. In x-space, 2-D MHD turbulence is represented by the
value of its fields a(x) and w(x) (and the fields analytically related to these) within an
area of side length 2Tc, where the position vector is x = xex + yey, with 0 <x,y < 27c. Since
a(x) and w(x) are assumed to be periodic in this area they will be represented by discrete
Fourier series, e.g.:

a) w(x) 
= N CO(k)eik x	 b) w(k) = N 6)(x) e

-ik x	 (32)
k	 x

Note that time t is implicit in the arguments of all variables such as a(x) and d(k), being
omitted only for brevity. Also, N = 2 M for use in fast-Fourier transforms (FFTs) [4]. Here,
we use 2-D wave vectors k, with integer components k, and ky:

a) k = k, , + kyey
	 b) — z < kx ,ky <_ ? .	 (33)

The x-space position vectors x is transform (32b) are also discrete:

a) x = l-- (nex + mey)	 b) 0 < n, m < N.	 (34)

(29)
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The x-space values w(x) are real, so the Fourier coefficients satisfy the `reality condition'
CO(k) = co * (—k), where * denotes complex conjugation[henceforth we drop the - over a(k),
co(k), etc.]. Thus, (32), (33) and (34) define an invertible transformation between N 2
values w(x) and the N 2 values Re w(k), Im w(k) [and similarly for a(k)].

In a numerical implementation, we wish to maintain isotropy in k-space and to avoid
aliasing effects in the evaluation of the non-linear terms in (15) and (16). Thus, we
require that 

I kl 
< k,,,a,, < N12, which imposes what is termed isotropic truncation in k-

space for an N-by-N transformation. For a real (dissipative) non-linear simulations, k2,,,,,
is chosen as (N12)2 — %2; in these pseudospectral simulations [3, 5, 9], dissipation renders
aliasing effects negligible. In the case of an ideal simulation, a de-aliasing procedure is
required to evaluate non-linear terms; we use the method due to Patterson and Orszag
[27] , in which emax = 2N 219, to create a Fourier spectral transform method [3, 5, 9].

Fourier transformation of the non-linear evolution equations (15) and (16) produces the
following two equations in k-space:

dk) =i 
Y_ e z •Pxq [iV(P)w(q)+J(P)a(q)]— vk2w(k) 	 (35)

dt	 p+q=k

da(k)= i 
Y_ e z • px q a(p)yr(q)—Tlk^a(k) . 	 (36)

di	 p+q=k

If we multiply (35) by yi (k) and (36) by j * (k), and sum over k (all sums are such that lkl,

I p l, I q l -S kma,;) we have

d E = O(yr, yr, w) + O( W, j, a) + B(a, j, yr) — 2(vQ + i1J)	 (37)
dt

6(a, J, V) = — u 2] ez • P x ga (k )J(P)V(q )	 (38)
p+q+k=0

In the triple summation in (38), k, p and q are dummy summation variables and can be
interchanged to yield

9(a, j, V) = —6(j, a, V) = -e (a , V, j)
	

(39)

Thus the three 9terms in (37) add to zero and we find that equation (25) also holds for a
truncated Fourier representation. We can similarly multiply (35) by a * (k) and (36) by
co * (k) and add the results, and separately multiply (36) by a * (k), and sum these over k to
show that (27) and (29) are also valid in for truncated Fourier representations. Therefore,
in the ideal case (v = Tl = 0), E, He and A are also invariants in k-space,
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E= —'  	 k 2 [I V(k ) I 2 + I a (k) 1 2 ]	 (40)
2N-

a) 
HC	

2	 2Na(–k)co(k)	 b) A
	 Y-1  

a( k)12 .	
(41)

2N 

(Note that each Ek sums independent coefficients twice.) The properties of the B
summations, as given by (38) and (39), ensure that E, Hc and A are the only quadratic
invariants present in the truncated Fourier representation of 2-D homogeneous MHD
turbulence. ( If an ad hoc constant magnetic field were put into the 2-D problem, then A
would no longer be conserved. We will not consider this situation further here.)

