Evaluation of an ATP Assay to Quantify Bacterial Attachment to Surfaces in Reduced Gravity

Michele N. Birmele (1), Luke B. Roberson* (2), and Michael S. Roberts (1)
(1) Dynamac Corporation, Kennedy Space Center, Florida 32899
(2) NASA, Kennedy Space Center, Florida 32899

*Corresponding author
Mailing address: Mail code: NE-L6-P
Kennedy Space Center, FL 32899
E-mail: Luke.B.Roberson@NASA.gov
Tel.: (321) 867-1543
Abstract

Aim: To develop an assay to quantify the biomass of attached cells and biofilm formed on wetted surfaces in variable-gravity environments.

Methods and Results: Liquid cultures of Pseudomonas aeruginosa were exposed to 30–35 brief cycles of hypergravity (≤ 2-g) followed by free fall (i.e., reduced gravity) equivalent to either lunar-g (i.e., 0.17 normal Earth gravity) or micro-g (i.e., < 0.001 normal Earth gravity) in an aircraft flying a series of parabolas. Over the course of two days of parabolic flight testing, 504 polymer or metal coupons were exposed to a stationary-phase population of P. aeruginosa strain ERC1 at a concentration of 1·0 x 10^5 cells per milliliter. After the final parabola on each flight test day, half of the material coupon samples were treated with either 400 µg L^-1 ionic silver fluoride (microgravity-exposed cultures) or 1% formalin (lunar-gravity-exposed cultures). The remaining sample coupons from each flight test day were not treated with a fixative. All samples were returned to the laboratory for analysis within 2 hours of landing, and all biochemical assays were completed within 8 hours of exposure to variable gravity. The intracellular ATP luminescent assay accurately reflected cell physiology compared to both cultivation-based and direct-count microscopy analyses. Cells exposed to variable gravity had more than twice as much intracellular ATP as control cells exposed only to normal Earth gravity.

Keywords: ATP, microgravity, parabolic flight, Pseudomonas aeruginosa.
Introduction and Background

The effects of exposure to reduced gravity on the pattern of gene expression, morphology, physiology, and ecology of bacterial populations have been studied by a variety of molecular and cellular approaches in environments ranging from ground-based, low-shear modeled microgravity to reduced-gravity flights on aircraft and spaceflight experiments in low Earth orbit (Benoit and Klaus 2007; McLean et al. 2001; Nickerson et al. 2003; Sule et al. 2009). In addition to studies of the fundamental effects of exposure to microgravity on cell physiology, there is increasing interest in applied studies to improve control of microbial populations in life support systems in closed environments. Water is a critical life support element, representing 65% of the daily mass input for crew. Long-term human missions beyond low Earth orbit require regenerative life support technologies to collect, store, recycle, and disinfect water for use and reuse. In addition to maintaining water quality for crew use, these systems must minimize mass, power, and resupply requirements. The technologies NASA currently employs for microbial control of spacecraft potable-water systems use a residual chemical biocide, such as iodine or either ionic or colloidal silver, and one or more physical disinfection devices to reduce the microbial burden at the point of use. None of these microbial control treatments are completely effective against all microorganisms and have limitations for long-term use because they do not provide an absolute barrier to microbial growth, are inactivated over time by chemical degradation or interaction with material surfaces, require repeated application, or pose risks to human health with prolonged use (Aoki et al. 2009; Boer et al. 2007; Stowe et al. 2001). NASA is supporting research to develop safe and effective technologies for microbial control and monitoring of potable-water systems in closed-loop life support systems.
Traditional methods for microbial detection and enumeration in spacecraft during mission operations typically require collection of a sample on-orbit and transportation back to the ground for analysis (Castro et al. 2004; Ferguson et al. 1975; Kawamura et al. 2001; Koenig and Pierson 1977; Taylor et al. 1977). The availability of sample return from even low Earth orbit missions, such as the International Space Station (ISS), is severely limited and results in delays of several weeks between sample collection and analysis. In addition, most microbial and detection enumeration methods for spacecraft still rely upon cultivation-based approaches that fail to detect all of the cells present in a sample (Buckstein et al. 2008; La Duc et al. 2004). As a result, microbial contamination of spacecraft often cannot be prevented, reliably detected, or quickly mitigated. One potential technology for the real-time detection and quantification of bacteria and fungi in spacecraft life support systems uses a third-generation bioluminescence assay targeting ATP (Chappelle and Levin 1968; Stanley 1989; Venkateswaran et al. 2001).

