Electrostatic Discharge Test of Multi-Junction Solar Array Coupons after Combined Space Environmental Exposures

Kenneth H. Wright¹, Todd Schneider², Jason Vaughn⁷, Bao Hoang³, Victor V. Funderburk³, Frankie Wong³, and George Gardiner³

¹University of Alabama in Huntsville
Huntsville, Alabama 35899, USA

²NASA Marshall Space Flight Center
Huntsville, Alabama 35812, USA

³Space Systems/Loral
Palo Alto, California 94303, USA

A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5 year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.
Electrostatic Discharge Test of Multi-Junction Solar Array Coupons after Combined Space Environmental Exposures

K. H. Wright (UAH)
T. Schneider, J. Vaughn (NASA/MSFC)
B. Hoang, V. Funderburk, F. Wong, G.Gardiner (SS/L)

11th Spacecraft Charging and Technology Conference
Albuquerque, New Mexico, USA
Sept 20 – 24, 2010
A set of multi-junction GaAs/Ge solar array test coupons are currently being subjected to a sequence of 5-year increments of combined environmental exposure tests.

- ESD → UV radiation → electron/proton particle radiation → thermal cycling → ion thruster plume – all at the NASA/Marshall space Flight Center

Further details of this multi-phase test program are discussed in the poster paper entitled “Combined Space Environmental Exposure Tests of Multi-junction GaAs/Ge Solar Array Coupons” by Hoang et al.

Planned Sequence (Phase 2):

- LAPSS
- Bakeout
- LAPSS
- BOL ESD
- 5th-yr ESD
- 5th-yr Xe ion erosion
- 5th-yr thermal cycle
- 5th-yr proton/electron
- 5th-yr UV

Repeat tests until 15th-yr cumulative exposure

More Testing (Phase 3)
Test Coupon Description

- 4 Emcore ATJ cells: 2 strings with 2 cells/string. Cell area = 30.49 cm².
- Coverglass - Qioptiq CMG, 100-μm thick with a single-layer MgF₂ anti-reflective coating.
- Each solar cell assembly (SCA) has a discrete Silicon bypass diode.
- 3 coupons used in test program (designated as A, B, and C)

For Coupon C, this cell is intentionally repaired
ESD Test: Outline

- ESD tests are performed at Beginning-of-Life (BOL), 5-year, 10-year, and 15 year (End-of-Life)
- Uses guidelines from ISO-11221
- Each coupon is tested in the inverted gradient condition (discussed in a later slide)
- Testing with primary arc simulation
 - Limited quantity of arcs through test program motivated by study of SS/L GEO satellites and number of arcs (Cho et al., Number of arcs estimated on solar array of a geostationary satellite, J. Spacecraft and Rockets, Vol. 42, No. 4, July – August, pp. 640-748, 2005.)
 - Two conditions are tested for the differential string voltage: 55 V/0.55 A and 108 V/0.55 A.
ESD Test: Allowable Arc Count

Threshold Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Room Temp</th>
<th>Cold Temp -10C</th>
<th>Cold Temp -40C</th>
<th>Cold Temp -70C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOL ESD</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5th-year ESD</td>
<td>2</td>
<td>2*</td>
<td>2*</td>
<td>2*</td>
</tr>
<tr>
<td>10th-year ESD</td>
<td>2</td>
<td>2*</td>
<td>2*</td>
<td>2*</td>
</tr>
<tr>
<td>15th-year ESD</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

* Only performed if cold testing required each cycle due to arc threshold voltage change at ambient temperature

ESD Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Room Temp</th>
<th>Cold Temp</th>
<th>Room Temp *</th>
<th>Cold Temp *</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOL ESD 54V/0.55A</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>BOL ESD 108V/0.55A</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5th-year ESD 54V/0.55A</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5th-year ESD 108V/0.55A</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10th-year ESD 54V/0.55A</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10th-year ESD 108V/0.55A</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>15th-year ESD 54V/0.55A</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>15th-year ESD 108V/0.55A</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total number over life of testing = 60
Test Setup Description

Vacuum chamber is 2.1 m long by 1.2 m dia. with 4 cryo-pumps → $P < 1 \times 10^{-6}$ Torr

- **Electron Flood Gun**
- **Plasma Source**
- **Cryo-Shroud**
- **Translational And Rotational Stage**
- **Test Coupon**
- **Faraday Cup**
- **2-D Stage**
- **Control Unit**
- **LabView**
- **Test Rack(s) w/circuit**
- **HV Cable Feedthrough**
- **Oscilloscopes**
- **LabView Data Acquisition**

11th SCTC Albuquerque, NM Sept 20 - 24, 2010
Arc Threshold Test Circuit
Arc Threshold Determination

The inverted gradient condition is established by the following:

1) **Apply** -5 kV bias to substrate.
2) **With** TREK probe, verify that coverglass is at -5 kV.
3) **Set** electron beam to 5.9 keV.
4) **Expose** coupon to electron beam flux of 1-2 nA/cm² for a **limited** time.
5) **Measure** coverglass potential with TREK probe.
6) **Set** electron beam energy to 900V higher than the magnitude of the coverglass potential.
7) **Repeat** steps 5-7 until arc occurs.

