Summary:

An overview of the PSL-3&4 Jet Engine Test Facility control system; including its history, a description of the present effort to upgrade from Emerson Ovation v2.2 to V3.3.1, and future upgrade plans.
Background

Facility originally constructed with panels containing pushbuttons, switches, loaders, and controllers.
Background - WDPF

In 1990 a WDPF (Westinghouse Distributed Process Family) control system was installed in PSL.
Background - WDPF

Similar systems were also installed in the IRT, 8x6, 9x15, and 10x10 wind tunnels.
Background - WDPF

The WDPF systems included state-of-the-art 8 color graphics on WEStation operator consoles with bulky CRT monitors and chiclet keyboards.
Background - WDPF

The WDPF system contained OCR-161 controllers and large Q-line I/O cards.
Ovation Evolution

Ovation supports a wide variety of industry standard platforms, operating system, and network architectures; permitting incremental or discrete evolutions of each system as needed.
Background – Ovation v2.2

In the early 2000s, WDPF evolved into the Ovation product line. NASA Glenn migrated from WDPF to Ovation v2.2 starting in 2002.
Current Ovation Configuration

• NASA Glenn’s major aeronautical facilities today:
  – Ovation v2.2
  – OCR-161 processors
  – AutoCAD control sheets
  – Win2k engineering and operator PCs
  – Windows NT servers
  – Historian

• The goal is to modernize the facilities around testing and budgetary constraints.
Ovation Improvements since v2.2

Ovation v3.0 and above recommends upgrade to OCR400 processor. Ovation v3.0 enables Q-line to Ovation I/O migration.
Ovation Improvements since v2.2

Ovation 3.1 and above requires migration from AutoCAD control sheet drawings to Emerson’s eCAD drawings
Other Ovation Improvements Since v2.2

• HART (Highway Addressable Remote Transducer) protocol devices require Ovation 2.3 and above

• Ovation 3.3.1 runs on Win 7 or XP operator stations, and Windows Server 2008 or 2003 server class machines
Ovation Upgrade

• Emerson has a process called Evergreen for the migration of older WDPF or Ovation systems to the up-to-date versions of Ovation.
  – DPU upgrade from OCR161 to OCR400 controllers
  – Control sheet change from AutoCAD to eCAD
  – MMI/PC upgrades to Windows7 (or WindowsXP)
  – Server upgrades to Windows Server2008 (or 2003)

• Emerson Q-line I/O twilight
  – Q-line I/O is scheduled to be dropped from Ovation SureService support in 2018
  – Emerson has an upgrade path for Q-line I/O card replacement which does not require any field wiring changes
Ovation Upgrade

• There are two differing approaches being taken based upon schedule and budget
  – Incremental approach
    • Phase I - Evergreen
      – v2.2 to v3.3.1
      – OCR-161 controller to OCR-400
      – AutoCAD to eCAD
      – Win2k to Win7
    • Phase II – I/O Migration
      – Q-line to Ovation line I/O
  – All at once approach
Ovation v3.3.1 Migration Plan

- NASA Glenn has adopted a multi-year plan to upgrade all four major facilities
  - 2010
    - PSL Evergreen
  - 2011
    - IRT Evergreen and I/O card migration
  - 2012
    - PSL I/O card migration
  - 2013+
    - 8x6/9x15
    - 10x10
Verification Plans

• Each facility will perform an Ovation system Validation Plan as part of the Evergreen process
  – Prudent due to control sheet changes
  – Validation Plan includes
    • Subsystem checkout
    • Integrated subsystems test
    • Full facility operation

• Each facility will perform end-to-end checks and subsystem checkouts as part of I/O card replacement
  – To ensure all I/O connectors to the field have been properly connected to new I/O cards
PSL Ovation Network Configuration
PSL Ovation Controller Upgrade

- Fully redundant controller pair
  - Dual Intel processors
    - PCI bus structure
    - Up to five process control tasks each with different loop execution rate
    - 128MB Flash & 128MB RAM
    - Four 10/100MB Ethernet NIC ports
  - Dual network interfaces
  - Dual processor power supplies
  - Dual I/O power supplies
  - Dual auxiliary power supplies
  - Dual input power feeds
  - Dual I/O interfaces
Ovation 3.3.1 I/O Limits

