Aerodynamics: The Wright Way

NASA Dryden Flight Research Center

Jennifer Cole
Powered, Controlled Flight: The Wright Understanding

The first “Aerospace Engineers”...

And their invention that changed the world...
The Force Family

The FOUR Forces of Flight....

Thrust → Drag

Lift

Weight
The **Thrust** of an airplane is Newton’s third law in action…

- For every action there is an equal and opposite reaction !!
- Rocket and jet engines produce *thrust* by burning fuel to generate hot gases which are expelled out the back…
What about Gliders…?

Gliders have no engines or propellers! How do they provide thrust?

• Gravity!!

• Gravity provides the acceleration towards the ground, and the glider picks up speed.
Experiment #1

Try it!!
• Stand up
• Hold your glider high
• And just DROP IT!
Lift: What Makes It Work

Lift depends on a few things:

• Wing Shape (airfoil)
• Velocity
• Angle-of-attack
• Altitude
Experiment #2

Try it!!
• Take your piece of paper between your fingers
• Hold it just under your mouth…
• And blow!!!

The paper rises because of the pressure difference YOU created…

Bernoulli’s Principle!
Bernoulli’s Principle

Bernoulli’s Principle says: For any fluid flowing through an area, the smaller the area, the faster the fluid...
Ex: a pinched garden hose

What does this mean???

Faster air creates lower pressure, and slower air creates higher pressure.
Ex: Paper Strip

What does this REALLY mean???

An airplanes’ wing creates lower pressure on top, and higher pressure on the bottom, which results in LIFT !!!
Bernoulli’s Principle

The curve makes the air speed up.

Lower Pressure

Higher Pressure

Lift
Airfoil: The Blueprint for Lift

The shape of the wing is called the airfoil.

A wing can produce more lift by
• speeding up
• changing the shape of the wing (with ailerons)
• increasing angle-of-attack (by ‘pitching up’)
Angle-Of-Attack: Do-It-Yourself

- Lift
- More lift
- Stall and drag...
What about Drag and Weight??

Changes in Drag and Weight affect fuel and velocity and range…
So we have **LIFT** on the wing, plus weight, drag and thrust…

1) How do we **balance** the **forces** on the airplane so it doesn’t fall out of the sky???

Ex: **Balance** your glider on your finger…
Experiment #3

Try it!!

• Try to balance your glider on one finger!!
 – Find the Center of Gravity (CG)!

• Now blow on your glider!
 – Newton’s first law (object at rest tends to stay at rest unless acted upon by an outside force!)
Control: The ‘Center’ of Gravity

First Question: How do we *balance* the **LIFT**??

Answer: With another wing!!
Controlling an aircraft is accomplished by manipulating the Four Forces using the control surfaces.

Control: The ‘Center’ of Gravity

The control surfaces are just smaller wings…
Controlling the Airplane - ROLL

More LIFT

To make the airplane **ROLL** to one side, you **INCREASE** the **LIFT** on one side of the wing using **ailerons**...

With more lift on one wing, and less on the other, the aircraft **ROLLS** towards the weaker side...

Less LIFT

The aircraft is controlled by changing the lift on the wing and tails… The direction of the movement depends on where the cg is...
Experiment #4

Try it!!

• Affix a Post-It note to each wing
 – (left side bent up, right side bent down)

• Now throw your glider!

• Which way did it roll?
Controlling the Airplane - Pitch

The **elevators** control the lift on the **horizontal tail**, and make the nose go up and down...

With less lift on the horizontal tail, the aircraft nose goes UP...

Less LIFT on tail

Nose goes UP
Controlling the Airplane - Yaw

The **rudders** control the **lift** on the **vertical tail**, and make the nose go **left and right**...

The lift on the vertical tail pushes it to the **RIGHT**, and the aircraft nose goes **LEFT**...

Lift moves tail to the **RIGHT**

Nose goes **LEFT**
Enjoy your gliders!

Any questions ???

The Space Shuttle Columbia touches down on lakebed runway 23 at Edwards Air Force Base, Calif., to conclude the first orbital shuttle mission.