5. MHD Turbulence as a dynamical system. In 2-D k-space, where k has integer
components, there are a finite number of k such that kj < kmax, and so there are a finite
number of independent real and imaginary parts of the coefficients a(k) and w(k). This
number (call it NI-) is the dimension of the phase space r of the dynamical system
associated with the truncated Fourier model of 2-D MHD turbulence. Since the equations
of motion of the phase flow are (35) and (36), the divergence of the phase flow is

a) 
aco(k) 

_ _vk 2 	b) 
aa(k) 

_ –^^k 2 .	 (42)
aco(k)	 aa(k)

Clearly, for ideal MHD where v = Tl = 0, the phase flow is divergenceless and the
quantities E, HC and A are conserved. The canonical distribution function D [ 19] for
phase points satisfies a continuity equation

aD + 
Y,

aDcb(k) + aDir(k) 
_ 0.
	

(43)
at	 k I aco(k) 	 aa(k)

Using equations (42) allows (43) to be written as

dD _ aD 
+^,^o(k) 

aD 
+a(k) 

aD 
_ (v+ I)^ k 2 )D.	 (44)

dt	 at	 k	 aco(k)	 aa(k)	 it

This tells us that if phase space is filled with points representing the initial states of
systems [with values of E, Hc and A given by (40) and (41) depending on initial
location], then the density of points in any volume moving with the phase flow increases
exponentially with time, i.e., the gas of phase points collapses towards the origin, and the
associated phase volume shrinks, when v and Tl are positive definite constants.
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6. Ideal MHD turbulence

6.1. Absolute equilibrium ensemble theory. When v = rl = 0, however, dD/dt = 0 and a
Liouville theorem exists [21] Thus, since D is a constant function of the phase
coordinates a(k) and co(k), it can only be a function of other phase functions which are
themselves constant: D = D(E, HC, A). Since E, He and A are additive, and since D must
be multiplicative when the phase system r is split into parts r, and r2 (i.e., D = DiD2)
the form of D must be [ 19]

a) D = Z I exp(-aE - RHc - yA)	 b) Z = jexp(-aE - PHc - yA) dr. (45)

Here a, (3 and Y are called inverse temperatures and the normalizing factor Z 1 is given in
terms of the partition function Z. Equations (45) describe the statistical mechanics of a
canonical ensemble [13, 19]. The partition function is a product of modal partition
functions zR(k) and z/(k) and the volume is a product of modal volumes:

a) Z = T[ z R (k) z j (k)	 b) dr = 11 drR (k)drj (k)	 (46)
1;	 is

clrs (k) = das (k)dws (k), S = R,1	 (47)

zR(k) = zAk) = Jexp[-a(k7lW2 +k2a2) - Gate - ya2] dwda.	 (48)

The subscripts R, I in (48) denote real and imaginary parts, respectively. Expressions (40)
and (41) for E, He and A are inserted in (45b) to produce (48), where the dummy
variables of integration have been simplified. The integrations in (48) are performed
between the limits —oo and +oo for each a and co. The partition function thus depends on
a, R, y, and k2 . Carrying out the integrations, we find

zs (k) =	
n	

S = R,1.	 (49)
a 2 — (3' /4 + ocy /k 2

Let us define the expectation value of a phase quantity 0 as follows:

<0> = Z 1 J 0 exp( -aE - RHc - yA) dr.	 (50)

Using the relations developed above, for 0 = w or a, it can be shown that

a) <co(k)> = 0	 b) <a(k)> = 0.	 (51)

Canonical ensemble theory thus predicts that the mean values of the Fourier coefficients
are zero. Second-order moments are also easily found to be
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2

([ws (k )] 2 ) =	
ak + y	

, S = R,1	 (52)
2(a 2 — f32 A +ay/k2)

2

([as (k )] 2 ) =	 2	 /k	 z 1 S = R,1	 (53)
2(a _#2 l4+ay/k )

(ws (k) as (k )) = 
2	 2/4/ 

4 

/k 2
 ' S = R,1.	 (54)

a — Y

The values a, 0 and y are found by placing the expressions (52), (53) and (54) into (40)
and (41), assuming E, HC and A are constant and solving the resulting nonlinear
equations.

