NASA Glenn PSL-3&4 Control System Upgrade

by

Paul J Lizanich
Tech Lead Electrical Engineer of the PSL Jet Engine Test Facility

Summary:

An overview of the PSL-3&4 Jet Engine Test Facility control system; including its history, a description of the present effort to upgrade from Emerson Ovation v2.2 to V3.3.1, and future upgrade plans.
NASA Glenn PSL-3&4 Control System Upgrade

Paul J Lizanich
Background

Facility originally constructed with panels containing pushbuttons, switches, loaders, and controllers.
Background - WDPF

In 1990 a WDPF (Westinghouse Distributed Process Family) control system was installed in PSL.
Background - WDPF

Similar systems were also installed in the IRT, 8x6, 9x15, and 10x10 wind tunnels.
Background - WDPF

The WDPF systems included state-of-the-art 8 color graphics on WEStation operator consoles with bulky CRT monitors and chiclet keyboards.
Background - WDPF

The WDPF system contained OCR-161 controllers and large Q-line I/O cards.
Ovation Evolution

Ovation supports a wide variety of industry standard platforms, operating system, and network architectures; permitting incremental or discrete evolutions of each system as needed.
Background – Ovation v2.2

In the early 2000s, WDPF evolved into the Ovation product line. NASA Glenn migrated from WDPF to Ovation v2.2 starting in 2002.
Current Ovation Configuration

• NASA Glenn’s major aeronautical facilities today:
 – Ovation v2.2
 – OCR-161 processors
 – AutoCAD control sheets
 – Win2k engineering and operator PCs
 – Windows NT servers
 – Historian

• The goal is to modernize the facilities around testing and budgetary constraints.
Ovation Improvements since v2.2

Ovation v3.0 and above recommends upgrade to OCR400 processor. Ovation v3.0 enables Q-line to Ovation I/O migration.
Ovation Improvements since v2.2

Ovation 3.1 and above requires migration from AutoCAD control sheet drawings to Emerson’s eCAD drawings.
Other Ovation Improvements Since v2.2

• HART (Highway Addressable Remote Transducer) protocol devices require Ovation 2.3 and above

• Ovation 3.3.1 runs on Win 7 or XP operator stations, and Windows Server 2008 or 2003 server class machines
Ovation Upgrade

• Emerson has a process called Evergreen for the migration of older WDPF or Ovation systems to the up-to-date versions of Ovation.
 – DPU upgrade from OCR161 to OCR400 controllers
 – Control sheet change from AutoCAD to eCAD
 – MMI/PC upgrades to Windows7 (or WindowsXP)
 – Server upgrades to Windows Server2008 (or 2003)

• Emerson Q-line I/O twilight
 – Q-line I/O is scheduled to be dropped from Ovation SureService support in 2018
 – Emerson has an upgrade path for Q-line I/O card replacement which does not require any field wiring changes
Ovation Upgrade

• There are two differing approaches being taken based upon schedule and budget
 – Incremental approach
 • Phase I - Evergreen
 – v2.2 to v3.3.1
 – OCR-161 controller to OCR-400
 – AutoCAD to eCAD
 – Win2k to Win7
 • Phase II – I/O Migration
 – Q-line to Ovation line I/O
 – All at once approach
Ovation v3.3.1 Migration Plan

- NASA Glenn has adopted a multi-year plan to upgrade all four major facilities
 - 2010
 - PSL Evergreen
 - 2011
 - IRT Evergreen and I/O card migration
 - 2012
 - PSL I/O card migration
 - 2013+
 - 8x6/9x15
 - 10x10
Verification Plans

- Each facility will perform an Ovation system Validation Plan as part of the Evergreen process
 - Prudent due to control sheet changes
 - Validation Plan includes
 - Subsystem checkout
 - Integrated subsystems test
 - Full facility operation
- Each facility will perform end-to-end checks and subsystem checkouts as part of I/O card replacement
 - To ensure all I/O connectors to the field have been properly connected to new I/O cards
PSL Ovation Network Configuration
PSL Ovation Controller Upgrade

• Fully redundant controller pair
 – Dual Intel processors
 • PCI bus structure
 • Up to five process control tasks each with different loop execution rate
 • 128MB Flash & 128MB RAM
 • Four 10/100MB Ethernet NIC ports
 – Dual network interfaces
 – Dual processor power supplies
 – Dual I/O power supplies
 – Dual auxiliary power supplies
 – Dual input power feeds
 – Dual I/O interfaces
Ovation 3.3.1 I/O Limits

- **I/O capacity**
 - Local I/O
 - Two sets of 8 branches of 8 Ovation I/O modules
 - Two nodes of 4 crates of 12 Q-line cards
 - Remote I/O
 - Eight remote nodes of 8 branches of 8 Ovation I/O modules
 - Eight remote nodes of 48 Q-line cards
DPUs 1/51, 2/52, & 3/53

