
(12) United States Patent 	 (io) Patent No.:	 US 7,752,608 B1
Hinchey et al.	 (45) Date of Patent:	 Jul. 6, 2010

(54) SYSTEMS, METHODS AND APPARATUS FOR (56) References Cited
VERIFICATION OF KNOWLEDGE-BASED
SYSTEMS U.S. PATENT DOCUMENTS

(75)	 Inventors: Michael G. Hinchey, Bowie, MD (US); 5,822,745 A 10/1998 Hekmatpour

James L. Rash, Davidsonville, MD 5,893,083 A 4/1999 Eshghi et al.

(US); John D. Erickson, Midland, TX 5,899,985 A 5/1999 Tanaka

(US); Denis Gracinin, Blacksburg, VA 6,314,415 B1 11/2001 Mukherjee

(US); Christopher A. Rouff, Beltsville, 6,321,217 B1 11/2001 Maeda et al.

MD (US) 6,389,405 B1 5/2002 Oatman et al.
6,397,202 B1 5/2002 Higgins et al.

(73)	 Assignee:	 The United States of America as 6,415,275 B1 7/2002 Zahn
represented by the Administrator of 6,484,155 B1 11/2002 Kiss et al.
the National Aeronautics and Space 6,490,574 B1 12/2002 Bennett et al.
Administration, Washington, DC (US) 6,502,084 B1 12/2002 Boleyn et al.

(*)	 Notice:	 Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1281 days. (Continued)

(21)	 Appl. No.: 11/203,586 OTHER PUBLICATIONS

(22) Filed:	 Aug.12, 2005

Related U.S. Application Data

(63) Continuation-in-part of application No. 10/789,028,
filed on Feb. 25, 2004, now Pat. No. 7,543,274, appli-
cation No. 11/203,586.

(60) Provisional application No. 60/603,519, filed on Aug.
13, 2004, provisional application No. 60/533,376,
filed on Dec. 22, 2003.

(51) Int. Cl.
G06F 9145	 (2006.01)
G06F 9144	 (2006.01)
G06F 17/00	 (2006.01)
G06N 5104	 (2006.01)
G06N 5102	 (2006.01)

(52) U.S. Cl 717/136; 717/107; 717/146;
717/106; 717/117; 706/56; 706/60; 706/46;

706/47
(58) Field of Classification Search None

See application file for complete search history.

Author: Spreeuwenberg et al. Title: "VALENS: A Knowledge Based
Tool to Validate and Verify an Aion Knowledge Base' Date: 2000
URL: http://nats-www.informatik.uni.hamburg.de/intern/proceed-
ings/2002/ECAUecai2000/pdf/p0731.pdf.*

(Continued)

Primary Examiner Lewis A Bullock, Jr.
Assistant Examiner Joseph Kelly
(74) Attorney, Agent, or Firm Heather Goo

(57)	 ABSTRACT

Systems, methods and apparatus are provided through which
in some embodiments, domain knowledge is translated into a
knowledge-based system. In some embodiments, a formal
specification is derived from rules of a knowledge-based sys-
tem, the formal specification is analyzed, and flaws in the
formal specification are used to identify and correct errors in
the domain knowledge, from which a knowledge-based sys-
tem is translated.

31 Claims, 10 Drawing Sheets

)RULES 4_E'N'G'1NEC'

8

ANALYZER	 TRANSLATOR

ZO
DOMAIN

ANALYSIS	 KNOWLEDGE

900

US 7,752,608 B1
Page 2

U.S. PATENT DOCUMENTS

6,513,024 B1 1/2003 Li
6,529,889 B1 3/2003 Bromberg et al.
6,529,954 B1 3/2003 Cookmeyer, II et al.
6,535,863 B1 3/2003 O'Reilly
6,535,864 B1 3/2003 Zahn
6,546,380 B1 4/2003 Lautzenheiser et al.
6,604,093 B1 8/2003 Etzion et al.
6,701,516 B1 3/2004 Li
6,760,717 B2 7/2004 Suda et al.
6,763,341 B2 7/2004 Okude
6,876,991 B1 4/2005 Owen et al.

2001/0051937 Al 12/2001 Ross et al.
2002/0052859 Al 5/2002 Rosenfeld et al.
2002/0100014 Al * 7/2002 Iborra et al	 717/104
2003/0004912 Al 1/2003 Pant et al.
2003/0084015 Al 5/2003 Beams et al.
2003/0101152 Al 5/2003 Hicks
2003/0120620 Al 6/2003 Fromherz et al.
2003/0217023 Al 11/2003 Cui et al.
2004/0015463 Al 1/2004 Herrera et al.
2004/0039718 Al 2/2004 Lumpp et al.

OTHER PUBLICATIONS

Author: Harhalakis et al. Title: "Structured Representation of Rule-
Based Specifications in CIM Using Updated Petri Nets" Date: Jan.
1995	 URL:	 http://ieeexplore.ieee.org/stamp/stamp .
j sp?arnumber=00362959. *
Author: HAnle et al. Title: "An Authoring Tool for Informal and
Formal Requirements Specifications" Date: 2002 URL: http://www.
springerlink.com/content/9b5wu2v0ea0lnyrb/fulltext.pdf.*

Author: Shi et al. Title: "Combining Methods for the Analysis of a
Fault-Tolerant System" Date: 1999 URL: http://ieeexplore.ieee.org/
stamp/stamp.j sp?arnumbei-00816222. *

Author: Bose et al. Title: "Knowledge-based approach to domain
modeling: organizational process modeling application" Date: 1996
URL: http://www.sciencedirect.com/science?ob=ArticleURL&
udi=B6WKB-45NJR2S6& user-2502287& rdoc=l& fmt=&
orig=search&sort=d&view=c&_acct=0000055109&	 ver-
sion— I& urlVersion=0&	 userid=	 2502287&
md5=81568a0e27d3b79a296248.*

Author: Lee et al. Title: "Automated conversion from requirements
documentation to an object-oriented formal specification language"
Date:	 2002	 URL:	 http://portal.acm.org/ftgateway.
cfm?id=508972&	 type=pdf&co11=GUIDE&d1=GUIDE&
CFID=41441850& CFTOKEN=31432243.*

Author: Ledang et al. Title: "Integrating UML and B Specification
Techniques" Date: Sep. 6, 2001 URL: http://www.loria.fr/ —souquier/
publications/informatikO l.pdf.*
Author: Bozga et al. Title: "Automated validation of distributed soft-
ware using the IF environment" Date: Oct. 8-10, 2001 URL: http://
ieeexplore.ieee.org/stamp/stampjsp?arnumber-00962542.*
Author: Roman et al. Title: "Formal Derivation of Rule-Based Pro-
grams" Date: 1993 URL: http://ieeexplore.ieee.org/stamp/stamp .
j sp?tp=&arnumber=221138&isnumber=5778. *
Author: Moulding Title: "Combining formal specification and
CORE: an experimental investigation" Date: Mar. 1995 URL: http://
ieeexplore.ieee.org/stamp/stampjsp?tp—&arnumber-373906sp?tp=&arnumber-373906
&isnumber=8550.*

* cited by examiner

102 104

U.S. Patent	 Jul. 6, 2010	 Sheet 1 of 10	 US 7,752,608 B1

FIG. 1
	

100

202

210

204

214

U.S. Patent	 Jul. 6, 2010	 Sheet 2 of 10	 US 7,752,608 B1

FIG. 2
	

200

U.S. Patent	 Jul. 6, 2010	 Sheet 3 of 10	 US 7,752,608 B1

ANALYZING A FORMAL SPECIFICATION
DERIVED FROM RULES

304

NO
'LAW IN FORMAL	 _
SPECIFICATION
\?

YES

CORRECT FLAW IN THE RULES

FIG. 3
	

"- 300

302

306

U.S. Patent	 Jul. 6, 2010	 Sheet 4 of 10	 US 7,752,608 B1

ANALYZING A FORMAL SPECIFICATION
DERIVED FROM DOMAIN KNOWLEDGE

404

NO
'LAW IN FORMAL
SPECIFICATION
\ ?