The ideal results presented above form what is called absolute equilibrium ensemble
theory for 2-D MHD turbulence [10, 18]. (If an ad hoc uniform rnean field B,, is
introduced into the 2 -D case, A is no longer an invariant, although E and HC remain so
[30, 31].) In addition to these ideal 2 -D MHD results, there are corresponding formulas
for 3 -D MHD turbulence [7, 32, 33, 37], as well as 2-D [17, 32, 33] and 3-D [16, 32, 33]
Euler (i.e., `ideal Navier-Stokes') turbulence. In 3 -D MHD, the ideal invariants are E, HC

and the magnetic helicity [6, 23] HM = ''/z[a•b] (if B o # 0, HM is no longer invariant [33]).
In 2-D homogeneous Euler turbulence, the integral invariants are E and Q [17], while in
3 -D homogeneous Euler turbulence, E and the kinetic helicity [2, 23] HK = ''/z[u . cn] are
invariant. The presence of at least one ideal invariant helicity in each case unites 2 -D
MHD with 3-D turbulence.

Absolute equilibrium ensemble theory is a straightforward and useful application of
Gibbsian statistical mechanics. The initial formulation of the absolute equilibrium theory,
developed in the 1970s [7, 10, 16, 17] has been extended in several ways [30-35. These
extensions and their uses are described in the following sections.

6.2. Entropy. In the ideal case, if the expectation values of (40) and (41) are taken, and
(52), (53) and (54) are used, three algebraic equations result:

a<E> + (3<Hc> + y<A> = 
Nr — 

nr	 (55)
2N2

2a<Ha> + O<EM> = 0	 (56)

a (<E> - 2<EM>) - y<A> = 0.	 (57)

In the above, the expectation values <E>, <Hc> and <A> have essentially their initial
values E, HC and A because these have only minor canonical fluctuations. The value
<E,u> will, however fluctuate significantly since it is not an ideal invariant. Rename this
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as V = <EA.>>. for brevity. Then, solving the exactly determined equations (55), (56) and
(57) for the unknown cp gives [30, 32, 331

a) a =
nj- (P

(P(E-(P)-HC

b) R = —2 HC (X 	 Y = E A2 (P U.	 (58)

Now, instead of having three variables to solve for, there is just one: gyp. If the inverse
temperatures in (58) are put into the distribution function D in (45), the result is D((p),
which is equal to the true distribution function when the equilibrium value of (,O is found.

The method for determining rp is to minimize the entropy functional a( ( ) _ - <InD((p)>,

with respect to (o. Note that although entropy increases as previously isolated systems
come together and interact, the entropy of an isolated system takes a minimum value with
respect to temperature [13] (or temperatures, as in this case [34]). Equations (58) show
that the inverse temperatures are really functions of only one variable, so that minimizing
with respect to a, a and 7 is equivalent to minimizing with respect to (p. Using (50) and
(58), along with (40) and (41) gives

6((o) _-<1nD((p)>=nr(I+N2InTE)- ;y_ln(a'-, R'- +ayk-2)	 (59)
- is

Again, a, a and y are functions of (0 as given in (58). Finding the value of (P for which
minimizes 6(^9) (there is only one minimum [36]) allows the equilibrium values of a, (3
and Y to be found, and hence the expectation values (52), (53), and (54). This value is (fi
_ <EM>, and the entropy of the dynamical system is S = 6(<EM>).