• I/O capacity
  – Local I/O
    • Two sets of 8 branches of 8 Ovation I/O modules
    • Two nodes of 4 crates of 12 Q-line cards
  – Remote I/O
    • Eight remote nodes of 8 branches of 8 Ovation I/O modules
    • Eight remote nodes of 48 Q-line cards
DPUs 1/51, 2/52, & 3/53
DPUs 5/55 & 6/56

DPUS and DPUS5:
- Call Cooling Air Control
- PSL4-30 Combustion Air Control
- Dry Air/GN2 System

DPUS6 and DPUS5:
- Cooling Tower Water Supply
- Cooling Tower Water Return

Inputs:
- Analog Output
- Analog Output
- Analog Input
- Analog Input
- Analog Input
- Analog Input
- TC Input
- RTD Input

Outputs:
- Relay Output
- 120VAC Output
- 120VAC Output
- Discrete Input
- Discrete Input
- TC Input
- RTD Input
## Schedule

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Application</strong></td>
<td>41 days</td>
<td>Fri 8/27/10</td>
<td>Fri 10/22/10</td>
</tr>
<tr>
<td>Application software freeze</td>
<td>0 days</td>
<td>Thu 9/9/10</td>
<td>Thu 9/9/10</td>
</tr>
<tr>
<td>Delivery of application to Emerson</td>
<td>0 days</td>
<td>Thu 9/9/10</td>
<td>Thu 9/9/10</td>
</tr>
<tr>
<td>Control sheet migration</td>
<td>26 days</td>
<td>Fri 8/27/10</td>
<td>Fri 10/11/10</td>
</tr>
<tr>
<td>Control sheet preliminary PDF delive</td>
<td>0 days</td>
<td>Mon 10/4/10</td>
<td>Mon 10/4/10</td>
</tr>
<tr>
<td>Control sheet parameter check</td>
<td>15 days</td>
<td>Mon 10/4/10</td>
<td>Fri 10/22/10</td>
</tr>
<tr>
<td>Control sheet final delivery</td>
<td>0 days</td>
<td>Fri 10/22/10</td>
<td>Fri 10/22/10</td>
</tr>
<tr>
<td><strong>Hardware delivery</strong></td>
<td>6 days</td>
<td>Fri 10/15/10</td>
<td>Mon 10/25/10</td>
</tr>
<tr>
<td>DPUs</td>
<td>0 days</td>
<td>Fri 10/15/10</td>
<td>Fri 10/15/10</td>
</tr>
<tr>
<td>Network switches</td>
<td>0 days</td>
<td>Fri 10/15/10</td>
<td>Fri 10/15/10</td>
</tr>
<tr>
<td>PCs and servers</td>
<td>0 days</td>
<td>Mon 10/25/10</td>
<td>Mon 10/25/10</td>
</tr>
<tr>
<td><strong>Installation</strong></td>
<td>18 days</td>
<td>Mon 11/1/10</td>
<td>Wed 11/24/10</td>
</tr>
<tr>
<td>Factory Acceptance Test</td>
<td>5 days</td>
<td>Mon 11/1/10</td>
<td>Fri 11/5/10</td>
</tr>
<tr>
<td>Hardware Installation</td>
<td>5 days</td>
<td>Mon 11/8/10</td>
<td>Fri 11/2/10</td>
</tr>
<tr>
<td>Software cleanup</td>
<td>8 days</td>
<td>Mon 11/15/10</td>
<td>Wed 11/24/10</td>
</tr>
<tr>
<td><strong>System Validation</strong></td>
<td>45 days</td>
<td>Mon 11/29/10</td>
<td>Fri 1/28/11</td>
</tr>
<tr>
<td>Support Systems</td>
<td>15 days</td>
<td>Mon 11/29/10</td>
<td>Fri 12/7/10</td>
</tr>
<tr>
<td>Air/Exhaust Systems</td>
<td>15 days</td>
<td>Mon 1/3/11</td>
<td>Fri 1/21/11</td>
</tr>
<tr>
<td>Cold Pipe Test</td>
<td>4 days</td>
<td>Tue 1/25/11</td>
<td>Fri 1/28/11</td>
</tr>
</tbody>
</table>
Questions?

Contact Info:

Paul J Lizanich
Tech Lead Electrical Engineer of the PSL Jet Engine Test Facility
Sierra Lobo, Inc.
21000 Brookpark Road MS 125-1
Cleveland, OH 44135
216.433.5724
paul.j.lizanich@nasa.gov