0000>

YES

CORRECT FLAW IN THE DOMAIN
KNOWLEDGE

402

406

FIG. 4 400

U.S. Patent	 Jul. 6, 2010	 Sheet 5 of 10	 US 7,752,608 B1

502
TRANSLATE RULES INTO A FORMAL

SPECIFICATION

504
ANALYZE THE FORMAL SPECIFICATION

506
TRANSLATE THE FORMAL SPECIFICATION

INTO DOMAIN KNOWLEDGE

FIG. 5
	 500

U.S. Patent
	

Jul. 6, 2010	 Sheet 6 of 10	 US 7 ,752,608 B1

602

TRANSLATE DOMAIN KNOWLEDGE INTO
FORMAL SPECIFICATION SEGMENTS

604
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

606
TRANSLATE THE SINGLE FORMAL

SPECIFICATION
INTO RULES

608

PROCESS THE RULES

FIG. 6
	 ^^ 600

U.S. Patent	 Jul. 6, 2010	 Sheet 7 of 10	 US 7,752,608 B1

702
VERIFY
SYNTAX

704
MAP TO FORMAL
SPECIFICATION

706	 VERIFY
CONSISTENCY

OF FORMAL
SPECIFICATION

708
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 7 700

U.S. Patent	 Jul. 6, 2010	 Sheet 8 of 10	 US 7,752,608 B1

N
00 LU 00O?

O O

T

_U
0
00

Z

Z
00 Q

N Z

00

(DN
00

oN
co

U_
C'7	

0000	
chZ 00

LU C^
WZ

LU

Z WCO

O I

a o

W
Y QO
Q
W
0

m}

C14
W
Yr

00

.^
N

W

fn 2
00

00

U ^p
Q w
U

0 0	 0
W
F-
Z

00 co	 00 00 co

N O d
00 co

co

U.S. Patent	 Jul. 6, 2010
	

Sheet 9 of 10	 US 7,752,608 B1

102

RULES
104

INFERENCE
ENGINE

106
CSP

TRANSLATOR

108
CSP

SPECIFICATION

204
LAWS OF

CONCURR-
ENCY

902
	 908

ANALYZER
	 TRANSLATOR

904	 DOMAIN
	 202

ANALYSIS	 KNOWLEDGE

FIG. 9
	 900

U.S. Patent	 Jul. 6, 2010	 Sheet 10 of 10	 US 7,752,608 B1

°o

oo
w wO H

o

U_
W n- LL

M O O
00 O

Z J

Z

O
	 -J

N Z

O O(O
O O O

(p
N

O
N

00 O

U_ 0	 co

Z

ao O Q` O

Y J }J Z w
U

OW-
Z Q Z Z—

O ~a o
w
Y
Q

 QO

a

m

w
CA N Y

00

W ao

oo
IL 0 Q 0 O

7j)
C/) W

CL z

U 0 0
co

W

Z
ao oo ao 00 ao —

N
N

N
O

O O
00

US 7,752,608 B1
1
	

2
SYSTEMS, METHODS AND APPARATUS FOR

	
language, programming language representations, flow-

VERIFICATION OF KNOWLEDGE-BASED	 charts, scenarios or even using semi-formal notations such as
SYSTEMS	 unified modeling language (UML) use cases.

A scenario may be defined as a natural language text (or a
RELATED APPLICATIONS

	
5 combination of any, e.g. graphical, representations of sequen-

tial steps or events) that describes the software's actions in
This application claims the benefit of U.S. Provisional

	
response to incoming data and the internal goals of the soft-

Application Ser. No. 60/603,519 filedAug. 13, 2004 under 35
	

ware. Some scenarios may also describe communication pro-
U.S.C. 119(e).	 tocols between systems and between the components within

This application is a continuation-in-part of U.S. applica- io the systems. Also, some scenarios may be known as UML
tion Ser. No. 10/789,028 filed Feb. 25, 2004 now U.S. Pat. No. 	 use-cases. Preferably, a scenario describes one or more poten-
7,543,274 entitled "System and Method for Deriving a Pro-	 tial executions of a system, describing what happens in a
cess-Based Specification," which claims the benefit of U.S. 	 particular situation, and what range of behaviors is expected
Provisional Application Ser. No. 60/533,376 filed Dec. 22,	 from or omitted by the system under various conditions.
2003.	 15	 Natural language scenarios are usually constructed in

terms of individual scenarios written in a structured natural
ORIGIN OF THE INVENTION

	
language. Different scenarios may be written by different
stakeholders of the system, corresponding to the different

The invention described herein was made by a employees 	 views they have of how the system will perform, including
of the United States Government and may be manufactured 20 alternative views corresponding to higher or lower levels of
and used by or for the Government of the United States of 	 abstraction. Natural language scenarios may be generated by
America for governmental purposes without the payment of 	 a user with or without mechanical or computer aid. The set of
any royalties thereon or therefor. 	 natural language scenarios provides the descriptions of

actions that occur as the software executes. Some of these
FIELD OF THE INVENTION	 25 actions will be explicit and required, while others may be due

to errors arising, or as a result of adapting to changing con-
This invention relates generally to software development

	
ditions as the system executes.

processes and more particularly to validating a system imple-	 For example, if the system involves commanding space
mented from domain knowledge. 	 satellites, scenarios for that system may include sending com-

30 mands to the satellites and processing data received in
BACKGROUND OF THE INVENTION	 response to the commands. Natural language scenarios might

be specific to the technology or application domain to which
High dependability and reliability is a goal of all computer 	 they are applied. A fully automated general purpose approach

and software systems. Complex systems, such as knowledge-	 covering all domains is technically prohibitive to implement
based systems and expert systems, in general cannot attain 35 in a way that is both complete and consistent. To ensure
high dependability without addressing crucial remaining 	 consistency, the domain of application might be specific-
open issues of software dependability. The need for ultrahigh 	 purpose. For example, scenarios for satellite systems may not
dependable systems increases continually, along with a cor- 	 be applicable as scenarios for systems that manufacture agri-
responding increasing need to ensure correctness in system 	 cultural chemicals.
development. Correctness exists where the implemented sys- 40 After completion of an informal specification that repre-
tem is equivalent to the requirements, and where this equiva- 	 sents domain knowledge, the KBS is developed. A formal
lence can be mathematically proven. 	 specification is not necessarily used in the development of a

Knowledge-based systems and expert systems are	 KBS.
examples of a general class of inferencing systems that com- 	 In the development of some KBS's, computer readable
prise an inference engine and separate knowledge and rule 45 code is generated. The generated code is encoded in a com-
bases. The inference engine itself does not include domain	 puter language, such as a high-level computer language.
knowledge, but the knowledge and rule bases are specific to 	 Examples of the languages include Java Expert System Shell
the domain and are used by the inference engine, and the 	 (JESSO), C Language Integrated Production System
combination of these elements implements a knowledge- 	 (CLIPS) and Prolog. One example of such a KBS is the
based system application. Further, during the operation of a 5o Reduced Operations by Optimizing Tasks and Technology
particular knowledge-based system (i.e., application), the fir- 	 (ROBOTT) system. ROBOTT is a system which performs
ing of rules by the inference engine may dynamically modify 	 performance and safety monitoring on the POLAR and
the knowledge base (which contains the essential application 	 X-Ray Timing Explorer (XTE) satellites. ROBOTT is a KBS
facts or data), and the resulting changes determine the subse- 	 with rules expressed in CLIPS.
quent course of execution of the running application. It is 55	 One step in creating a KBS with high dependability and
possible, though not typical, that the running application will 	 reliability is verification and validation that the executable
modify its own rule base, and some such systems could be 	 KBS accurately reflects the requirements. Validation of the
classified as "learning" systems. 	 generated code is sometimes performed through the use of a

Knowledge-based systems, expert systems and inferenc- 	 domain simulator, a very elaborate and costly approachthatis
ing systems in general are each referred to as a KBS herein. 60 computationally intensive. This process of validation rarely

The development of a KBS begins with the development of
	

results in an unambiguous result and rarely results in uncon-
a requirements specification, such as a formal specification or 	 tested results among systems analysts. In some examples, a
an informal specification that represents domain knowledge.	 KBS is validated through parallel mode, shadow mode opera-
A formal specification might be encoded in a high-level lan- 	 tions with a human operated system. This approach can be
guage such as Prolog, whereas domain knowledge in the form 65 very expensive and exhibit severely limited effectiveness. In
of an informal specification can be expressed in restricted

	
some complex systems, this approach leaves vast parts of

natural language, "if-then" rules, graphical notations, English
	

possible execution paths forever unexplored and unverified.