ATP-based assays are routinely used for bacterial detection and hygiene monitoring during food, beverage, cosmetic, and pharmaceutical processing (Griffiths 2004; Hara and Mori 2006; Hara et al. 2009; Thompson 2004; Whitehead et al. 2008) and as semi-quantitative or quantitative assays for measuring eukaryotic cell proliferation (Crouch et al. 1993) or unattached bacterial and biofilm growth (Sule et al. 2009) or for monitoring biocide efficacy (Junker and Clardy 2007; Romanova et al. 2007). ATP is a suitable target for cell detection and cell quantification because it is ubiquitous in viable cells, its concentration does not vary with growth rate in individual cells, and it is relatively constant across different growth conditions for the same species (Schneider and Grouse 2004). More recently, ATP has been used to measure cell attachment to surfaces during biofilm formation (Hong and Brown 2009; Junker and Clardy 2007; Sule et al. 2009). Bacterial adhesion to material surfaces and biofilm formation are of
particularly important in microgravity environments where physical changes affect the metabolic
activity and physiology of each cell, resulting in changes in cell attachment and biofilm
formation (Altenburg et al. 2008; Benoit and Klaus 2007; Chen et al. 2009; DeGelder et al.
2009; Leys et al. 2009; Liu et al. 2008; McLean et al. 2001; Nickerson et al. 2003; Rosado et al.
2010; Vukanti et al. 2008; Wilson et al. 2007).

The potential for bacterial adhesion to wetted surface materials is an important
consideration in the design of potable-water systems for spacecraft because biofilms can
accelerate material corrosion, reduce the mean time between failures for critical life support
flight hardware, and enable microorganisms to evade antimicrobial control measures. If the
material is conducive to increased metabolic activity, then the ability of the bacteria to adhere to
the surface is also improved and vice versa (Hong and Brown 2009). Therefore, it is vital to use
the least-responsive material that suits the engineering specifications. The focus of this study
combines the evaluation of the natural antimicrobial properties of multiple materials with the use
of an ATP assay for rapid quantification of attached bacteria.

Materials and Methods

Five materials were selected for efficacy testing in reduced gravity based on their
potential application in potable-water systems for NASA spacecraft. Two metal coupon types,
316 stainless steel and titanium, were provided by BioSurface Technologies (Bozeman,
Montana) and correspond to the 316 stainless steel and titanium 6Al4V base-lined for use in the
NASA Orion Crew Exploration Vehicle (Pierson 2003). Each metal coupon was approximately
12.7 mm × 3 mm (diameter × thickness). Three polymer coupon types, polycarbonate, low-
density polyethylene, and polydimethylsiloxane, were provided to NASA by Sharklet
Technologies (Denver, Colorado) for testing. The polycarbonate and low-density polyethylene coupons were approximately 12 mm × 0.2 mm (diameter × thickness). The polydimethylsiloxane coupons were 12 mm × 0.1 mm (diameter × thickness).

