Orbiter Crew Compartment Integration - Stowage

G. Morgan/USA

June 25, 2007
Orbiter Crew Compartment Integration-Stowage

- Orbiter Crew Compartment Integration (CCI)
 - Analytical Integration - Planning the Orbiter CC configuration for ascent, on-orbit ops, and return
 - Stowage
 - Payload/GFE/FCE/CFE Hardware installations
 - Crew Compartment Configuration Drawing
 - MIP, Interface Control Annex-Manifest (NSTS 21000-IDD-MDK interfaces)
 - Plug-in-Plan and Cable routing (Photo/TV-Laptops-Power)
 - Crew Compartment Avionics Interface Tool (CCAIT)
Orbiter Crew Compartment Integration-Stowage

- Orbiter Crew Compartment Integration (CCI)-Stowage
 - Implementation of SSP and ISSP manifest requirements within Orbiter SSP constraints/capabilities.
 - Configuration drivers:
 - Changes in Space Shuttle Mission-Deployable Satellites, Spacelab science, SpaceHab, MIR/ISS (transfers and crew rotation), and HST repairs
 - Differences in Orbiters
 - Technology evolution of Orbiters and hardware-Laptops, Photo/TV, ACES
 - Satisfy engineering requirements for SSP/ISSP hardware installations/stowage
 - On-orbit Shuttle/Crew operations-Habitability
 - Transfer operations between Orbiter and MIR/ISS
 - Ferry Flight configurations for landings at alternate sites
- What works
 - The Crew Compartment Integration process including pre-pack physical integration in Houston to installation in Orbiter at KSC.
 - Excellent communication and team work.
 - CCI team has responsibility and control per NSTS 07700 vol. IV, Bk1 and CoFR NSTS 08117.
 - Orbiter mass property envelopes allow analytical integration without unique analysis- “stay in the box” go fly.
Orbiter Crew Compartment Integration-Stowage

• Orbiter Crew Compartment Integration (CCI)-Stowage
 – Available Orbiter volume:
 • 127.5 Middeck Locker Equivalents (MLE) (OV-104/OV-105, OV-103
 125.5)
 • Orbiter volumes, Middeck lockers, stowage bags.
 • Actual stowage volume available dependent on mission requirements-Shuttle forward CG or Ascent Performance Margins
 – Requirements:
 • Core set of hardware for 5 CM/ 7Days- food, clothing, Hygiene, LiOH, IFM tools, Laptop computers, Photo/TV, navigation aids, EMUs, EVA tools
 • Above Core mission requirements
 – Rendezvous and docking- Range finders, Binoculars, Centerline Camera
 • Addition GFE hardware requirements/evolution of technology
 • Payload requirements (ISS MKD/HST)

MLE: Middeck Locker Equivalent/2.0 cu ft.
Orbiter Crew Compartment Integration-Stowage

- Orbiter Crew Compartment Integration (CCI)-Stowage
 - Orbiter Stowage (typical mass constraint= 30#/ft3):
 - Volume 3 B (ET tank photography)
 - Light Weight Middeck Accommodation Rack (MAR)- 6 MLE
 - Waste Management Compartment- Hygiene
 - Middeck Lockers: Single, Double
 - Trays: single, double
 - Orbiter CTB’s: single, Half CTB’s
 - Middeck Aft (Ditch)/Ext. A/L Bags (5 MLE/10 MLE)
 - (ISS Double, Triple CTB’s, MO2, MO3)
 - Aft Flight stowage containers, volumes (A16 and A17)
 - External Airlock installation of two EMU’s

MLE: Middeck Locker Equivelent/2.0 cu ft.
Evolution of Orbiter Crew Compartment Stowage Volume

<table>
<thead>
<tr>
<th>Volume Name</th>
<th>First Flight</th>
<th>Stowage volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA9N Stwg. Bags (3)</td>
<td>STS-44 (11/91)</td>
<td>1.50 MLE</td>
</tr>
<tr>
<td>Middeck Accommodations Rack (MAR)</td>
<td>STS-49 (5/92)</td>
<td>6.00 MLE</td>
</tr>
<tr>
<td>Lockers MA9D / MA16D</td>
<td>STS-49 (5/92)</td>
<td>2.00 MLE</td>
</tr>
<tr>
<td>Extended Volume B (N/A on OV-103) approx.</td>
<td>STS-49 (5/92)</td>
<td>4.00 MLE</td>
</tr>
<tr>
<td>Volume D (N/A on OV-103 or with RCRS)</td>
<td>STS-49 (5/92)</td>
<td>4.00 MLE</td>
</tr>
<tr>
<td>EDO LiOH Box (available only with RCRS)</td>
<td>STS-50 (6/92)</td>
<td>3.50 MLE</td>
</tr>
<tr>
<td>Aft Flight Deck Stwg. Cont.s (CCCD concept)</td>
<td>STS-50 (6/92)</td>
<td>0.75 MLE</td>
</tr>
<tr>
<td>Volume 3B</td>
<td>STS-58 (10/93)</td>
<td>2.00 MLE</td>
</tr>
<tr>
<td>Internal A/L Ceiling Bag</td>
<td>STS-62 (2/94)</td>
<td>4.00 MLE</td>
</tr>
<tr>
<td>Seat 6/7 Stwg. Bag</td>
<td>STS-74 (11/95)</td>
<td>3.00 MLE</td>
</tr>
<tr>
<td>ODS Stwg. Bag</td>
<td>STS-76 (3/96)</td>
<td>5.00 MLE</td>
</tr>
<tr>
<td>Airlock out MDK Stwg. Bags (OV-103, 104, 105)</td>
<td>STS-82 (2/97)</td>
<td>40.00 MLE</td>
</tr>
<tr>
<td>Lt. Wt. MAR</td>
<td>STS-96 (5/99)</td>
<td>N/A</td>
</tr>
<tr>
<td>Lt. WT. Lockers</td>
<td>STS-103 (12/99)</td>
<td>N/A</td>
</tr>
<tr>
<td>Total volume increase</td>
<td>(151.5 cu. ft.)</td>
<td>75.75 MLE</td>
</tr>
</tbody>
</table>