6.3. Broken ergodicity. The helicities HC, HM and HK, mentioned above have one
critical characteristic: they are pseudoscalars (i.e., they change sign) under either one or
both of the symmetry transformations P (parity: x	 -x, so that u, a, j -> -u, -a. -j, but
yi b, (o -> Vf b, co) and C (charge reversal: a, b, j -a, -b, -j). However, the equations
of motion, such as (14) and (15) [or (35) and (36)], are unaffected by P or C. Also,
although the distribution function D as given by (45) appears to be affected by P or C, it
is not, for the inverse temperature (3 associated with He is clearly a pseudoscalar under P
or C, as is seen in (58b), where R = - 2Hca/^q (a and cp= Em are scalars, while He is a
pseudoscalar). Similar relations can also be shown to exist for the invariant helicities in
3-D ideal MHD and Euler turbulence [32, 33].

Thus, both the equations of motion and the statistical theory are invariant under P and C.
However, in any solution of the ideal equations of motion the various invariant helicities
always start with a definite sign (+ or -) and, because they are invariant, maintain that
sign. In regard to ideal homogeneous turbulence as a dynamical system, each invariant
helicity induces a disjoint structure on the available regions of phase space [35]. In ideal
2-D MHD and 3-D MHD with B,, # 0, as well as in 3-D Euler turbulence, there is one
invariant helicity so that the available phase space is split into two effectively disjoint
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parts. In 3-D MHD turbulence with B„ = 0, there are two invariant helicities and the
available phase space is effectively split into four disjoint parts. Only in the case of 2-D
Euler turbulence, where there are no invariant helicities, is there a single, connected part
in phase space for the system point to move on [32].

The phrase effectively disjoint is used above because in a canonical ensemble, as we have
here, invariant surfaces in phase space are actually `fuzzy,' i.e., the phase point is not
precisely confined the to invariant hypersurface I't of dimension N, = Nr- — 3 defined by
the intersection of the Nr- — 1 dimensional hypersurfaces of precisely constant E, HC and
A. (If phase motion were confined to r i we would have a microcanonical ensemble [13,
19].) Instead, E, HC and A are canonically invariant, as they have very small fluctuations
about a mean value, similar to the energy of a small physical system embedded in a large
thermal heat bath (the `heat bath' here is the digital computer). The invariant
hypersurface I' t is thus slightly spread out into an Nr dimensional subspace AI' in which
the phase point resides with a probability given by the integral f orDdF = 1, where D is the
canonical distribution function given in (45). Since D is so highly peaked on F/, the
probability that the phase point can actually be found between the effectively disjoint
subspaces AF+ (AI' = AF + vAr_) associated with ±Hc is essentially zero.

Numerical simulation has demonstrated the disjoint nature of phase space for ideal
turbulence when invariant helicities are present [32, 33, 35]. Although (51) predicts that
the mean values of co(k) and a(k) zero for 2-D MHD turbulence, in any dynamical
simulation time averages of these modal values are no longer zero. The phase point
begins and remains within one disjoint part of phase space, while ensemble averages are
taken over all of phase space consistent with the canonically invariant values of E, HCJ
and A. Thus, the symmetry of the governing equations and statistical theory under P and
C is dynamically broken and the dynamical system is non-ergodic (as time averages do
not match ensemble averages). This situation is often referred to as broken ergodicity
[26]. Since the time-averaged values of w(k) and a(k) are no longer zero, these time
averages define the existence of a coherent structure.

The essential result is that direct numerical simulation of ideal, homogeneous turbulence
is described by a dynamical system with a canonical distribution function. Furthermore,
the presence of helical invariants induces broken ergodicity and coherent structure. Does
this ideal turbulent phase space structre manifest itself in real turbulence when v and rl
are non-zero? This is an important question that we will address presently. First, a brief
discussion of real turbulence is given.

