ISS Plasma Environment:
Status of CCMC Products for ISS Mission Ops

Dr. Joseph I Minow
NASA/ Marshall Space Flight Center
EV44/Natural Environments Branch
GSFC Space Weather and NASA Robotic Missions Workshop
15 September 2010
ISS Space Weather Needs*

• Solar activity/thermosphere density prediction and satellite torque/drag predictions for:
 – Mission planning and controllability/real-time operations
 – MM/OD environment evolution

• MSFC meteor storm severity predictions driven by the Perseids on Mir events of 12 August 1993

• Role of solar/geomagnetic activity/thermosphere in managing ISS crew ionizing radiation dose exposure

• ISS interaction with auroral particle precipitation – why this isn’t a problem or do we need forecasting?

• Monitor for changes in the SAA altitude structure and geographic extent for crew IR dose management

• Ionospheric Ne, Te values along ISS orbit for characterizing ISS charging hazards:
 – Near real time Ne, Te data
 – Well validated real time model Ne, Te output

*from S. Koontz/ISS Environments Manager
Introduction

Overview

• Background
 – ISS interaction with plasma environment
 – Charging hazards to vehicle and crew
 – ISS Program hazard mitigation strategies
• ISS plasma environment monitoring
 – Floating Potential Measurement Unit (FPMU)
• CCMC CTIPe real time plasma model
 – Examples of success
 – Issues in work
• Summary and future needs

ISS/FPMU: JSC Steve Koontz (ISS Environments Lead), John Alred, Jack Bacon
 MSFC Mike Chandler, Victoria Coffey, Joseph Minow, Paul Craven,
 Todd Schneider, Ken Wright (UAH)
 Boeing Drew Hartman, Leonard Kramer, Ron Mikatarian, Danny Schmidl
CTIPe model: NOAA Tim Fuller-Rowell
CCMC team: GSFC Ja Soon Shim (UMBC/NASA), Lutz Rastaetter (NASA),
 Masha Kuznetsova (NASA)

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
ISS Structure Potential Variations and Hazards

• ISS potential varies in low Earth orbit environment due to:

 Current collection
 – Current collection from ambient plasma
 – 160 V US solar array
 – Visiting vehicle (high voltage) solar arrays
 – Operation of payloads that emit current sources

 Observed Voltage Ranges to Date
 - 0.1 to -0.5 volts
 -20 to -90 volts
 -10 volts
 +10 to +25 volts

 Inductive potentials
 – \((vxB) \cdot L\) due to motion across geomagnetic field
 – \(E \cdot L\) due to ionospheric electric fields
 – Auroral electrons

 +/-40 volts
 few volts
 -20 volts

• Hazards to vehicle and crew

 – ISS-EVA-305: long term degradation of thin dielectric surface thermal control coatings due to arcing ...EVA touch temp violations (eventually)
 ▪ Hazard marginalized by test and analysis - no controls needed

 – ISS-EVA-312: EVA electric shock
 ▪ Hazard 1 - Catastrophic at floating potentials more negative than -40V
 ▪ Hazard 2 - Critical to catastrophic at positive floating potentials (> 0V)
 ▪ Hazard 3 – critical to catastrophic ISS electrical power short through EVA crew to ground
 – Plasma is a secondary cause – one circuit closure pathway
ISS Plasma Hazard Management

ISS Program controls plasma hazards through a process of active potential control, operational mitigation strategies, environment monitoring and characterization, and probabilistic risk assessment.

