Fluidic Injection for Jet Noise Reduction

Brenda Henderson
NASA Glenn Research Center

Investigations into fluidic injection for jet noise reduction began over 50 years ago. Studies have
included water and air injection for the reduction of noise in scale model jets and jet engines and water
injection for the reduction of excess overpressures on the Space Shuttle at lift-off. Injection systems
have included high pressure microjets as well as larger scale injectors operating at pressures that can be
achieved in real jet engines. An historical perspective highlighting noise reduction potential is presented
for injection concepts investigated over the last 50 years. Results from recent investigations conducted
at NASA are presented for supersonic and subsonic dual-stream jets. The noise reduction benefits
achieved through fluidic contouring using an azimuthally controlied nozzle will be discussed.
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First Patent — Lilley (1961)

July 4, 1961 G. M. LILLEY | 2,990,905

JET NOISE SUPPRESSION MEANS

Filed May 8, 1958

Reduction of jet noise through
s — Enhanced mixing

— Restricted formation of large
eddies
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What Have We Learned?
Air and Water

* Penetration into primary jet is a function of momentum ratio

* High pressure microjet systems are more effective at reducing
noise than low pressure systems with larger injectors

— High pressure systems — usually operate above 300 psia
— No strict definition of ‘microjet’

Low Pressure Large
Injector System

MICI’Ojet System



What Have We Learned?
Water

* Reduces jet velocity through momentum
transfer

* Reduces jet temperature through evaporation
* Modifies turbulence

« Often more effective at reducing noise in cold
jet than in hot jets

« Effectively reduces overpressures in Shuttle
lift-off environment — MFR can be > 100%
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What Have We Learned?

Air
* Counter-rotating vortices are created in primary jet
— Alters mixing characteristics of primary jet

— Alters turbglence of primary jet

p
xD=1 A i,

Microjet Injection
Alkislar, M. B., Krothapalli, A., and Butler, G. W. (2007), “The

effect of streamwise vortices on the aeroacoustics of a Mach
0.9 jet,” J. Fluid Mech. 578, 139-169. 1



What Have We Learned?

Air
* Reductions in low frequency noise can be

offset by increases in high frequency noise
for dual stream jets

* 1 EPNdB - studies limited

 Limited studies conducted for dual stream
supersonic jets

Henderson, B. (2009), “Fifty years of fluidic injection for jet noise
reduction,” Int. J. of Aeroacoustics 9, 91 — 122.
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Overview

« NASA'’s acoustic measurements since 2002
on air injection

Subsonic dual-stream jets\
» Generation | nozzles

__* Generation Il nozzles

With Goodrich
Aerostructures
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* Enhanced mixing shortens potential core and reduces
low frequency acoustic radiation
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Fluidic Chevrons
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Low Speed Aeroacoustics Wind Tunnel
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Gen | Nozzles

« Common plenum

« Exhaust slots

* No control over flow angle
 Thick trailing edges

* Inflow and alternating nozzles
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Generation | Noise Characteristics

* Low frequency reductions offset by high
frequency increases on an EPNL basis
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Generation Il Nozzles

Gen Il Nozzles

« Common plenum
 Contoured channels

 Exhaust slots near nozzle
trailing edges

 Thin trailing edges between
injection ports

« All 6 inflow injectors

» Steep & shallow
« Short & long
 Perforated
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* Increasing IPR reduces low frequency noise and
increases high frequency at small observation angles
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Comparison with Generation | Nozzles

SPL (dB)

Improved Acoustic

Characteristics

« Controlled injection angle

* Thin nozzle trailing edges

 Controlled injection location
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Comparison with Mechanical Chevrons[i®
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80 Hz
6 = 134°

3160 Hz
6=90°

Noise Reduction Approach

* Decrease low frequency noise
with increased perpendicular
velocity

 Control high frequency noise with
reduced perpendicular
momentum

25




Overview

« NASA'’s acoustic measurements since 2002
on air injection
o R

N\ o
— Supersonic jets — Generation |l and Il
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Supersonic Fan, Transonic Core—-Gen I
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Increasing IPR

« Has no impact on broadband
shock noise

« Slightly reduces noise at
peak jet noise angle
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Generation lll Nozzle

Azimuthally Controlled

* 8 Inflow injectors

— 4 pairs independently controlled g|

 No common plenum

Gen Il

Line 1

Line 2

Line 3

Line 4

Gen ll [Gen 1l

Higher Mass Flow ®
Steeper Injection Angle °
Greater # of Injectors °
Azimuthal Control °
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Effect of Azimuthal Control

* One injection
line needed for
significant shock
noise reduction

* Some mixing
noise reduction
with four lines
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Injection near pylon
reduces shock noise
more than injection at
other azimuthal locations
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Equal Mass Injection
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Equal Mass Injection
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Supersonic Fan, Transonic Core—Gen IIE£
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Subsonic Dual Stream — Gen |l
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Subsonic Dual Stream — Gen Il
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Supersonic Fan, Transonic Core-Gen Il
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Conclusions

* Noise reduction in subsonic dual-stream jets
— Control injection angle and location
— Control nozzle trailing edge thickness
* Noise reduction in single stream supersonic jets

— Broadband shock noise controlled with
moderate injection pressure

— Higher pressures are required for mixing noise
reduction

* Noise reduction in dual-stream supersonic jets
— Limited reduction possible with core injection
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