7. Real MHD turbulence. In real 2-D MHD turbulence, when v # 0, t1 # 0, the
spectrum is expected to be quite different from (52), (53) and (54). For forced, dissipative
turbulence, a stationary state can be attained by injecting energy at some small value of k,
after which it cascades through intermediate values of k with negligible dissipation (the
inertial range), and is lost to heat at large k in the dissipation range, where k > ko, the
dissipation wave number. (There can also be 'inverse cascades' to the smallest values of
k.) The kinetic energy spectrum EK(k) and magnetic energy spectrum EAA are defined as
integrals over azimuthal angle 0 in k-space:
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'n (60)= 2 1 u (k ) I z kd^ = k w( k ) aEK(k)	 ve0
27t

(61)Enl(k) = 2 1 I b (k ) I 2 kd$ = k I .%( k ) I nve
0

In the case of homogeneous Navier-Stokes turbulence, Kolmogorov [14] and Obukhov
[24] used a dimensional arguments to predict that in the inertial range

EK(k) = k -sis	 (62)

For MHD turbulence with a mean field Bo # 0, Iroshnikov [ 1 1 ] and Kraichnan [ 15] have
predicted that Alfven wave effects produce inertial range spectra of the form

EK(k) = EAXk) = k 
-3i2	 (63)

Here, we have no explicit mean field, since a large B,, was invoked only to turn 3-D into
2-D MHD turbulence, so that (62) should apply here, rather than (63).

In the later stages of decay, theory [ I ] predicts a specific form for the energy spectrum
EK(k) of homogeneous Navier-Stokes turbulence. Since the equations for velocity and
induction are the same when the non-linear terns are neglected. the magnetic energy
spectrum EAAk) of homogeneous MHD turbulence will take a similar form. The spectra
for the later stages of decay (i.e., as t ---) 0) are thus expected to behave as

a) EK(k) = k 4exp(—Mv t)	 b) E,q(k) = k 4exp(-2rlkz t).	 (64)

Finally, the dissipation wave number kD for MHD turbulence can be approximated as
(through dimensional reasoning similar to the Navier-Stokes case)

2	 , —1/4

kD =2 71	
+ 11

2Q 2J

The above results pertaining to both ideal and real turbulence can be used to examine
some new `computer experiments.'

8. Numerical Simulation. We solve the k--space ordinary differential equations (35) and
(36) for w(k) and a(k) with IkI < kmax and reset all coefficients with IkI > k,,,a, to zero after
each time step (isotropic truncation). Let the number of k (with integer components not
all zero) in the ball IkI < kr,,a, be K. Associated with each of these k is one a(k) and one
w(k). Since a* (k) = a(—k) and w * (k) = co(—k), the number of wave vectors with
independent coefficients is K12. Since each a(k) or w(k) has a real and an imaginary part,

(65)
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the number of dimensions in the phase space is Nr = 4K/2 = 2K. Approximately, we have
K = Tck2 ,,,,, although the exact number requires summation (this is Gauss's circle
problem), and numerical counting can arrive at precise values of K.

Here, we present recent numerical simulations performed on an NxN grid of points with
N = 512. Time integration is done by a third-order `partially corrected Adams-Bashforth'
scheme [8], and the linear dissipative terms are treated implicitly. Spatial differentiation
is performed in k-space, where it is simple multiplication since the x-space 0 ---) ik in k-
space. Non-linear terms are evaluated by a) finding derivatives within cofactors in k-
space, b) transforming these cofactors to x-space by fast Fourier transform (FFT), c)
forming products at each point in x-space into Jacobians [such as J(a,Vl) given by (16)]
and d) transforming back to k-space by FFT. The aliasing that may occur in this
transform method is fully eliminated in ideal runs by the Patterson-0rszag technique
[27], where each evaluation of a non-linear term requires two sets of FFTs on shifted
grids (this is a spectral method with k2,,,,,, -- 2N 2/9). The effects of aliasing are neglected
in real runs (with only onset of FFTs per evaluation — this is a pseudospectral method
with k-,,,,, _ ''/4N 2 —%). Thus, for N = 512, ideal runs have k2 n,,_, = 58254 and K = 183052
(irk2 ,a, = 183010 — low by 42), while real runs have k2,,,,, = 65535 and K = 205856
(Ttk2 ,,,,, = 205884 — high by 28).