For reduced-gravity flight tests, coupons were affixed to the bottom of 60 mm Petri dish fixation units (PDFUs) mounted in Biological Research in Canisters-Light Emitting Diode (BRIC-LED) flight hardware. Coupons were sterilized by ethylene oxide treatment prior to integration with autoclave-sterilized flight hardware. A more detailed description of the flight hardware and previous flight experiments in the BRIC hardware is available online [http://www.nasa.gov/mission_pages/station/science/experimentsBRIC.html]. In brief, the BRIC-LED class I flight hardware is an anodized-aluminum container with two layers of biological containment housing six PDFUs and electrical connections for LEDs. LEDs were not activated during these tests. In addition to a single 60 mm × 15 mm Petri dish, each PDFU contained a single- or dual-chamber fluid reservoir, which could be emptied by depressing a plunger. The standard Petri dish fixation unit (SPDFU) contained a single-chamber reservoir for addition of a single fluid pulse during flight operations. The modified Petri dish fixation unit (MPDFU) contained a dual-chamber reservoir for addition of up to two fluids, typically one containing a growth medium, with or without inoculum, for PDFU activation and another containing a cell fixative or biocide for PDFU deactivation.

Before each experiment, seven replicate sterile test coupons were aseptically attached with adhesive to the bottom of 60 mm Petri dishes (BD Biosciences, Franklin Lakes, New Jersey), forming the base of a single PDFU, and positioned in the BRIC-LED hardware. Either silver fluoride (Sigma-Aldrich, St. Louis, Missouri) (400 µg L⁻¹ AgF) or 1% formalin (Sigma-Aldrich) was aseptically loaded into the fixation reservoir in the MPDFUs.
For each flight day, three BRIC units, each containing six single-reservoir SPDFUs, and another three BRIC units, each containing six dual-reservoir MPDFUs, were loaded into a shuttle mid-deck locker assembly for attachment to the plane floor. On each flight test day, a series of 35 parabolas was scheduled to replicate either lunar gravity or microgravity. Material coupons exposed to reduced gravity in SPDFUs were placed on ice and returned to the laboratory for analysis, without addition of any fixative. Material coupons exposed to microgravity in MPDFUs were fixed with 400 µg L⁻¹ ionic silver (as AgF) after the final parabola, whereas coupons exposed to lunar gravity in MPDFUs were fixed in 1% formalin immediately after completion of the last parabola. For ground controls performed on each flight day, replicate samples were processed without fixation in SPDFUs or fixed in either 400 µg L⁻¹ ionic silver (microgravity flight day) or 1% formalin (lunar-gravity flight day) and were sampled hourly for up to 6 h of coupon exposure. The duration between inoculation and harvest for each of the unfixed flight samples was approximately 4.5 h. The duration between fixation and sample analysis was one week.

Coupons and the bulk fluid from each of the Petri dishes were sampled and diluted as required for heterotrophic plate count (HPC) on R2 Agar (R2A) (BD Biosciences), assay with the Live/Dead BacLight Bacterial Viability Kit (Invitrogen, Carlsbad, California) (L/D), ATP quantification with the Quench-Gone Aqueous test kit (LuminUltra Technologies, Fredericton, New Brunswick), and Acridine Orange (AO) direct count (AODC) (Sigma-Aldrich) solution. Replicate results from each assay were averaged and the standard deviation was calculated for the sample data. An agar streak plate of the test microorganism, Pseudomonas aeruginosa strain ERC1 (ATCC 700888), was maintained on R2A. The bacterial inoculum for reduced-gravity testing was prepared as a broth culture in Trypticase Soy Broth (TSB) (BD Biosciences, San
Jose, California) from the agar streak plate ≥ 12 h before flight each flight day, loaded into the
flight hardware, and incubated overnight at 37°C. From the overnight broth culture, the
P. aeruginosa was serially diluted to a final concentration of 1·0 x 10^5 cells per milliliter in a
10% TSB solution and loaded into the Petri dishes contained within the flight hardware
immediately before the first of the parabolas during the reduced-gravity flights. Inoculum
cellular concentrations were verified by optical density, AODC, and HPC.

The HPC test, previously called the standard plate count method, provided an estimate of
the total number of bacteria in each sample that developed into colonies during incubation on a
nutrient-rich agar (e.g., R2A) (Bartram et al. 2003). During this experiment, the plates were
incubated at 37°C for 20–24 h until individual colonies could be seen with accuracy. This
method can detect a broad group of bacteria, including non-pathogens, pathogens, and
opportunistic pathogens, but often does not accurately represent all of the bacteria in the water
sample examined. For example, bacterial biofilms, injured bacteria, and viable but non-
cultururable bacteria may not form colonies on the selected nutrient medium.

