The water cycle from space:
Use of satellite data in land surface hydrology and water resource management

William Crosson, Charles Laymon, Clay Blankenship, Maudood Khan
Universities Space Research Association at National Space Science and Technology Center
Huntsville, Alabama, USA

Ashutosh Limaye
NASA-Marshall Space Flight Center at National Space Science and Technology Center
Huntsville, Alabama, USA

Brian Hornbuckle and Tracy Rowlandson
Iowa State University
Ames, Iowa, USA

Workshop on Space Technology Applications for Socio-Economic Benefits
Istanbul, 14-17 September 2010
NASA’s Earth Science Mission

…to understand and protect our home planet by using our view from space to study the Earth system and improve prediction of Earth system change.
NASA’s Earth Science Focus Areas

Earth Science Research Foci

• Atmospheric Chemistry and Composition
• Carbon Cycle and Ecosystems
• Climate Variability and Change
• Earth Surface and Interior
• Water and Energy Cycle
• Weather

Earth Science Applications

• Agriculture
• Air Quality
• Climate
• Natural Disasters
• Ecological Forecasting
• Public Health
• Water Resources
• Weather
NASA’s Earth Science Satellite Fleet

20 Operational Missions
6 In Development
5 Under Study
Hydrometeorological Missions - Current

GRACE
2002-2015+
- Provide detailed measurements of Earth's gravity field
- Retrieve changes in groundwater storage

AMSR-E (NASA-JAXA)
2002-??
- On NASA Aqua satellite
- 6 frequencies, 6.9-89 GHz
- C-band subject to serious RFI; higher frequencies used for soil moisture estimation
- Near-daily coverage

SMOS (European Space Agency)
2009-??
- L-band imaging radiometer
- Global observation soil moisture and ocean salinity

TRMM (NASA-JAXA)
1997-??
- Radar, imager, VIS/NIR scanner, lightning sensor
- Estimates rainfall from equator to ~35° N/S
- Hourly - monthly rainfall estimates
Hydrometeorological Missions - Future

Aquarius (NASA/Argentina)

- Expected launch 2011
- L-band radiometer/scatterometer
- Global coverage every 7 days
- Sea surface salinity, sea ice, rain, cloud water
- Map seasonal and inter-annual variations in sea surface salinity

GPM

- Expected launch 2013
- International satellite network
- Global measurement of precipitation, its distribution, and physical processes
- Will improve the accuracy of weather forecasts and understanding of climate

SMAP

- Expected launch 2015
- L-band radiometer/radar
- Global measurement of surface soil moisture and freeze/thaw state.

SWOT

- Expected launch 2020
- Ka-band radar interferometer
- First global survey of Earth's surface water
- Will measure water storage changes in all wetlands, lakes, and reservoirs
- Repeated measurements of water height during floods
Remote Sensing for Land Surface Hydrology

- Flood mapping/damage assessment
- Groundwater changes (GRACE mission)
- Precipitation
- Evapotranspiration
- Irrigation
- Lake and reservoir monitoring; streamflow forecasting
- Wetland mapping
- Soil moisture
1970’s-present: Ground-based sensors

- Field experiments use ground-based radiometers, usually mounted on mobile booms
- Monitor temporal changes in soil moisture at a point
- No spatial mapping
- In situ measurements provide excellent validation

1980’s – present: Airborne sensors

- Airborne radiometers used to map soil moisture at regional scale (~100 km)
- Monitor temporal changes in soil moisture over region via repeated flights
- In situ validation very labor-intensive
2002: AMSR-E

- Measures rainfall, atmospheric water vapor, cloud properties, snow cover, sea ice, sea surface temperature, soil moisture

Future: L-band satellite sensors (SMOS, SMAP, Aquarius)

- Provide soil moisture estimates globally except over densely vegetated regions
- Sensitive to soil moisture in top 3-5 cm
- Algorithms for mitigation/elimination of Radio Frequency Interference (RFI) being developed
Estimation of soil moisture using remote sensing typically relies on microwave radiometers (passive) and radars (active).
- Active RS gives better spatial resolution.
- Passive RS is more sensitive to soil moisture with fewer confounding factors.

Lower frequencies (L-band) allow more robust retrievals but introduce engineering problems (larger antenna required to achieve same spatial resolution as higher frequencies).

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency (GHz)</th>
<th>Wavelength (cm)</th>
<th>Penetration depth (cm)</th>
<th>Sensitivity to vegetation</th>
<th>RFI contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1.4</td>
<td>21.3</td>
<td>3-5</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>C</td>
<td>6.9</td>
<td>4.3</td>
<td>1.0 – 1.5</td>
<td>High</td>
<td>Very high</td>
</tr>
<tr>
<td>X</td>
<td>10.7</td>
<td>2.8</td>
<td>0.5 - 1.0</td>
<td>Very high</td>
<td>High</td>
</tr>
</tbody>
</table>
Assimilation of Soil Moisture in a Land Surface Model

- Modeled fractional soil water content for Little Washita River watershed, Oklahoma, USA
- ‘Updates’ performed by assimilating aircraft microwave observations at different intervals
- More frequent updates result in more accurate soil moisture mapping