The simulation set consists of one ideal case and four real cases. All five runs had
equivalent initial conditions (i.e., equal for k2 < 58254). The dimension of the dynamical
system in all cases is again NF, = 2K. Thus, Nj- = 366104 in the ideal simulation, and N-
41 1712 in the real simulations. Table I gives the values of v, 71 and the magnetic Prandtl
number P,j = v/ti for each of these five runs (the ideal case is denoted by Pm _ `0/0').

Run v TI PA/

I1 0 0 0/0

R1 0.001 0.010 0.10
R2 0.001 0.004 0.25
R3 0.0025 0.0025 1.00
R4 0.004 0.001 4.00

Table 1. Parameters for the numerical simulations

The initial conditions were such that EK = EM = 0.5, Hc = 0.024613, A = 0.03 103 1 at t =
0. The initial values of the complex coefficients co(k) and j(k) had random phase and
magnitudes that varied as

w(k)l _ I j(k)l -- k3 exp(—k2/16).	 (66)

These initial values gave initial energy spectra EK(k) = E,u(k) — 0 exp(—k2/8), i.e., one
that was highly peaked around k2 = 5. The time step for numerical integration was At =
10-a , and each run in Table I was taken to t = 25. Each time step for the ideal run took
about 9 cpu-seconds, while the time steps for the real runs took about 5 seconds each.
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Thus, the total cpu-time invested (oil DEC Alpha running a 64-bit Fortran code named
mhd2.f) was approximately 2000 cpu-hours and the run-time memory required was 66.4
Mbytes.

9. Numerical Results. First, the initial and time-averaged values, as well as standard
deviations (as percentages of the time averages) of E, HC, A and EM for the ideal run are
given in Table 2.

Integral Initial Time average Std. Dev.

E 1.0000 1.0004 0.02%

He 0.024613 0.024603 0.03%

A 0.031031 0.031031 2x] 0 -' %

EAt 0.50000 0.56045 6.35 %

Table 2. Integral invariants for the ideal run (PM = 0/0); averages from t = 0 to 25.

Upon using the average values in Table 2 for E, HC and A, a minimum for the entropy
defined in equation (59) is found to occur at rP = <EM> = 0.515678. Using (58) then gives
values to the inverse temperatures of a = 1.4371, R = —0.13713, and y = —1.4334. Putting
these values into (52) and (53) allows us to predict the ideal spectra. Ill Figure 1, we
compare these predicted spectra with spectra found ill ideal simulation, at times t = 1
and t = 25. Simulation spectra were found by using (60) and (61), with discrete averaging
done in bands around integer values of k,,: n - '/2 < k„ < n + %z, where k„ = 1, 2, ..., [k"'.]
(here, [z] is the integer part of the real number z).

It is evident in Figure I that the spectra in the ideal run have evolved by t = 25 so as to be
essentially the same as the predicted spectra at high k. However, they differ at low k, and
the question is if and how quickly the low k spectra will collapse to the prediction. Let us
look at Figure 2, where the ratio EK/EM = E/EM — I versus time t is given for the five runs.
For the ideal run (PM = 0/0), this ratio does not appear to be approaching EM = 0.515678,
i.e., log i o(EK lEM) = -0.0272444, but rather is approaching log l o(EK lEM) - -0.0492.

The results shown in Figure 2 for PAI = 0/0 indicate that the low k coefficients may not
evolve into their absolute equilibrium predictions. The value of EM appears to have
become stationary at t = 20, and if we average from t = 20 to 25, we get the results in
Table 3. As before, upon using the average values in Table 3 for E, HC and A, a minimum
for the entropy defined in equation (59) is found to occur at rp= <EM> = 0.515834. Using

(58) then gives values to the inverse temperatures of a = 1.4366, 0 = —0.13699, and y =
—1.4329. Putting these values into (52) and (53) allows us again to predict the ideal
spectra, which does not perceptively differ from that shown in Figure 1. Tile predicted
value <EM> = 0.515834 differs from the time average in Table 3 by more than 10
standard deviations. Thus, there a small but si gnificant departure ill simulation results
from the predictions of the absolute equilibrium ensemble theory [7, 10, 16, 17].
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Figure 1. Predicted and simulated ideal spectra.