US 7,752,608 B1
3

During the life cycle of a system, requirements typically
evolve. Manual change to the system creates a risk of intro-
ducing new errors and necessitates retesting and revalidation,
which can greatly increase the cost of the system. Often,
needed changes are not made due to the cost of verifying/
validating consequential changes in the rest of the system.
Sometimes, changes are simply made in the code and not
reflected in the specification or design, due to the cost or due
to the fact that those who generated the original specification
or design are no longer available.

For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled in the art
upon reading and understanding the present specification,
there is a need in the art for an automated, generally appli-
cable way to verify that an implemented system is a provably
correct implementation of domain knowledge. There is also a
need for a process for requirements validation that does not
require large computational facilities.

BRIEF DESCRIPTION OF THE INVENTION

The above-mentioned shortcomings, disadvantages and
problems are addressed herein, which will be understood by
reading and studying the following specification.

The systems, methods and apparatus described herein pro-
vide an automated, generally applicable means to validate a
KBS implementation of domain knowledge. The fundamen-
tal inadequacy of all currently available automated develop-
ment approaches the lack of ways to establish a provable
equivalence between the informal requirements and the
implemented KBS is solved.

In one aspect, systems, methods and apparatus are pro-
vided through which rules are translated without human inter-
vention into a formal specification. In some embodiments the
formal specification is a process-based specification. In some
embodiments, the formal specification is analyzed for errors.
In some embodiments, the formal specification is translated
into domain knowledge.

In another aspect, a system includes an inference engine
and a translator, the translator being operable to receive rules
and to generate in reference to an inference engine, a formal
specification such as a formal specification encoded in Com-
municating Sequential Processes language (CSP). The sys-
tem also includes an analyzer operable to perform model
verification/checking and determine existence of omissions,
deadlock, livelock, and race conditions or other problems and
inconsistencies in the formal specification.

In yet another aspect, a method includes translating domain
knowledge to a formal specification, and analyzing this for-
mal specification.

Systems, clients, servers, methods, and computer-readable
media of varying scope are described herein. In addition to the
aspects and advantages described in this summary, further
aspects and advantages will become apparent by reference to
the drawings and by reading the detailed description that
follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that provides an overview of a
system to reverse-engineer a formal specification from rules
of a knowledge-based system, according to an embodiment of
the invention;

FIG. 2 is a block diagram that provides an overview of a
system to generate a knowledge-based system from domain
knowledge, according to an embodiment;

4
FIG. 3 is a flowchart of a method to validate/update rules of

a knowledge-based system, according to an embodiment;
FIG. 4 is a flowchart of a method to validate/update domain

knowledge, according to an embodiment;
5	 FIG. 5 is a flowchart of a method to generate a formal

specification from rules, according to an embodiment;
FIG. 6 is a flowchart of a method to generate a knowledge-

based system from domain knowledge, according to an
embodiment;

io FIG. 7 is a flowchart of a method to translate each of a
plurality of requirements of the domain knowledge to a plu-
rality of formal specification segments, according to an
embodiment;

FIG. 8 is a block diagram of a hardware and operating
15 environment in which different embodiments can be prac-

ticed, according to an embodiment;
FIG. 9 is a block diagram of a particular CSP implemen-

tation of an apparatus to analyze a CSP specification gener-
ated from rules and/or generate domain knowledge from the

20 rules, according to an embodiment; and
FIG. 10 is a block diagram of a hardware and operating

environment in which components of FIG. 9 may be imple-
mented, according to an embodiment.

25 DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments

30 which may be practiced. These embodiments are described in
sufficient detail to enable those skilled in the art to practice the
embodiments, and it is to be understood that other embodi-
ments may be utilized and that logical, mechanical, electrical
and other changes may be made without departing from the

35 scope of the embodiments. The following detailed descrip-
tion is, therefore, not to be taken in a limiting sense.

The detailed description is divided into five sections. In the
first section, an embodiment of a system level overview is
described. In the second section, embodiments of methods

40 are described. In the third section, an embodiment of the
hardware and the operating environment in conjunction with
which embodiments may be practiced is described. In the
fourth section, particular implementations of embodiments
are described. Finally, in the fifth section, a conclusion of the

45 detailed description is provided.

System Level Overview

This overview section includes a description of one
50 embodiment of a preferred system, shown in FIG. 1, that can

generate a formal specification from rules of a knowledge-
based system.

FIG. 1 illustrates a block diagram that provides an over-
view of one embodiment of a system to reverse-engineer a

55 formal specification from rules of a knowledge-based system
(KBS). System 100 may alleviate a need in the art for an
automated, generally applicable way to verify that an imple-
mented KBS system is a provably correct implementation of
a formal specification.

60 One embodiment of the system 100 is a software develop-
ment system that includes a data flow and processing points
for the data. According to the disclosed embodiments, system
100 can convert rules into a formal specification on which
model checking and other mathematics-based verifications

65 can then be performed.
The preferred system 100 may include a plurality of rules

102. The rules 102 can be written in a particular syntax, such

US 7,752,608 B1
5

as a language or a grammar used by an inference engine 104,
or in logic rules encoded in a computer language, such as a
high-level computer language (e.g. Prolog or JESS). The
preferred rules 102 may embody software applications such
as rule-based, knowledge-based or expert systems, although s
one skilled in the art will recognize that other systems fall
within the purview of this invention.

In one embodiment, the rules 102 are received by a trans-
lator 106. An inference engine 104 mightbe referenced by the
translator 106 when the rules 102 are translated by the trans- io
lator 106 into a formal specification 108 or other formal
specification language representation. In some embodiments
no manual intervention in the translation is provided. Further,
in some embodiments the formal specification 108 may be
encoded in an intermediate notation or language of sequential 15

process algebra such as Hoare's language of Communicating
Sequential Processes (CSP) or Calculus of Communicating
Systems (CCS) or variants of these languages. Those skilled
in the art will readily understand that other appropriate nota-
tions and/or languages exist that are within the scope of this 20

invention.
In some embodiments, the formal specification 108 may be

mathematically and provably equivalent to the rules 102.
Mathematically equivalent does not necessarily mean math-
ematically equal. Mathematical equivalence of A and B 25

means that A implies B and B implies A. Note that the pre-
ferred formal specification 108 of some embodiments is
mathematically equivalent to, rather than necessarily equal
to, the rules 102.

In some embodiments, the system 100 rules 102 may 30

specify allowed situations, events and/or results of a software
system. In that sense, the rules 102 can provide a very abstract
specification of the software system.

A specific embodiment of system 100 that provides for
analysis of the formal specification 108 and generation of 35

domain knowledge from the formal specification 108 is
described in FIG. 9.

Some embodiments of system 100 may be operational for
a wide variety of rules, computer instructions, computer lan-
guages and applications; thus, system 100 can be generally 40

applicable. Such applications may include, without limita-
tion, space satellite command systems, distributed software
systems, sensor networks, robot operations, complex scripts
for spacecraft integration and testing, chemical plant opera-
tion and control, autonomous systems, electrical engineering 45

applications such as chip design and other electrical circuit
design, business management applications in areas such as
workflow analysis, artificial intelligence applications in areas
such as knowledge-based systems and agent-based systems,
highly parallel and highly-distributed applications involving 50

computer command and control and computer-based moni-
toring, and any other area involving process, sequence or
algorithm design. Hence, one skilled in the art will recognize
that any number of other applications not listed may fall
within the scope of this invention. 	 55

Some embodiments of the system 100 may provide
mechanical or automatic generation of the formal specifica-
tion 108, in which human intervention is not required. In at
least one embodiment of the system 100, all that is required to
update the generated application is a change in the rules 102, 60

in which case the changes and validation will ripple through
the entire system without human intervention when system
100 operates. This also allows the possibility of cost effec-
tively developing competing designs for a product and imple-
menting each to determine the best one. 	 65

Perhaps most notably, some embodiments of the system
100 do not include an automated logic engine, such as a

6
theorem prover or an automated deduction engine, to infer the
formal specification 108 from the rules 102. However, the
formal specification 108 can be a provably correct version of
the rules 102.