1 MLE equals approximately 2 ft³
Orbiter Crew Compartment Integration-Stowage

Crew Compartment Photos
Orbiter Crew Compartment Integration-Stowage

Volume B and EDO version Vol B
Fits curvature of Orbiter wall for addition ascent on-orbit stowage volume only
Orbiter Crew Compartment Integration-Stowage

Under Floor Volumes

Volume D (4 MLE) restricted access

Volume F (4 MLE) Wet Trash

Volume G
Contingency
Hygiene
Orbiter Crew Compartment Integration-Stowage

Middeck Lockers and Trays

Middeck Aft Lockers

Double MDK Locker Tray
Approx. net 0.8 ft³

MA9N bags- 3-stowage bags
to fit curvature of Orbiter
STBD wall
1/2 MLE ea.

Middeck Forward Lockers
Lt. Wt. MAR, Galley, Lockers,
Payloads, seats
Orbiter Crew Compartment Integration-Stowage

Post Landing View- Aft Middeck Stowage Bags
Crew re-packed on-orbit

2- 5 MLE Bags STBD FL and 2- 5 MLE Bags Port FL

(4) Ceiling 5 MLE Bags

8 Total 5 MLE bags available in the Middeck Aft
Orbiter Crew Compartment Integration-Stowage

Miscellaneous Middeck Stowage

- Middeck Retention Net
 On-Orbit stowage and limited return stowage
 Looking Forward STBD

- Dry Trash Bags
 For on-orbit use only

- EMU stowage in the Middeck

- Sleep restraints, Ergometer Shoe Bag
 Middeck air ducts
 Looking STBD
Miscellaneous Stowage

- Aft Flight Deck L10 Stowage
 Containers
 3/4 MLE each

- WMC
 Aft wall and Port wall stowage

- Volume 3 B
 Approx. 4 MLE
Orbiter Crew Compartment Integration-Stowage

On-Orbit Stowage/Habitability

Orbiter Middeck looking STBD/FWD

Orbiter Middeck looking Aft at 576 bulkhead hatch

Orbiter Middeck looking FWD/STBD
Orbiter Crew Compartment Integration-Stowage

On-Orbit cable routing-Crew situational awareness

Orbiter AFD looking STBD STS-116 left STS-112 right
Orbiter Crew Compartment Integration-Stowage

On-Orbit Single Logistics Module
STS-116/13A.1

ISS MO3 Bag- approx 10 MLE
Orbiter Crew Compartment Integration-Stowage

Launch/Return Middeck Configuration
Advanced Crew Escape Suits (ACES)
Provides O2/COMM and Individual Cooling (water)
Orbiter Crew Compartment Integration-Stowage

Orbiter Vertical Installations at the Pad
Stowage considerations for Vertical launch vs. Horizontal for landing

Emergency Egress
Net/Closeout, Av. Bay 3A
MDK Lockers, Escape Pole

MA9N bags, Av. Bay 3A MDK
Lockers, GSE platform
Orbiter Crew Compartment Integration-Stowage

Misc. hardware stowage

Typical CTB packing designed by the Crew Compartment Integration Team for transfer to ISS Mini Cell, Pyrell with NOMEX cover

IELK (Soyuz Seat Liners) Crew Rotation 5 MLE bag each

5 MLE Bag with EMU LTA's
Orbiter Crew Compartment Integration-Stowage

Translation fit-checks between Orbiter middeck-Ext. A/L- ISS PMA
Orbiter Crew Compartment Integration-Stowage

Considerations for avionics bay Middeck Locker interface structure movement. Pressure Vessel “oil canning” Ground vs On-Orbit vs 10.2 for EVA’s

Middeck looking forward at MF43C/E PGBA Dbl. Size Middeck payload on STS-113/11A Transferred from ISS to Orbiter
Orbiter Crew Compartment Integration-Stowage

Questions/Answers