Figure 2 indicates that EK IEM increase with decreasing PM, i.e., with increasing rl. Now,
consider the total energy (26a) with respect to time, as shown in Figure 3. The ideal run
(PM = 0/0) has constant energy, as it should, while the real runs decay more quickly the
lower their value of Pm. Thus decay is directly correlated with magnetic diffusivity TI,
rather than with kinematic viscosity v, so that energy loss is primarily ohmic. (In the real
runs, the dissipation wave number (59) was ko - kmax at t ^ 0.5 and ko < kmax otherwise.)

The mismatch between absolute equilibrium ensemble theory and numerical simulation
in ideal MHD turbulence is, again, caused by the broken ergodicity discussed in Section
6.3. Broken ergodicity is clearly manifested in the time behavior of the coefficients a(k)
and w(k) for ideal MHD turbulence. In order to see whether a similar effect appears in
real MHD turbulence, we plot the evolution of a(k) and co(k) for several values of k.

In Figure 4, the time evolution of a(k) for k = (0,1) is presented for all five runs. In
Figure 5, the time evolution of co(k), also for k = (0,1) is shown for all runs. These are the
projections of the phase trajectory onto two-dimensional planes. It is clear that the phase
trajectory is not even approximately symmetric about the origin. The effect is quite
evident for k = 1, though it diminishes for higher k. In Figure 6, the time evolution of cr(k)
(multiplied by k) for k = (1,2) is presented for all five runs, where the projected phase
trajectory does not seem as non-ergodic as for the k = 1 cases. In Figure 7, the time
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evolution of c0(k), also for k = (-2,2) is shown for all runs. In this last figure, the
trajectory appears to flow into a more ergodic-looking shape around the origin. It must be
remembered that these figures show different two-dimensional projections of a phase
trajectory that evolves in a phase space of dimension of 366104 in the ideal run, and a
dimension of 411712 in the real runs. The essential result is that the broken ergodicity
that exists in ideal MHD turbulence also seems to appear in the real case.
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PM = 010, predicted
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Figure 2. Ratio of EK to EM with respect to simulation time.

Integral Initial Time average Std. Dev.

E 1.0000 1.0007 0.004%

Hc 0.024613 0.024593 0.005%

A 0.031031 0.031031 0.000%

EM 0.50000 0.53037 0.252

Table 3. Integral invariants for the ideal run (PM = 0/0); averages from t = 20 to 25.

Another result that appears in Figures 4 — 7 is that the low k modes grow in amplitude,
while Figure 3 shows that total energy is dissipated in the real runs. Thus, we have an
inverse cascade [ 10], in which energy flows to low k modes at the same time it is flowing
to high k modes where it is lost. This can be quantified by plotting modal energy E(k)
versus time, as is done in Figures 8 for E(k), k = 1; in Figure 9 for EM(k), k = 1; and in
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Figure 10, for E(k), k = 5. Figure 8 shows that the energy for k = 1 reaches a stationary
state, while Figure 9 shows that the magnitude at k = 1 is mostly due to magnetic energy.
Figure 10 illustrates the behavior of E(k) for k = 5 (and generally for E(k) with k > 1),
which is to enter a stage of decay by t = 25.
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Figure 3. Total energy E with respect to simulation time.

