Consequences of Fracture

Aloha Airlines 737
April 1988
Hawaii
Consequences of Fracture

United Airlines DC-10
July 1989
Sioux City, Iowa
NASA Fracture Control Requirements

 - Establishes requirements for fracture control of all NASA manned spaceflight systems and payloads on manned spaceflight systems
 - Mandatory for manned systems; optional for unmanned systems
 - Fracture control process includes non-destructive evaluation as well as analyses of fracture-critical parts
 - Fracture mechanics & fatigue crack analysis software package NASGRO meets the analysis requirements
NASGRO® Reduces Risk

- Fracture mechanics & fatigue crack analysis software
 - Provides optimal design of fracture-resistant structures
 - Determines safe stresses for a specified lifetime
 - Provides specification of fracture control plans at the design stage
 - Determines safe lifetime for a specified design
 - Determines required inspection intervals (if any) to maintain safety
 - If damage is discovered...
 - Determines safe remaining life (if any)
 - Determines required inspection intervals (if any) to maintain safety
 - Accurately simulates crack growth and failure in real structures
 - Calculate fatigue crack growth rate and remaining life
 - Calculate conditions (loads, crack sizes) that cause failure
NASGRO® Use Inside NASA
NASGRO® Components: Crack growth module

- Calculate fatigue crack growth or component life, critical crack sizes, or stress intensity factors for a library of 50+ different crack configurations
- Multiple crack growth equations
- Elastic-plastic crack growth analysis
NASGRO® Components: Material property module

- Store, retrieve, and curve-fit fatigue crack growth and fracture data
- NASA database:
 - 476 different metallic materials
 - 3000 sets of fatigue crack growth data
 - 6000 fracture toughness data points
 - Statistically-derived crack growth equations for all materials
- Users can create their own database
Typical NASGRO® analysis:
Crack growth or component life calculation

- **Problem:**
 - Actual crack or flaw is reported in component
 - Hypothetical flaw: assume worst-case scenario based on applied loading, component geometry, and crack location

- **Analysis input:**
 - Crack and component geometry
 - Component material
 - Load type and spectrum

- **Analysis results:**
 - Fatigue crack growth rate and remaining life
 - Conditions (loads, crack sizes) that cause failure
 - Safe stresses to attain a specified lifetime
 - Component inspection intervals for safe operation
Objective: To determine the service life of the Shuttle Orbiter flowliners containing cracks by using a fracture-based assessment to account for crack propagation.
Problem: Flowliner crack geometry not easily represented by any of 50+ standard cracks in NASGRO crack library.
NASGRO Sample Application:
Orbiter feedline flowliner crack analysis

- Solution: Use NASGRO's Boundary Element Analysis module for its
 - CAD-like drawing tools to custom-build crack model
 - Computational core to calculate crack driving force K
NASGRO Sample Application:
Orbiter feedline flowliner crack analysis

- NASBEM results used in concert with other tools (e.g. NASTRAN structural analysis code) to determine:
 - crack growth between flowliner holes as function of flight service history
 - flowliner service life
Summary and Challenges for the Future

- **NASGRO®** reduces the risk of fracture
- **NASGRO** is used extensively around the world
 - Standard code for analysis of space hardware for NASA and its international partners
 - Supported and used by DoD, FAA, and private industry in aircraft, rotorcraft, turbine engines, and many others

- **Spaceflight systems for future space missions** will use innovative materials and methods of construction
 - New materials will require testing and characterisation for their properties for use in fracture analyses
 - New systems, components, configurations, and manufacturing techniques will need to be certified for flight