- **Plasma Contactor Units (PCUs)**
 - Provides active ISS “ground” by dissipating surface charges to space
 - Two redundant PCU units provides single fault failure tolerance, two required for EVA

- **Operational control using ISS flight attitude, solar array wing angle, and solar array shunt state**
 - Manages solar array and magnetic induction charging
 - Provides two fault tolerance

- **Floating Potential Measurement Unit (FPMU)**
 - Provides validated measurements of ISS floating potential and ionospheric Ne, Te along ISS orbit

- **Plasma Interaction Model (PIM)**
 - ISS charging model validated with FPMU data
 - Predicts charging hazard severity and frequency of occurrence

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
Floating Potential Measurement Unit (FPMU)

FPP: Floating Potential Probe

WLP: Wide-sweep Langmuir Probe

NLP: Narrow-sweep Langmuir Probe

PIP: Plasma Impedance Probe

Role:
- Validation of PIM
- Assess PV array variability
- Interpreting IRI predictions
- Characterize ISS charging

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Measured Parameter</th>
<th>Rate (Hz)</th>
<th>Effective Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPP</td>
<td>V_F</td>
<td>128</td>
<td>-180 V to +180 V</td>
</tr>
</tbody>
</table>
| WLP | N, T_e, V_F | 1 | 10^9 m$^{-3}$ to $5 \cdot 10^{12}$ m$^{-3}$
 | | | 500 K to ~10000 K
 | | | -20 V to 80 V |
| NLP | N, T_e, V_F | 1 | 10^9 m$^{-3}$ to $5 \cdot 10^{12}$ m$^{-3}$
 | | | 500 K to ~10000 K
 | | | -180 V to +180 V |
| PIP | N | 512 | $1.1 \cdot 10^{10}$ m$^{-3}$ to $4 \cdot 10^{12}$ m$^{-3}$ |

[Wright et al., 2008; Barjatya et al., 2009]
Characterizing ISS Environments, Charging

(V_{ISSxB})*L

eclipse exit charging

equatorial charging

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
Alternative Ne, Te Data and/or Model Sources

We have in-situ FPMU Ne, Te measurements along ISS orbit…
…but we are interested in identifying independent Ne, Te data sources from both measurements and models appropriate for ISS altitudes

- FPMU validation against independent measurements, models
 - Incoherent scatter radar Ne, Te, ionosonde Ne, TIMED/GUVI Ne
 - IRI, GAIM model Ne, Te

- FPMU data unavailable during EVA, docking, and other operations with higher Ku band video downlink priority
 - Real time data, models may be useful to provide coverage during these periods

- FPMU operated on campaign basis (~25 to 30% of year)
 - Well validated models or alternate data sources can provide environment characterization data between FPMU runs

- Contingency planning in case of FPMU failure
 - Default to current “worst case” analysis for EVA planning…but that impacts ISS power availability
 - Alternative data, validated models could provide operations relief to power constraint
CCMC Real-time Ionosphere Ne, Te for ISS

Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) Model

- CCMC implemented real time CTIPe model in spring 2010 (CTIPe_RT) with output specific for ISS orbit
- ISS ephemeris from GSFC/SSCWeb
- New record every 10 minutes gives 90 minutes of data at 5 sec time steps

-70 min from file epoch to +20 min

CTIPe_at_ISS_20100909_192000.txt

Data printout from CCMC-simulation: version 1.1
Data type: CTIP ionosphere/thermosphere
Run name: 2010-09 Missing data: -1.100E+12
Coordinate System: GEO
fixed dipole tilt angles used: SM-GSM: 0.00000 GSM-GSE: 0.00000
Satellite Track: iss
Output data: field with 1x1081=1081 elements
YYYYMM DD HH MM Sec lon lat IP N_e N_O+ N_H+ T_i T_e
year month day h m s [deg] [deg] [km] [m^-3] [m^-3] [m^-3] [K] [K]
2010 09 09 17 50 0.000 254.4 -9.250 351.5 7.522E+11 7.501E+11 2.108E+09 1125. 1828.
2010 09 09 17 50 5.000 254.6 -8.994 351.5 7.494E+11 7.473E+11 2.089E+09 1125. 1831.
2010 09 09 17 50 10.000 254.8 ... 1.947E+09 1120. 1848.
2010 09 09 17 50 45.000 256.1 -6.947 351.0 7.151E+11 7.132E+11 1.927E+09 1119. 1850.