Some embodiments of system 100 operate in a multi-pro-
cessing, multi-threaded operating environment on a com-
puter, such as the computer 802 illustrated in FIG. 8. While
the system 100 is not limited to any particular rules 102,
inference engine 104, translator 106 and formal specification
108, for sake of clarity, embodiments of simplified rules 102,
inference engine 104, translator 106 and formal specification
108 are described.

FIG. 2 is a block diagram that provides an overview of one
preferred system to generate a knowledge-based system from
domain knowledge. System 200 may solve a need in the art
for an automated, generally applicable approach to producing
a knowledge-based system that may be a provably correct
implementation of an informal design specification that does
not require, in applying the system to any particular problem
or application, the use of an automated logic engine.

In some embodiments, the system 200 is a software devel-
opment system that may include a data flow and processing
points for the data. System 200 may be representative of (i)
computer applications and electrical engineering applica-
tions such as chip design and other electrical circuit design (ii)
business management applications in areas such as workflow
analysis, (iii) artificial intelligence applications in areas such
as knowledge-based systems and agent-based systems, (iv)
highly parallel and highly-distributed applications involving
computer command and control and computer-based moni-
toring, and (v) any other area involving process, sequence or
algorithm design. One skilled in the art, however, will recog-
nize that other applications may exist that are within the
purview of this invention. According to the disclosed embodi-
ments, system 200 can, without human intervention, convert
different types of specifications (such as natural language
scenarios or descriptions which are effectively pre-processed
scenarios) into process-based formal specifications on which
model checking and other mathematics-based verifications
are performed, and then optionally convert the formal speci-
fication into code.

At least one embodiment of the system 200 may include
domain knowledge 202, which has a plurality of rules or
requirements. The domain knowledge can be expressed in
restricted natural language, graphical notations, English lan-
guage, programming language representations, scenarios or
even using semi-formal notations such as unified modeling
language (UML) use cases. Of course, one skilled in the art
will notice that other languages, notations, representations or
scenarios may be used that fit within the scope of this inven-
tion.

According to some embodiments, a scenario is natural
language text (or a combination of any, such as possibly
graphical, representations of sequential steps or events) that
describes the software's actions in response to incoming data
and the internal goals of the software. Scenarios also may
describe communication protocols between systems and
between the components within the systems. Scenarios also
may be known as use cases. A scenario can describe one or
more potential executions of a system, such as describing
what happens in a particular situation and what range of
behaviors is expected from or omitted by the system under
various conditions.

Natural language scenarios may be constructed in terms of
individual scenarios written in a structured natural language.
Different scenarios may be written by different stakeholders
of the system, corresponding to the different views they may

US 7,752,608 B1
7
	

8
have of how the system will perform, including alternative 	 system shell language is the CLIPS language, although other
views corresponding to higher or lower levels of abstraction. 	 languages may be used as well. In some embodiments, the
Natural language scenarios may be generated by a user with

	
formal specification 208 comprises a plurality of formal

or without mechanical or computer aid. Such a set of natural
	

specification segments, such as process-based specification
language scenarios may provide the descriptions of actions 5 segments or the like.
that occur as the software executes. Some of these actions

	
System 200 may be operational for a wide variety of

may be explicit and required, while others may be due to
	

domain knowledge languages and applications, thus system
errors arising or as a result of adapting to changing conditions

	
200 is generally applicable. Such applications include, with-

as the system executes. 	 out limitation, distributed software systems, sensor networks,
For example, if the system involves commanding space io robot operation, complex scripts for spacecraft integration

satellites, scenarios for that system may include sending com- 	 and testing, chemical plant operation and control, and autono-
mands to the satellites and processing data received in	 mous systems. One skilled in the art will understand that these
response to the commands. Natural language scenarios 	 applications are cited by way of example and that other appli-
should be specific to the technology or application domain to	 cations may fall within the scope of the invention.
which they are applied. A fully automated general purpose 15	 Furthermore, the system 200 may provide regeneration of
approach covering all domains is technically prohibitive to	 the executable system when requirements dictate a change in
implement in a way that is both complete and consistent. To 	 the high level specification. In some embodiments of the
ensure consistency, the domain of application are preferably 	 system 200, all that is required to update the generated appli-
purpose-specific. For example, scenarios for satellite systems 	 cation may be a change in the domain knowledge 202, and
may not be applicable as scenarios for systems that manufac- 20 then the changes and validation can ripple through in a pro-
ture agricultural chemicals. 	 cess when system 200 operates. This also allows the possi-

One or more embodiments of the system 200 may also
	

bility of cost effectively developing competing designs for a
include a set of laws of concurrency 204. Laws of concur- 	 product and implementing each to determine the best one.
rency 204 are rules detailing equivalences between sets of

	
Most notably, some embodiments of the system 200 do not

processes combined in various ways, and/or relating process- 25 include an automated logic engine, such as a theorem prover
based descriptions of systems or system components to 	 to infer the formal specification 208 from the domain knowl-
equivalent sets of traces. Laws of concurrency 204 may be 	 edge 202. However, the formal specification 208 can be a
expressed in any suitable language for describing concur- 	 provably correct implementation of the domain knowledge
rency. These languages include but are not limited to, CSP

	
202, provided the developer of an instance of system 200 has

and CCS and variants of these languages. Those skilled in the 30 properly used an automated logic engine (not shown) to prove
art will understand that many suitable languages in addition to 	 that the translator 206 correctly translates domain knowledge
those listed may fall within the scope of this invention. 	 into formal specifications.

In some embodiments, the domain knowledge 202 and a
	

Some embodiments of system 200 operate in a multi-pro-
set of laws of concurrency 204 may be received by a translator 	 cessing, multi-threaded operating environment on a com-
206. The plurality of rules or requirements of the domain 35 puter, such as the computer 802 illustrated in FIG. 8. While
knowledge 202 can be translated without human intervention 	 the system 200 is not limited to any particular domain knowl-
into a formal specification 208. In some embodiments, the	 edge 202, plurality of rules or requirements, set of laws of
formal specification 208 may be an intermediate notation or 	 concurrency 204, translator 206, formal specification 208,
language of sequential process algebra such as Hoare's lan- 	 analyzer 210, code translator 212 and rules 214, for sake of
guage of Communicating Sequential Processes (CSP), 40 clarity a simplified domain knowledge 202, plurality of rules
although one skilled in the art will recognize that other nota-	 or requirements, set of laws of concurrency 204, direct
tions or languages may be used. 	 mechanical translator 206, formal specification 208, analyzer

One or more embodiments may specify that the formal
	

210, code translator 212, and rules 214 are described by way
specification 208 is mathematically and provably equivalent	 of example.
to the domain knowledge 202. Mathematically equivalent 45

does not necessarily mean mathematically equal. As indi- 	 Method Embodiments
cated, mathematical equivalence of A and B means that A
implies B and B implies A. Note that applying the laws of

	
In the previous section, a system level overview of the

concurrency 204 to the formal specification 208 would allow	 operation of an embodiment is described. In this section, the
for the retrieval of a trace-based specification that is equiva- 50 particular methods of such an embodiment are described by
lent to the domain knowledge 202. Further note that, in at

	 reference to a series of flowcharts. Describing the methods by
least one embodiment, the formal specification 208 is math-	 reference to a flowchart enables one skilled in the art to
ematically equivalent to rather than necessarily equal to the

	 develop such programs, firmware, or hardware, including
domain knowledge 202. This aspect indicates the process 	 such instructions to carry out the methods on suitable com-
may be reversed, allowing for reverse engineering of existing 55 puters, executing the instructions from computer-readable
systems, or for iterative development of more complex sys- 	 media. Similarly, embodiments of the methods performed by
tems.	 the server computer programs, firmware, or hardware may

In some embodiments, the system may include an analyzer	 also be composed of computer-executable instructions.
210 to determine various properties, such as the existence of

	
Methods 300-700 can be performed by a program executing

omissions, deadlock, livelock, and race conditions, as well as 60 on, or performed by firmware or hardware that is a part of, a
other conditions, in the formal specification 208, although

	 computer, such as computer 802 in FIG. 8.
one skilled in the art will recognize that other additional

	
FIG. 3 is a flowchart of a method 300 to validate/update a

properties may be determined by the analyzer 210.	 knowledge-based system, according to an embodiment.
System 200 may also include a code translator 212 to

	
Method 300 may include analyzing 302 a formal specifi-

translate the plurality of formal specification 208 to a set of 65 cation, such as 108, of the knowledge-based system, the for-
rules in a high-level computer language 214, such as an expert 	 mal specification having been previously derived from the
system shell language or similar. One example of an expert 	 rules, such as 102, of the knowledge-based system.