We are able to control the change in coverglass surface potential by ~ 200 V through this process.
Arc Threshold BOL Results

Coupons A, B, C

Inverted Gradient Voltage (V)

Coupon A

Coupon B

Coupon C

Average Voltage

V = 2904
σ = 378 V

Present limit for cold capability in ESD chamber

11th SCTC Albuquerque, NM Sept 20 - 24, 2010
ESD Test Circuit: Primary Arc Pulse Assumptions

From Hoang et al., Electrostatic discharge test with simulated coverglass flashover for multi-junction GaAs/Ge solar array design, 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, June 20–25, 2010.

Geometry of Coverglass Flashover from the Center of the Solar Array Panel

Assumptions:

1) Coverglass outer surface initially uniformly charged to Voltage (V_c) with respect to solar cell top surface, and discharges by amount deltaV (or V_{th}) during flashover.

2) Flashover current for one panel is assumed to all be collected at a single initiation site.

3) Flashover propagates in a radial surface charge sweep at a constant velocity starting at the initial discharge point.

4) Worst-case peak current is based on complete panel coverglass discharge resulting from a single discharge in the center of the panel. C_{cg} represents the capacitance of the panel coverglass.

5) Flashover terminates at panel edges (R1, R2 and R3) as shown in the figure. Note that $R3 \sim 2$ meters.

\[
I(t) = \frac{dQ}{dt} = \frac{d}{dt} \left(C_{cg} V_{th} A \right)
\]

\[
I(t) = C_{cg} V_{th} \frac{dA}{dt}
\]

where $A = \pi r^2$

\[
I(t) = C_{cg} V_{th} \frac{d}{dt} \left(\pi r^2 \right) = 2\pi C_{cg} V_{th} r \frac{dr}{dt}
\]

where $v = \frac{dr}{dt}$

With the assumption of constant flashover velocity,

\[
I(t) = 2\pi C_{cg} V_{th} v^2 t
\]

Eq. (1)
ESD Test Circuit: Primary Arc Pulse Analysis

From Hoang et al., Electrostatic discharge test with simulated coverglass flashover for multi-junction GaAs/Ge solar array design, 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, June 20–25, 2010.

1) Flashover propagation velocity, \(v = 10^4 \text{ m/s} \)
2) Average measured primary arc threshold voltage of SS/L ATJ array design (~ 2 kV from previous tests)
3) Calculated panel coverglass capacitance
4) Flashover time to R1, R2 and R3 per Figure on Slide 10, based on the SS/L panel geometry

From Eq. (1):

\[I(t_{R1}) = 28.4 \text{ Amps} \]

(Peak current at R1 as shown in Figure on Slide 10)

RLC circuit designed to produce waveform that meets three parameters:
1. Peak current
2. Time to peak current
3. Total charge of the panel coverglass

SPICE model calculation compared with measurement:
If needed, used for sustained arc interruption

Vacuum Chamber

ESD Test Circuit Schematic
Example of Arc: BOL

Coupon B: 108V between strings; Temp = -69°C; ΔV ~ 3200V

No activity detected on String-1

Current through String-2/Cell-1

Current through String-2/Cell-2

Primary Arc Current
Arc Site Summary: BOL

- The count is the **combination of arc threshold and ESD tests**
- Popular arc sites are cell tabs, busbars, and feed-through bushings
- For Coupon C, arc sites favor the reworked cell

No Temporary Sustained Arcs detected during BOL.
5th-year Test: Status

- 5th-year UV, proton/electron radiation, and thermal cycling tests have been completed
 - Inspection has shown various cracks in RTV over tabs and busbars and cracks in the grout between cells. Also, cracks on a few of the cell coverglasses are observed.
5th-year Test: Status (cont.)

- Checkout and verification of an ion source for use in the 5-year Xenon ion erosion test is in work

- A slight alteration in the ESD test plan has occurred – partial ESD testing has been performed on each coupon
 - The arc threshold voltage for each coupon has changed significantly. It is now ~ 200 V!
 - Two arcs at each string differential voltage (55 V and 108 V) have been obtained on each coupon. Arc sites preferentially remain as observed during the BOL testing.
 - The RLC circuit to simulate the primary arc is unchanged from the BOL testing. However, due to the change in threshold voltage the amplitude of the current pulse may be reduced.
Arc at interim 5th-year test point

Coupon B: 108V between strings; Temp = 20 C; ΔV ~ 200V

As shown in CP6 and CP2, no activity detected on String-1!

Current through String-2/Cell-2
Current through String-2/Cell-1
Primary Arc Current
Key Observations

- Post 5th-year combined environmental exposures show hairline cracks in the RTV adhesive grout.
 - Although an ESD event occurred at a string-to-string (or parallel) gap, no Temporary (or Permanent) Sustained Arc was observed.

- The arc threshold voltage dropped by an order of magnitude after the 5th-year combined environmental exposures.
 - Our present conjecture is that this is due to the effect of the combined environmental exposures.
 - If this observation is true in orbit, then the ESD characteristics of the solar array, such as flashover magnitude and arc frequency, can change over the mission life.
Forward Work

- The chamber used for the ESD testing in Phase 2 is also used for ESD testing on another phase of the comprehensive SS/L test campaign involving wire coupons.
- Ion Erosion testing is also slated for this chamber as well.
- Scheduling conflicts are driving completion of the 5th-year ESD testing until this fall (2010).
- 10th- and 15th-year ESD testing is currently planned for early and mid 2011, respectively.

Based on our preliminary observations of our solar array coupon characteristics, there is an apparent need for further research in material properties as a function of combined space environmental exposures.