Significant Incidents and Close Calls in Human Spaceflight

A Product of the JSC S&MA Flight Safety Office

The Significant Incidents and Close Calls in Human Spaceflight graphic is primarily focused on human spaceflight incidents that have occurred while a crew was aboard a space vehicle. It includes suborbital, orbital, and lunar missions. The two ground facility events and two atmospheric flight events are included due to the significance of the events to spaceflight. The pressurized chamber fire in Russia occurred prior to the loss of the Apollo 1 fire in 1967 and could have served as a lesson learned had it been known in the US. The EMU fire resulted in the redesign of the EMU and heightened awareness of design and materials selection for man-rated systems using a fire environment. The MSL/PFMA landing事故 occurred during the development of the space shuttle and yielded human engineering lessons learned. The CST-100 accident is the highest and fastest vehicle breakup on record that was survivable and it represents the demonstrated level of crew survivability with currently fielded technologies. Note: This document is still in progress. It is continuously under review and frequently updated. Please direct comments and questions to the Flight Safety Office contacts at right.
Subsystem Safety Engineering Through the Project Life Cycle

<table>
<thead>
<tr>
<th>Work Authorization</th>
<th>MDR</th>
<th>SRR</th>
<th>PDR</th>
<th>CDR</th>
<th>TRR</th>
<th>ARR</th>
<th>ORR</th>
<th>System Delivery</th>
<th>PPRs</th>
</tr>
</thead>
</table>

Pre Phase A & Phase A Formulation
- Concept Development
 - Feasibility Studies
 - Trade Studies
 - Preliminary Hazard Analysis
 - Reliability Assessment
 - Criticality Assessment

Phase B Definition

System Definition
- S&MA Requirements
 - Safety Reliability Maintainability Quality Supportability
 - Specifications & Standards
 - Program or Project Plans
 - PQA
 - RIDs

Prototype & Prelim Design
- Requirements Analysis
 - Safety Data Package
 - FMEA
 - Drawings
 - Verification Plans
 - Prototype Concept
 - Analysis & Candidate Selection List
 - PQA
 - QA Audit
 - RIDS

Phase C Design

Fabrication
- Safety Data Package
 - FMEA
 - Drawings
 - Verification Plans
 - PQA
 - QA Audit
 - Haz Analysis
 - Sust. Eng. Plan
 - Design Analysis Report
 - PQA
 - QA Audit
 - RIDs

Phase D – Development

Integration & System Test
- System Test Report
 - Certification Data Package
 - Final Safety Data Package
 - FMEA/CIL
 - Verification & Validation
 - QA Audit
 - PRACA
 - PQA
 - GIDEP ALERTS

Phase E – Operations

Deployment & Acceptance
- Configuration Items
 - Acceptance Data Packages
 - GIDEP ALERTS
 - Lessons Learned
 - MCRs
 - QA Audit
 - PRACA
 - RIDs

Operation & Maintenance
- Change Requests
 - Problem Resolution
 - Training
 - Flight Rules & Procedures
 - CoFR
 - Mission Operations
 - SPIT

Retirement/Disposal
- Retirement Plan
 - System Closeout Report
 - Materials Disposition Report
 - Lessons Learned

Risk Management

- Preliminary Hazard Analysis
 - Integrated Hazards Analysis
 - Subsystems Hazards Analysis
 - Element Hazards Analysis
 - Human Factor Analysis
 - S/W Hazards Analysis
 - Hazard Report Development

Hazards Report Maintenance/ Risk Analysis
The Risk Informed Design Process

- The process is a continuous process throughout the lifecycle of the Project
- At each design and verification cycle, work to reduce the risk drivers
 - Focus on the Top Drivers to maximize impact
- When new drivers emerge (new cycles) as Top Drivers, work those drivers
- Key decision points emerge at various program milestones (e.g. Achievability)

NASA Risk informed Design Process
- Use of PRA, Hazard Analysis, and FMEA
- Use of engineering judgment and analysis
- Use of Operational judgment and analysis

Start with a Baseline Design

Initial Analyses

Review/Validate Analyses (Includes all stakeholders)

Identify set of Risk Drivers for the vehicle based on analyses

Update analyses

Update the Design (using the RID to influence design/test/Operational decisions)
Types of NASA Hazard Analysis

- Preliminary Hazard Analysis
- Subsystem Hazard Analysis
- Element Hazard Analysis
- Operating and Support Hazard Analysis
- Software Hazard Analysis
- Integrated Hazard Analysis
- Functional Hazard Analysis
The PHA is the initial effort in hazard analysis during the early design phases that identifies top level hazards and controls, provides a first look at the system risk, and provides the foundation for future analyses. It is based on the best available data. Sources for data include but are not limited to: system description documents, system diagrams, mission descriptions, operational concepts, functional analysis/architecture documents, Functional Flow Block Diagrams (FFBDs), mishap data from similar systems, and lessons learned from other projects. The PHA identifies and evaluates the hazards and hazardous events associated with the proposed design or functions for potential hazard severity, probability, time of exposure, and hazard classification. Design controls, software controls, operational controls and other actions needed to eliminate hazards or reduce the risk to an acceptable level should be considered and documented.
Hazard Analysis Process

- Identify hazardous conditions, events or states
- Identify the effect of the hazardous state
- Identify severity of the effect
- Identify all potential causes of the hazardous states
- Identify controls for each of the hazard causes
- Identify likelihood of each cause
- Identify verification strategies for the controls
- Track verification to closure
Identify Hazardous Conditions

- Basically this is a brainstorming exercise!
- What is inherently dangerous about the operation of your system?
 - Standard hazard lists
 - Historical experience/documentation from legacy systems
 - Your engineering training and experience
Consider all Interfaces

My Subsystem

Other Sub-systems
Example

- ISS Crew Transport Mission
 - Launch a crew to the International Space Station
 - Stay docked to the Space Station for 6 months
 - Return the crew to Earth and land in the water
Work a Preliminary Hazard List

• Identify the hazards for this mission.
NASA Generic Hazards List

- Collision or Impacts
- Loss of Control
- Contamination
- Corrosion
- Electrical Discharge/Shock
- Environmental/Weather
- Temperature Extremes
- Gravitational Forces
- Electromagnetic Interference
- Radiation
- Explosion
- Fire/Overheat
- Flight Termination Systems

- Implosion/Loss of Pressure
- High Pressure Sources
- Loss of Structural Integrity
- Mechanical
- Loss of Critical Function
- Loss of Safe Return Capability
- Loss of Habitable Environment
- Pathological/Physiological/ Psychological
- Inadequate HF Engineering
- Lasers
- Utility Outages
- Common Cause Failures
• Hazard analysis results in the identification of risks and the means of controlling or eliminating them. Hazard analysis also quantifies the risk for the Program/Project Manager.
Final Thoughts

• Hazard analysis is structured process to
 – Identify risk
 – Classify risk
 – Manage risk

• Hazard analysis is not an exact science
 – Relies on engineering expertise and engineering judgment
 – Requires rationale to justify hazard classification

• Hazard analysis is an important tool in
 – Design Process
 – Requirements Validation
 – Risk Management