US 7,752,608 B1
9

Thereafter, a determination 304 may be made as to whether
or not the analyzing 302 indicates that the formal specifica-
tion contains a flaw. If a flaw does exist, then the rules, such as
102, can be corrected 306 accordingly.

In some embodiments, the analyzing 302 may include
applying mathematical logic to the formal specification in
order to identify a presence or absence of mathematical prop-
erties of the formal specification. Mathematical properties of
the formal specification that can be determined by applying
mathematical logic to the formal specification may include,
by way of example:

1)whether or not the formal specification implies a system
execution trace that includes a deadlock condition.

2) whether or not the formal specification implies a system
execution trace that includes a livelock condition.

The above two properties are domain independent. One
skilled in the art will note that there are many other possible
flaws that could be detected through the analysis of the model,
many or even most of which might be domain dependent. An
example of a domain dependent property would be repre-
sented by the operational principle that "closing a door that is
not open is not a valid action." This example would be appli-
cable in the domain of the Hubble Space Telescope on-orbit
repair.

Because in some embodiments the formal specification
may be provably equivalent to the rules by virtue of method
300, if a flaw is detected in the formal specification, then the
flaw could be corrected by changing (correcting) the rules.
Once the correction is made, then the corrected rules may be
processed by system 100 in FIG.1 or method 500 in FIG. 5 to
derive a new formal specification from the corrected rules.
According to at least one embodiment, the new formal speci-
fication can be proces sed by method 300, and the iterations of
method 500 and method 300 can repeat until there are no
more flaws in the formal specification generated from the
rules, at which point the rules have no flaws because the
formal specification is provably equivalent to the rules from
which it was derived. Thus, iterations of methods 500 and 300
can provide verification/validation of the rules.

Thereafter, the new formal specification can be used to
generate an implementation of the system.

FIG. 4 is a flowchart of a method 400 to validate/update
domain knowledge, according to an embodiment.

In some embodiments, the method 400 includes analyzing
402 a formal specification, such as 108, the formal specifica-
tion preferably having been previously derived from the
domain knowledge, such as domain knowledge 202.

Thereafter, a determination 404 may be made as to whether
or not the analyzing 402 indicates that the formal specifica-
tion contains a flaw. If a flaw does exist, then the domain
knowledge, such as 202, may be corrected 406 accordingly.

In some embodiments, the analyzing 402 may include
applying mathematical logic to the formal specification in
order to identify a presence or absence of mathematical prop-
erties of the formal specification.

Because the formal specification can be provably equiva-
lent to the domain knowledge by virtue of method 400, if a
flaw is detected in the formal specification, then the flaw
could be corrected by changing (correcting) the domain
knowledge. Once the correction is made, then the corrected
rules may be processed by system 200 in FIG. 2 or method
600 in FIG. 6 to derive a new formal specification from the
corrected domain knowledge. The new formal specification
can be processed by method 400, and the iterations of method
600 and method 400 can repeat until there are no more flaws
in the formal specification generated from the domain knowl-
edge, at which point the domain knowledge has no flaws

10
because the formal specification can be provably equivalent
to the domain knowledge from which it was derived. Thus,
iterations of methods 600 and 400 provide verification/vali-
dation of the domain knowledge.

5 In some embodiments, the formal specification 108 may be
a process-based specification, such as process algebra
encoded notation. The process algebra encoded notation is a
mathematically notated form. This embodiment may satisfy
the need in the art for an automated, mathematics-based pro-

10 cess for requirements validation that does not require large
computational facilities.

The method 500 may include translating 502 rules 102 into
a formal specification 108 without human intervention.

Thereafter, method 500 may include optionally analyzing
15 504 the formal specification model. The analyzing 504 may

be a verification/validation of the rules 102. In some embodi-
ments, the analyzing 504 determines various properties such
as existence of omissions, deadlock, livelock, and race con-
ditions in the formal specification 108, although one skilled in

20 the art will know that analyzing the formal specification
model may determine other properties not specifically listed,
which are contemplated by this invention. In some embodi-
ments, the analyzing 504 may provide a mathematically
sound analysis of the rules 102 in a general format that

25 doesn't require significant understanding of the specific rules
of the rules 102. Further, the analyzing 504 can warn devel-
opers of errors in their rules 102, such as contradictions and
inconsistencies, but equally importantly it can highlight rules
or sets of rules that are underspecified or over-specified and

30 need to be corrected for the rules 102 to operate as intended.
Thus, no knowledge of the rules 102 is required, but instead
significant analysis, verification, testing, simulation and
model checking of the rules 102 using customized tools or
existing tools and techniques is provided.

35 Thereafter, in some embodiments, method 500 may
include translating 506 the formal specification 108 to
domain knowledge. Thus, in at least one embodiment, the
method 500 provides a method to convert rules to domain

40
knowledge without involvement from a computer program-
mer.

Most notably, some embodiments of the method 500 do not
include invoking an automated logic engine, such as a theo-
rem prover, to infer the formal specification 108 from the

45
rules 102.

FIG. 6 is a flowchart of a method 600 to generate rules of a
knowledge-based system from domain knowledge, according
to an embodiment. Method 600 may solve the need in the art
to generate rules from requirements with neither the time

50
involved in manually writing the rules, nor the mistakes that
may arise in manually writing the rules, without using an
automated logic engine.

Method 600 may include translating 602 each of a plurality
of requirements of the domain knowledge to a plurality of

55 formal specification segments. The translation may be done
without human intervention. In some embodiments, the trans-
lating 602 includes inferring the formal specification seg-
ments from the domain knowledge. One embodiment of
translating 602 is shown in FIG. 7 below.

60 In some embodiments, the formal specification is process
algebra notation. Those embodiments may satisfy the need in
the art for an automated, mathematics-based process for
requirements validation that does not require large computa-
tional facilities.

65 Thereafter, method 600 may include aggregating 604 the
plurality of formal specification segments into a single formal
specification model.

US 7,752,608 B1
11
	

12
Subsequently, method 600 may include translating 606 the

	
Computer 802 may include a processor 804, commercially

single formal specification model to rules 102 encoded in the 	 available from Intel, Motorola, Cyrix and other manufactur-
CLIPS computer language or Prolog or some other high-level

	
ers apparent to one skilled in the art. Computer 802 may also

computer programming language known to those skilled in
	

include random-access memory (RAM) 806, read-only
the art. Thereafter, method 600 may include processing 608 5 memory (ROM) 808, and one or more mass storage devices
the rules 102 encoded, for instance, in the CLIPS computer

	 810, and a system bus 812, that operatively couples various
language by an inference engine, such as inference engine 	 system components to the processing unit 804. The memory
104. Thus, method 600 provides an embodiment of a method

	
806 and 808, and mass storage devices, 810, are types of

to convert domain knowledge to an application system with- 	 computer-accessible media. Mass storage devices 810 are
out involvement from a computer programmer. 	 io more specifically types of nonvolatile computer-accessible

Most notably, method 600 does not include invoking a	 media and can include one or more hard disk drives, floppy
theorem prover or any other automated logic engine to infer

	
disk drives, optical disk drives, and tape cartridge drives. The

the formal specification segments from the domain knowl- 	 processor 804 executes computer programs stored on the
edge.	 computer-accessible media.

