The biological effectiveness of different radiation qualities for the induction of chromosome damage in human lymphocytes

M. Hada,1 K. George,2 and F. A. Cucinotta3

1USRA, Division of Space Life Sciences, Houston, TX 77058, USA, 2Wyle, 1290 Hercules Drive, Houston, TX 77058, USA, 3NASA Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA

Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to 28Si- ions with energies ranging from 90 to 600 MeV/u, or to 56Fe-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/µm and the LET of the Si ions ranged from 48 to 158 keV/µm. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to γ-rays. The estimates of RBE\textsubscript{max} values for total chromosome exchanges ranged from 4.4±0.4 to 31.5±2.6 for Fe ions, and 11.8±1.0 to 42.2±3.3 for Si ions. The highest RBE\textsubscript{max} value for Fe ions was obtained with the 600-Mev/u beam, and the highest RBE\textsubscript{max} value for Si ions was obtained with the 170 MeV/u beam. For both ions the RBE\textsubscript{max} values increased with LET, reaching a maximum at about 180 keV/µm for Fe and about 100 keV/µm for Si, and decreasing with further increase in LET. Additional studies for low doses 28Si-ions down to 0.02 Gy will be discussed.