- DPUs 1/51:
 - PSL3/4 Exhaust Control
 - Turbo Expander Air
 - Heater Engine Air
 - Temperature Control

- DPUs 2/52:
 - PSL3 Inlet Control
 - PSL3 Bypass Air Control
 - Damit Valve (PSL3/4 Exclusion)

- DPUs 3/53:
 - PSL4 Inlet Control
 - PSL4 Bypass Air Control
 - CCE Cold Air Isolation Valves

- Input Types:
 - Analog Input
 - Discrete Input
 - TC Input
 - 120VAC Output
 - Analog Output

- RTD Input
DPUs 5/55 & 6/56

- DPUs 5/55
 - Cell Cooling Air Control
 - PSL4 -80 Combustion Air Control
 - Dry Air/GN2 System

- DPUs 6/56
 - Cooling Tower Water Supply
 - Cooling Tower Water Return

- Analog Output
- Analog Output
- Analog Output
- Analog Output
- Analog Input
- Analog Input
- Analog Input
- Analog Input
- RTD Input
- TC Input

- Relay Output
- 120VAC Output
- 120VAC Output
- 120VAC Output
- Discrete Input
- Discrete Input

- Analog Output
- Analog Output
- Analog Output
- Analog Output
- Analog Input
- Analog Input
- Analog Input
- Analog Input
- RTD Input
- TC Input

Schedule

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>41 days</td>
<td>Fri 8/27/10</td>
<td>Fri 10/22/10</td>
</tr>
<tr>
<td>- Application software freeze</td>
<td>0 days</td>
<td>Thu 9/9/10</td>
<td>Thu 9/9/10</td>
</tr>
<tr>
<td>- Delivery of application to Emerson</td>
<td>0 days</td>
<td>Thu 9/9/10</td>
<td>Thu 9/9/10</td>
</tr>
<tr>
<td>- Control sheet migration</td>
<td>26 days</td>
<td>Fri 8/27/10</td>
<td>Fri 10/1/10</td>
</tr>
<tr>
<td>- Control sheet preliminary PDF deliver</td>
<td>0 days</td>
<td>Mon 10/4/10</td>
<td>Mon 10/4/10</td>
</tr>
<tr>
<td>- Control sheet parameter check</td>
<td>15 days</td>
<td>Mon 10/4/10</td>
<td>Fri 10/22/10</td>
</tr>
<tr>
<td>- Control sheet final delivery</td>
<td>0 days</td>
<td>Fri 10/22/10</td>
<td>Fri 10/22/10</td>
</tr>
<tr>
<td>Hardware delivery</td>
<td>6 days</td>
<td>Fri 10/15/10</td>
<td>Mon 10/25/10</td>
</tr>
<tr>
<td>- DPU</td>
<td>0 days</td>
<td>Fri 10/15/10</td>
<td>Fri 10/15/10</td>
</tr>
<tr>
<td>- Network switches</td>
<td>0 days</td>
<td>Fri 10/15/10</td>
<td>Fri 10/15/10</td>
</tr>
<tr>
<td>- PCs and servers</td>
<td>0 days</td>
<td>Mon 10/25/10</td>
<td>Mon 10/25/10</td>
</tr>
<tr>
<td>Installation</td>
<td>18 days</td>
<td>Mon 11/1/10</td>
<td>Wed 11/24/10</td>
</tr>
<tr>
<td>- Factory Acceptance Test</td>
<td>5 days</td>
<td>Mon 11/1/10</td>
<td>Fri 11/5/10</td>
</tr>
<tr>
<td>- Hardware Installation</td>
<td>5 days</td>
<td>Mon 11/8/10</td>
<td>Fri 11/2/10</td>
</tr>
<tr>
<td>- Software cleanup</td>
<td>8 days</td>
<td>Mon 11/15/10</td>
<td>Wed 11/24/10</td>
</tr>
<tr>
<td>System Validation</td>
<td>45 days</td>
<td>Mon 11/29/10</td>
<td>Fri 1/28/11</td>
</tr>
<tr>
<td>- Support Systems</td>
<td>15 days</td>
<td>Mon 11/29/10</td>
<td>Fri 12/17/10</td>
</tr>
<tr>
<td>- Air/Exhaust Systems</td>
<td>15 days</td>
<td>Mon 1/3/11</td>
<td>Fri 1/21/11</td>
</tr>
<tr>
<td>- Cold Pipe Test</td>
<td>4 days</td>
<td>Tue 1/25/11</td>
<td>Fri 1/28/11</td>
</tr>
</tbody>
</table>
Questions?

Contact Info:

Paul J Lizanich
Tech Lead Electrical Engineer of the PSL Jet Engine Test Facility
Sierra Lobo, Inc.
21000 Brookpark Road MS 125-1
Cleveland, OH 44135
216.433.5724
paul.j.lizanich@nasa.gov