FIG. 7 is a flowchart of a method 700 to translate each of a 15	 Computer 802 can be communicatively connected to the
plurality of requirements of the domain knowledge to a plu- 	 Internet 814 (or any communications network) via a commu-
rality of formal specification segments, according to an 	 nication device 816. Internet 814 connectivity is well known
embodiment. Method 700 is one embodiment of translating 	 within the art. In one embodiment, a communication device
602 in FIG. 6. As indicated, such translation may be accom- 	 816 is a modem that responds to communication drivers to
plished without human intervention.	 20 connect to the Internet via what is known in the art as a

In some embodiments, the method 700 may include veri-	 "dial-up connection." In another embodiment, a communica-
fying 702 the syntax of the plurality of requirements of the	 tion device 816 is an Ethernet(k or similar hardware network
domain knowledge. Thereafter, method 700 may include	 card connected to a local-area network (LAN) that itself is
mapping 704 the plurality of requirements of the domain 	 connected to the Internet via what is known in the art as a
knowledge to a formal specification.	 25 "direct connection" (e.g., TI line, cable modem, DSL, wire-

In some embodiments, method 700 subsequently may also
	

less connection, etc.).
include verifying 706 consistency of the formal specification

	
Preferably a user enters commands and information into

with domain knowledge. In some embodiments, method 700
	

the computer 802 through input devices such as a keyboard
subsequently also includes verifying 708 a lack of other prob-	 818 or a pointing device 820. The keyboard 818 permits entry
lems in the formal specification. One example of other prob- 30 of textual information into the computer 802, as known within
lems is unreachable states in the process defined in the formal

	
the art, and embodiments are not limited to any particular type

specification, although one skilled in the art will understand
	

of keyboard. Pointing device 820 permits the control of the
that yet other problems are contemplated. 	 screen pointer providedby a graphical user interface (GUI) of

In some embodiments, methods 300-700 may be imple-	 operating systems such as versions of Microsoft Windows®.
mented as a communication media, such as a computer data 35 Embodiments are not limited to any particular pointing
signal embodied in a carrier wave that represents a sequence

	
device 820. Such pointing devices include mice, touch pads,

of instructions which, when executed by a processor, such as 	 trackballs, remote controls and point sticks. Other input
the processor 804 in FIG. 8, cause the processor to perform

	
devices (not shown) can include a microphone, joystick,

the respective method or as a computer-accessible storage 	 game pad, gesture-recognition or expression recognition
medium having stored executable instructions capable of 4o devices, or the like.
directing a processor, such as the processor 804 in FIG. 8, to

	
In some embodiments, computer 802 is operatively

perform the respective method. In varying embodiments, the 	 coupled to a display device 822. Display device 822 is con-
type of storage medium may be a magnetic medium, an 	 nected to the system bus 812. Display device 822 permits the
electronic medium, an electromagnetic medium, an optical

	
display of information, including computer, video and other

medium or other mediums that will be readily apparent to one 45 information, for viewing by a user of the computer. Embodi-
skilled in the art and fall within the scope of this invention. 	 ments are not limited to any particular display device 822.

Such display devices include cathode ray tube (CRT) displays
Hardware and Operating Environment

	
(monitors), as well as flat panel displays such as liquid crystal
displays (LCD's) or image and/or text projection systems or

FIG. 8 is a block diagram of a preferred hardware and 50 even holographic image generation devices. In addition to a
operating environment 800 in which different embodiments 	 monitor, computers typically include other peripheral input/
can be practiced. The description of FIG. 8 provides an over- 	 output devices such as printers (not shown). Speakers 824 and
view of computer hardware and a suitable computing envi- 	 826 (or other audio device) provide audio output of signals.
ronment in conjunction with which some embodiments can

	
Speakers 824 and 826 are also connected to the system bus

be implemented. Embodiments are described in terms of a 55 812.
computer executing computer-executable instructions. How-	 Computer 802 also includes an operating system (not
ever, some embodiments can be implemented entirely in 	 shown) that is stored on the computer-accessible media RAM
computer hardware in which the computer-executable

	 806, ROM 808, and mass storage device 810, and is and
instructions are implemented in read-only memory. Some 	 executed by the processor 804. Examples of operating sys-
embodiments can also be implemented in client/server com- 60 terns include Microsoft Windows®, Apple MacOS®,
puting environments whereremote devices thatperform tasks

	
Linux®, UNIX®. Examples are not limited to any particular

are linked through a communications network. Program mod- 	 operating system, however, and the construction and use of
ules can be located in both local and remote memory storage 	 such operating systems are well known within the art.
devices in a distributed computing environment. Some

	
Embodiments of computer 802 are not limited to any type

embodiments can also be at least partially implemented in a 65 of computer 802. In varying embodiments, computer 802
quantum mechanical computing and communications envi- 	 comprises a PC-compatible computer, a MacOSO-compat-
ronment.	 ible computer, a Linux®-compatible computer, or a UNIX®-

US 7,752,608 B1
13
	

14
compatible computer. The construction and operation of such

	
their rules 102, such as contradictions and inconsistencies,

computers are well known within the art. 	 but equally importantly it can highlight rules or sets of rules
Computer 802 can be operated using at least one operating	 that are underspecified or over-specified and need to be cor-

system to provide a graphical user interface (GUI) including 	 rected for the rules 102 to operate as intended. Thus, in some
a user-controllable pointer. Computer 802 can have at least 5 embodiments, no knowledge of the rules 102 is required, but
one web browser application program executing within at

	
instead significant analysis, verification, testing, simulation

least one operating system, to permit users of computer 802 to	 and model checking of the rules 102 using customized tools
access an intranet, extranet or Internet world-wide-web pages 	 or existing tools and techniques may be allowed.
as addressed by Universal Resource Locator (URL)

	
In some embodiments, apparatus 900 may include a rep-

addresses. Examples of browser application programs io reentation of the laws of concurrency 204 that are received
include, but are not limited to, Netscape Navigator® and

	
by a translator 908 along with the CSP specification 108. The

Microsoft Internet Explorer®.	 translator may generate domain knowledge 202 from the laws
The computer 802 can operate in a networked environment 	 of concurrency 204 and the CSP specification 108.

using logical connections to one or more remote computers, 	 The domain knowledge 202 might be expressed in
such as remote computer 828. These logical connections are 15 restricted natural language, graphical notations, or even using
achieved by a communication device coupled to, or a part of, 	 semi-formal notations such as unified modeling language
the computer 802. Embodiments are not limited to a particu-	 (UML) use cases. One skilled in the art will know that various
lar type of communications device. The remote computer 828

	
languages and notations may be appropriate and fall within

can be another computer, a server, a router, a network PC, a	 the scope of this invention.
client, a peer device or other common network node. The 20 In some embodiments, it is notable that the apparatus 900
logical connections depicted in FIG. 8 include a local-area

	
does not include an automated logic engine to infer the

network (LAN) 830 and a wide-area network (WAN) 832. 	 domain knowledge 202 from the CSP specification 108.
Such networking environments are commonplace in offices, 	 Apparatus 900 may be operational for a wide variety of
enterprise-wide computer networks, intranets, extranets and

	
rules 102, domain knowledge languages and applications,

the Internet.	 25 and thus apparatus 900 is generally applicable. Such applica-
When used in a LAN-networking environment, the com- 	 tions may include, without limitation, distributed software

puter 802 and remote computer 828 are connected to the local
	

systems, sensor networks, robot operation, complex scripts
network 830 through network interfaces or adapters 834,	 for spacecraft integration and testing, and autonomous sys-
which is one type of communications device 816. Remote	 tems, but those skilled in the art will understand that other
computer 828 also includes a network device 836. When used so applications are contemplated.
in a conventional WAN-networking environment, the com- 	 Apparatus 900 components such as the CSP translator 106,
puter 802 and remote computer 828 may communicate with a	 the formal specification analyzer 902, and the translator 908
WAN 832 through modems (not shown) or other devices 	 may be embodied as computer hardware circuitry or as a
known in the art. A typical modem, which can be internal or 	 computer-readable program, or a combination of both, such
external, may be connected to the system bus 812. In a net- 35 as shown in FIG. 10. FIG. 10 illustrates an environment 1000
worked environment, program modules depicted relative to 	 similar to that of FIG. 8, with the addition of the CSP trans-
the computer 802, or portions thereof, can be stored in the

	
lator 106, a formal specification analyzer 1002 and a transla-

remote computer 828.	 tor 1008 that correspond to the apparatus 900. In another
Preferably, the computer 802 also includes power supply	 embodiment, apparatus 900 may be implemented in an appli-

838. Each power supply can be a battery.	 40 cation service provider (ASP) system.
More specifically, in the computer-readable program

CSP Implementation	 embodiment, the programs may be structured in an object-
orientation using an object-oriented language such as Java,

Referring to FIGS. 9 and 10, a particular CSP implemen- 	 Smalltalk or C++, and the programs may be structured in a
tation 900 is described in conjunction with the system over- 45 procedural-orientation using a procedural language such as
view in FIG.1 and the methods described in conjunction with