Figures 4 — 10 suggest that the coefficients a(k) and cu(k) are random variables with non-
zero mean values. To examine this further, rolling time-averages and variances of the real
and imaginary parts of both a(k) and w(k) were kept. Thus, for all coefficients, means
and standard deviations were determined from t = 0 to t = 25. Non-zero mean values give
rise to coherent structure, while variances quantify the random fluctuations within MHD
turbulence. In the same way that complete coefficients determine kinetic and magnetic
energy and spectra, the mean coefficients can be used to find coherent energy and
spectra, and the variances can be used to find random energy and spectra. In Figure 11,
coherent and random energy are plotted for the ideal case PM = 0/0, and compared with
absolute ensemble predictions. There is clear evidence that a significant amount of
coherent energy exists across the whole spectral range, and particularly at low k.
Although a more definitive result for this ideal case requires a considerable extension of
the run with time, definitive results have been found previously in long runs on 32' grids,
where significant amounts of coherent energy and structure were first discovered [32].

The more interesting question at this point is the relevance of ideal results to real MHD
turbulence. As Figures 4 —10 show, there is a high degree of similarity at low k between
the ideal and real runs presented here (where all runs began with essentially the same
initial conditions). We now look at the final energy spectra of these five runs for further
evidence of similar behavior. In Figure 12, we see the real and ideal total energy spectra
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at t = 25, where it is clear that there is great similarity at low k and none at high k. Also,
the Kolmogorov-Obukhov law [14,24] E(k) k•5/3 has been inserted for comparison.
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Figure 4. Evolution of a(k), k = (0, 1), for al I runs.
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Figure 12. Ideal and real energy spectra at i = 25.

10. Conclusion. The representation of MHD turbulence by numerically realized finite
dynamical systems produces intriguing results. The 'broken ergodicity' that exists in
ideal MHD turbulence, and is strongest at low k, appears to have a counterpart in
numerical simulations of real MHD turbulence. In fact, the low k behavior of the ideal
and real runs presented here show a striking level of similarity. At high k, however, the
energy spectra of ideal and real MHD turbulence differ radically. Thus, there is an
apparent dichotomy in the in the transition from zero to non-zero values of v and 11. First,
ideal and real simulations agree well at low k (where ideal simulations do not agree with
absolute ensemble theory due to broken ergodicity). Second, ideal and real simulations
disagree at high k (where the ideal simulation agrees well with absolute ensemble theory).
It seems as if the coefficients co(k) and a(k) at low k are only weakly coupled to the high
k part of the spectrum, in both the ideal and real cases. This, ill provides a
justification for the study of so-called 'large eddy simulations' [29], in which the effects
of high k coefficients are replaced by analytical sub-grid scale models.

The result of varying the magnetic Prandtl number also leads to important insights. First,
energy dissipation in MHD turbulence is primarily ohmic. Second, equipartion of energy
between kinetic and magnetic modes in the real runs occurs at a value of P M such that
0.10 < PM < 0.25, the precise value of which requires extended run times. Lastly, growth
and saturation of the k = 1 modes appears to depend only weakly on Pm.

Although it is natural to extend simulations such as those presented here to significantly
longer run times, the results found in the appear to be robust in light of the evident
stationarity achieved during the latter part of these runs. There is much to be done and
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there are also aspects of MHD turbulence other than those discussed here that can be
profitably studied through numerical simulation. An additional benefit of 2-D MHD
turbulence simulations is that these serve as representatives of 3-1) MHD and Navier-
Stokes turbulence, since these (but not 2-1) Navier-Stokes turbulence) all possess at least
one ideal invariant helicity, and that these numerical studies allow for higher k,,,a, than
possible in 3-D simulations.

While homogeneity is useful theoretical and computational assumptions, physical
systems never truly support homogeneous flows. Nevertheless, The numerically observed
growth and maintenance of coherent structures at the largest wavelengths is a qualitative
feature which may represent a fundamental cause of the tendency of geophysical and
astrophysical systems to spontaneously form large scale vortices or magnetic fields.
Thus, broken ergodicity in MHD turbulence may well hold the key to understanding, for
example, the ubiquitous presence of large scale magnetic fields in our earth, in our sun,
and in other planets and stars.
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