---------------- (records deleted) ------------------------

2010 09 09 19 20 0.000 227.5 -14.02 352.8 3.634E+11 3.621E+11 1.289E+09 989.1 1710.

Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) Model

- CCMC implemented real time CTIPe model in spring 2010 (CTIPe_RT) with output specific for ISS orbit
- ISS ephemeris from GSFC/SSCWeb
- New record every 10 minutes gives 90 minutes of data at 5 sec time steps

-70 min from file epoch to +20 min

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
CTIPe_RT output at CCMC:

Integrated Space Weather Analysis System (iSWA)
http://iswa.gsfc.nasa.gov/iswa/iSWA.html

Anonymous ftp
ftp://hanna.ccmc.gsfc.nasa.gov/

CTIPe Model Description:

MSFC is evaluating CTIPe_RT for possible ISS ops use:

• Periodically download text output files and process into daily data sets retaining the unique records

• Compare CTIPe_RT Ne, Te with measurements from FPMU

• This is a work in progress, both for ISS and CCMC! Only preliminary results shown here…

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
Good CTIPe_RT/FPMU Comparison

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
Less Good CTIPe_RT/FPMU Comparison

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
Poor CTIPe_RT/FPMU Comparison

ISS/FPMU 2010/05/15 (2010/135)

FP (volts)

Ne (#/m^3)

Te (K)

Lat (deg)

Lon (deg)

Hour (UTC)

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
Incorrect CTIPe_RT ISS Ephemeris Issue

MSFC FPMU analysis software
- ISS ephemeris generated from NORAD TLE’s using Satellite Tool Kit (STK) software is consistent with ISS/FPMU data

CCMC real time model
- CTIP output based on incorrect ISS ephemeris obtained from SSCWeb for complete 2010/165 – 168 ISR World Day campaign
- CCMC considering options for robust orbit generation tools for real time model support

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
ISS environments teams are investigating vehicle charging observed at eclipse exit.

CTIPe_RT model confirmed physical origin of the plasma depletions for charging events observed at high latitudes, allows us to predict periods for studying charging phenomenon.

Normal charging (NC) events observed at eclipse exit.

Rapid charging (RC) events observed when eclipse exit occurs in low density plasma troughs.

Normal charging (NC) events observed at eclipse exit.

Rapid charging (RC) events observed when eclipse exit occurs in low density plasma troughs.
FPMU Data Unavailable During EVA

RS EVA 25
No FPMU data

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010
Summary and Future Needs

• ISS Program currently using FPMU Ne, Te in-situ measurements to support operations and anomaly investigations
 – Working to acquire alternative data sources if FPMU is not available

• Work is progressing on CCMC tools for low Earth orbit ionosphere characterization
 – Validation against FPMU data required before model output can be used for ISS operational support
 – MSFC plans to continue comparing CTIP output during FPMU campaigns
 – Results to date have been useful in identifying ionospheric origins of high latitude charging environments

• CTIPe-RT model issues to be addressed before using output for ISS ops:
 – Accuracy initial evaluation showing discrepancies with FPMU data
 – Operational reliability 24/7 availability to support ops orbit propagator issues (accuracy, availability)

• Preliminary results to date focused on model implementation
 • Forward work will emphasize quantitative CTIP, FPMU Ne, Te comparisons
 • CCMC personnel are very responsive in discussing options and addressing needs!

• Future needs:
 – Implement CTIPe_RT output for ISR, ionosonde sites
 • Provide additional data for validating CTIP output
 • Support validation of real time data to supplement FPMU output
 – Implement assimilative ionosphere models (e.g., GAIM)
 • Models constrained by Ne, Te data better for operations support, anomaly investigations

joseph.i.minow@nasa.gov, GSFC SW and NASA Robotic Missions Workshop, 15 Sep 2010