	
COBOL or C. The software components communicate in any

FIG. 2.	 of a number of ways that are well-known to those skilled in
FIG. 9 is a block diagram of a particular CSP implemen- 	 the art, such as application program interfaces (API) or inter-

tation of an apparatus 900 to analyze a CSP specification	 process communication techniques such as remote procedure
generated from rules and/or generate domain knowledge 50 call (RPC), common object request broker architecture
from the rules, according to one embodiment. Apparatus 900

	
(CORBA), Component Object Model (COM), Distributed

may solve the need in the art for an automated, generally 	 Component Object Model (DCOM), Distributed System
applicable way to verify that implemented rules are a prov- 	 Object Model (DSOM) and Remote Method Invocation
ably correct implementation of a formal specification. 	 (RMI). The components can execute on as few as one com-

Apparatus 900 may include a CSP translator 106 that gen- 55 puter as in computer 802 in FIG. 8, or on at least as many
erates a CSP specification from the rules 102 in reference to 	 computers as there are components.
the inference engine 104. The CSP specification 108 is a
formal specification 108 that is encoded in CSP.	 Conclusion

In some embodiments, the apparatus 900 may include an
analyzer 902 to determine various properties such as exist- 60	 A validater of a knowledge-based system is described.
ence of omissions, deadlock, livelock, and race conditions in

	
Although specific embodiments have been illustrated and

the CSP specification 108.Otherproperties that may be deter- 	 described herein, it will be appreciated by those of ordinary
mined are apparent to those skilled in the art. In some embodi-	 skill in the art that any arrangement which is calculated to
ments, the analyzer 902 may provide a mathematically sound

	
achieve the same purpose may be substituted for the specific

analysis 904 of the rules 102 in a general format that doesn't 65 embodiments shown. This application is intended to cover
require significant understanding of the specific rules of the 	 any adaptations or variations. For example, although
rules 102. The analyzer 902 can warn developers of errors in

	
described in procedural terms, one of ordinary skill in the art

US 7,752,608 B1
15
	

16
	will appreciate that implementations can be made in an 	 whether the formal specification implies a system execu-

	

object-oriented design environment or any other design envi-	 tion trace that includes a livelock condition, wherein a
ronment that provides the required relationships.	 livelock condition is a condition in which two executing

	

In particular, one of skill in the art will readily appreciate 	 processes each wait for the other to finish, as their rela-

	

that the names of the methods and apparatus are not intended
	

5	 tive internal states change continually during execution

	

to limit embodiments. Furthermore, additional methods and
	

without progress being made by either process.

	

apparatus can be added to the components, functions can be
	

5. The computer-accessible storage medium of claim 1,

	

rearranged among the components, and new components to	 wherein the rules of the knowledge-based system further

	

correspondto future enhancements and physical devices used
	

comprise:

	

in embodiments canbe introduced without departing from the 	 10	 a plurality of rules encoded in an expert system shell lan-

	

scope of embodiments. One of skill in the art will readily	 guage.

	

recognize that embodiments are applicable to future commu- 	 6. The computer-accessible storage medium of claim 1,

	

nication devices, different file systems, and new data types. 	 wherein the expert system shell language further comprises:

	

The terminology used in this application is meant to 	 the C Language Integrated Production System.

	

include all object-oriented, database and communication 	 15	 7. The computer-accessible storage medium of claim 1,

	

environments and alternate technologies which provide the 	 wherein the rules of the knowledge-based system further
same functionality as described herein. 	 comprises:

We claim:	 a plurality of rules encoded in a declarative programming
1. A computer-accessible storage medium having execut- 	 language.

	

able instructions to validate a knowledge-based system, the 	 20	 8. The computer-accessible storage medium of claim 7,

	

executable instructions capable of directing a processor to 	 wherein the declarative programming language further com-
perform:	 prises:

receiving rules of the knowledge-based system; 	 the Prolog language.

	

translating the rules of the knowledge-based system to a
	

9. The computer-accessible storage medium of claim 1,
formal specification, wherein translating comprises a 25 wherein the formal specification further comprises:

	

verification process using mathematical laws by which
	

a formal specification encoded in a sequential process alge-

	

the rules of the knowledge-based system are mapped to
	

bra, wherein the sequential process algebra is a member

	

the formal specification using a theorem prover or an 	 of a diverse family of related approaches to formally

	

automated logic engine, wherein an inference engine 	 modeling concurrent systems that provide a tool for the

	

iteratively applies a set of rules to a set of data represent- 	 30	 high-level description of interactions, communications,

	

ing a problem to determine a solution to the problem by 	 and synchronizations between a collection of indepen-

	

logical manipulation and analysis of the data; the math-	 dent agents or processes, along with algebraic laws that

	

ematical laws including the Laws of Concurrency,	 allow process descriptions to be manipulated and ana-

	

whereby the Laws of Concurrency are algebraic laws
	

lyzed, and permit formal reasoning about equivalences

	

that (a) allow at least one process to be manipulated and
	

35	 between processes.

	

analyzed; (b) permit formal reasoning about equiva-	 10. The computer-accessible storage medium of claim 9,

	

lences between processes; and (c) determine traces from 	 wherein the sequential process algebra further comprises:
the at least one process; and

	
a language of Communicating Sequential Processes,

	

translating the rules of the knowledge-based system to a 	 wherein Communicating Sequential Processes is a for-

	

formal specification without the use of an automated
	

40	 mal language for describing patterns of interaction in

	

logic engine, wherein translating comprises a process by 	 concurrent systems.

	

which the rules of the knowledge-based system are
	

11. The computer-accessible storage medium of claim 1,

	

matched to the formal specification as specified by the	 the medium further comprising executable instructions
prior mapping.	 capable of directing the processor to perform:

2. The computer-accessible storage medium of claim 1, the 	 45	 translating the formal specification to domain knowledge.

	

medium further comprising executable instructions capable
	

12. The computer-accessible storage medium of claim 1,
of directing the processor to perform:	 wherein translating the rules of the knowledge-based system

	

analyzing the formal specification, wherein analyzing	 to a formal specification alternatively comprises the use of the

	

includes detecting and identifying errors in the formal
	

theorem prover or automated logic engine.
specification. 	 50	 13. A computer-accessible storage medium having execut-

3. The computer-accessible storage medium of claim 2,	 able instructions to generate a knowledge-based system from

	

wherein the executable instructions capable of directing the
	

domain knowledge, the executable instructions capable of

	

processor to perform analyzing the formal specification fur- 	 directing a processor to perform:
ther comprises:	 translating domain knowledge to a formal specification;

	

applying mathematical logic to the formal specification in 	 55	 translating the formal specification to rules of the knowl-

	

order to identify a presence or absence of mathematical
	

edge-based system

	

properties of the formal specification, wherein math-	 translating comprises a verification process using math-

	

ematical logic operates throughthe instructions to reveal
	

ematical laws by which the domain knowledge and for-

	

where the prescribed mathematical properties exist in	 mal specification are mapped to the formal specification
the formal specification of the scenario. 	 60	 and the rules of the knowledge-based system respec-

4. The computer-accessible storage medium of claim 3,	 tively, using a theorem prover or an automated logic

	

wherein the mathematical properties of the formal specifica- 	 engine, wherein an inference engine iteratively applies a
tion further comprise:	 set of rules to a set of data representing a problem to

	

whether the formal specification implies a system execu- 	 determine a solution to the problem by logical manipu-

	

tion trace that includes a deadlock condition, wherein a 	 65	 lation and analysis of the data; the mathematical laws

	

deadlock condition is a condition in which two execut- 	 including the Laws of Concurrency, whereby the Laws
ing processes each wait for the other to finish; and

	
of Concurrency are algebraic laws that (a) allow at least

US 7,752,608 B1
17
	

18
	one process to be manipulated and analyzed; (b) permit

	
lection of independent agents or processes, along with

	

formal reasoning about equivalences between pro- 	 algebraic laws that allow process descriptions to be

	

cesses; and (c) determine traces from the at least one	 manipulated and analyzed, and permit formal (that is,
process; and
	

mathematically exact) reasoning about equivalences

	

translating the domain knowledge to a formal specification 5	 between processes.

	

and translating the formal specification to rules of the
	

21. The computer-accessible storage medium of claim 20,

	

knowledge-based system occurs without the use of an 	 wherein the sequential process algebra further comprises:

	

automated logic engine, wherein translating comprises a 	 a language of Communicating Sequential Processes,

	

process by which the domain knowledge and formal
	

wherein Communicating Sequential Processes is a for-

	

specification are matched to the formal specification and 10	 mal language for describing patterns of interaction in

	

the rules of the knowledge-based system respectively as 	 concurrent systems.
specified by the prior mappings.	 22. The computer-accessible storage medium of claim 13,

14. The computer-accessible storage medium of claim 13, 	 wherein the rules of the knowledge-based system further

	

wherein the executable instructions capable of directing the	 comprise:

	

processor to perform translating the domain knowledge to the 15	 a plurality of rules encoded in an expert system shell lan-
formal specification further comprise:	 guage.

	

verifying a syntax of the domain knowledge, wherein veri- 	 23. The computer-accessible storage medium of claim 22,

	

fying the syntax comprises checking that the sequence 	 wherein the expert system shell language further comprises:

	

of data of the domain knowledge complies with the 	 the C Language Integrated Production System.
encoded syntax rules; and

	
20	 24. The computer-accessible storage medium of claim 13,

	

translating the domain knowledge to a plurality of formal
	

wherein the domain knowledge further comprises:
specification segments.	 an informal specification expressed in at least one of a

15. The computer-accessible storage medium of claim 13, 	 restricted natural language, at least one "if-then" rule, a

	

wherein the executable instructions capable of directing the	 graphical notation, an English language, a programming

	

processor to perform translating the domain knowledge to the 25	 language representation, a scenario, a UML use-case, a
formal specification further comprise:

	
flowchart, and a semi-formal notation.

verifying consistency of the formal specification. 	 25. The computer-accessible storage medium of claim 13,
16. The computer-accessible storage medium of claim 13, 	 wherein translating the domain knowledge to a formal speci-

	

the medium further comprising executable instructions
	

fication and translating the formal specification to rules of the
capable of directing the processor to perform: 	 so knowledge-based system alternatively comprises the use of

	

analyzing the formal specification, wherein analyzing	 the theorem prover or automated logic engine.

	

includes detecting and identifying errors in the formal
	

26. A system to validate a software system, the system
specification. 	 comprising:

17. The computer-accessible storage medium of claim 13, 	 a processor;

	

the medium further comprising executable instructions 35	 an inference engine, wherein an inference engine itera-
capable of directing the processor to perform: 	 tively applies a set of rules to a set of data representing a

	

determining mathematical and logical properties of the	 problem to determine a solution to the problem by logi-

	

formal specification using an automated logic engine, 	 cal manipulation and analysis of the data;

	

wherein the mathematical and logical properties of the	 a translator, the translator operable to receive rules of the
formal specification comprise: 	 40	 software system and to generate a specification

	

whether the formal specification implies a system execu- 	 expressed in Communicating Sequential Processes lan-

	

tion trace that includes a deadlock condition, wherein a 	 guage, wherein Communicating Sequential Processes is

	

deadlock condition is a condition in which two execut- 	 a formal language for describing patterns of interaction
ing processes each wait for the other to finish; and

	
in concurrent systems;

	

whether the formal specification implies a system execu- 45	 the translator performs a verification process comprising

	

tion trace that includes a livelock condition, wherein a 	 using mathematical laws by which the rules of the soft-

	

livelock condition is a condition in which two executing 	 ware system are mapped to the Communicating Sequen-

	

processes each wait for the other to finish, as their rela- 	 tial Processes specification using a theorem prover or an

	

tive internal states change continually during execution 	 automated logic engine utilizing the inference engine;
without progress being made by either process. 	 50	 the mathematical laws including the Laws of Concur-

18. The computer-accessible storage medium of claim 13, 	 rency, whereby the Laws of Concurrency are algebraic

	

wherein the rules of the knowledge-based system further
	

laws that (a) allow at least one process to be manipulated
comprises:	 and analyzed; (b) permit formal reasoning about equiva-

	

a plurality of rules encoded in a declarative programming
	

lences between processes; and (c) determine traces from
language.	 55	 the at least one process; and

19. The computer-accessible storage medium of claim 18, 	 the translator translates the rules of the software system to

	

wherein the declarative programming language further com- 	 the Communicating Sequential Processes specification
prises:	 without the use of an automated logic engine, wherein

the Prolog language.	 translating comprises a process by which the rules of the
20. The computer-accessible storage medium of claim 13, 60	 software system are matched to the Communicating

wherein the formal specification further comprises:
	

Sequential Processes specification as specified by the

	

a sequential process algebra, wherein the sequential pro- 	 prior mapping; and

	

cess algebra is a member of a diverse family of related
	

an analyzer, the analyzer operable to perform model veri-

	

approaches to formally modeling (that is, mathemati- 	 fication/checking and determine the existence of omis-

	

cally exact modeling of) concurrent systems that pro- 65	 sions, deadlock, livelock, and race conditions or other

	

vide a tool for the high-level description of interactions, 	 problems and inconsistencies in the Communicating

	

communications, and synchronizations between a col- 	 Sequential Processes encoded specification, wherein a

US 7,752,608 B1
19

deadlock condition is a condition in which two execut-
ing processes each wait for the other to finish, wherein a
livelock condition is a condition in which two executing
processes each wait for the other to finish, as their rela-
tive internal states change continually during execution
without progress being made by either process, and
wherein a race condition is a cause of concurrency prob-
lems when multiple processes access a shared resource,
with at least one of the accesses being a write, with no
mechanism used by any of the processes to moderate
simultaneous access to the shared resource.

27. The system of claim 26, wherein the rules of the soft-
ware system further comprise:

a plurality of rules encoded in the C Language Integrated
Production System.

28. The system of claim 26, wherein the rules of the soft-
ware system further comprise:

a plurality of rules encoded in the Prolog language.
29. A system, the system comprising:
a processor;
a storage device coupled to the processor, the storage

device operable to store an expert system, wherein the
expert system comprises a set of rules; and

a software apparatus operative on the processor, the soft-
ware apparatus operable to translate the expert system
into a formal specification, the software apparatus com-
prising:

a translator, the translator operable to receive rules of the
expert system and to generate a formal specification;

the translator performs a verification process comprising
using mathematical laws by which the rules of the expert
system are mapped to the formal specification using a
theorem prover or an automated logic engine wherein an
inference engine iteratively applies a set of rules to a set
of data representing a problem to determine a solution to

20
the problem by logical manipulation and analysis of the
data; the mathematical laws including the Laws of Con-
currency, whereby the Laws of Concurrency are alge-
braic laws that (a) allow at least one process to be

s manipulated and analyzed; (b) permit formal reasoning
about equivalences between processes; and (c) deter-
mine traces from the at least one process; and

the translator translates the rules of the expert system to a
formal specification without the use of an automated

10 logic engine, wherein translating comprises aprocess by
whichthe rules of the software system are matched to the
formal specification as specified by the prior mapping;
and

an analyzer operable to perform model verification/check-
is ing and determine the existence of omissions, deadlock,

livelock, and race conditions in the formal specification,
wherein a deadlock condition is a condition in which two
executing processes each wait for the other to finish,
wherein a livelock condition is a condition in which two

20 executing processes each wait for the other to finish, as
their relative internal states change continually during
execution without progress being made by either pro-
cess, and wherein a race condition is a cause of concur-
rency problems when multiple processes access a shared

25 resource, with at least one of the accesses being a write,
with no mechanism used by any of the processes to
moderate simultaneous access to the shared resource.

30. The system of claim 29, wherein the rules of the soft-
ware system further comprise:

30	 a plurality of rules encoded in the C Language Integrated
Production System.

31. The system of claim 29, wherein the translation of the
expert system into a formal specification is carried out with-
out human intervention.

	7752608-p0001.pdf
	7752608-p0002.pdf
	7752608-p0003.pdf
	7752608-p0004.pdf
	7752608-p0005.pdf
	7752608-p0006.pdf
	7752608-p0007.pdf
	7752608-p0008.pdf
	7752608-p0009.pdf
	7752608-p0010.pdf
	7752608-p0011.pdf
	7752608-p0012.pdf
	7752608-p0013.pdf
	7752608-p0014.pdf
	7752608-p0015.pdf
	7752608-p0016.pdf
	7752608-p0017.pdf
	7752608-p0018.pdf
	7752608-p0019.pdf
	7752608-p0020.pdf
	7752608-p0021.pdf
	7752608-p0022.pdf