For direct-count microscopy of cells, the samples were sonicated and/or diluted into
0.2 µm-filtered deionized water as needed, stained with either AO or 1.5 µL of 3.34 mM Syto 9
and 3 µL of 20 mM propidium iodide (L/D), and filtered onto 25 mm × 0.2 µm (diameter ×
thickness) black polycarbonate filters (Millipore, Billerica, Massachusetts) for enumeration and
visual evaluation on an Axioskop 2 epifluorescent microscope (Carl Zeiss, Thornwood, New
York) at 1000× oil immersion magnification (Bloem 1991; Hobbie et al. 1977). The Live/Dead
BacLight Bacterial Viability Kit was used to determine the percentage of viable and total count
of organisms in the samples (Boulos et al. 1999; Gregori et al. 2001). Viability as determined by
BacLight assay equates the visualization of the green fluorescent dye with cells whose
membranes are intact, and this method can overestimate living cells in some environmental matrices.

For the bulk fluid samples, the Quench-Gone Aqueous test kit was used because of its applicability in water-based samples with low extraneous solid-material content. The coupons were sampled with a modified Deposit Surface Analysis test kit (LuminUltra), which is specific for detecting microorganisms that have adhered to surfaces. Once samples were processed through the ATP test kits, 100 µL was loaded into a 96-well, black and white isoplate (Perkin Elmer, Shelton, Connecticut) in triplicate. A control sample was added to the plate that contained 1 ng mL\(^{-1}\) of ATP, and finally 100 µL of Luminase (LuminUltra) was added to every well containing sample. Luminescence was quantified on a Victor 2 Plate Reader (Perkin Elmer).

Results and Discussion

Each of the testing analysis methods used, except ATP luminescence assay, had limitations that prevented its application to all sample types. The HPCs could be used for enumerating cells in the bulk fluid and on the coupons, but only without the addition of a fixative. The low number of cells that adhered to the coupons was below the lower limit of detection for the microscopy methods (AODC and L/D), so they were used only for the bulk fluid samples. Plus, the addition of a fixative to any of the bulk samples prevented the use of the L/D assay.

Analysis methods indicated that the flight hardware performed nominally and that there was minimal variability between flight and ground experiments (Table 1). However, the short duration of the microgravity and lunar-gravity parabolic flights was not conducive to the formation of advanced biofilm. The microgravity flight had an increase of \(\log_{10}\) colony-forming units per milliliter (CFU mL\(^{-1}\)) = 0.33, the lunar-gravity flight had an increase of \(\log_{10}\) CFU mL\(^{-1}\)
$1 = 0.38$ and the ground testing had an increase of $\log_{10} \text{CFU mL}^{-1} = 0.41$ between inoculation and harvest for the bulk fluid. The microscopy data supported the results found from the plate counts for the bulk fluid samples, demonstrating minimal variability between flight experiments. During the BacLight L/D assay, it was found that 88% to 92% of the cells found in the bulk fluid samples were alive. This result was optimal. The L/D total counts were similar to those found during HPC analysis. There were slight variations between the AO bulk fluid samples, based on fixation method. A standard curve was generated using the LuminUltra Quench-Gone Aqueous test kit with the $P. \text{aeruginosa}$ strain ERC1 (ATCC 700888) at a high range of cellular density and at a low range of cellular density, and both showed a positive correlation between the number of cells and the amount of ATP per milliliter of sample (Fig. 1). ATP analysis of the bulk fluid samples showed that after 1 week the microgravity flight produced a 1.6 log reduction after silver fixation, whereas the lunar-gravity flight produced a 2.3 log reduction after formalin fixation. This pattern was repeated to a lesser degree during ground testing, where there was approximately a 1 log reduction in picograms of ATP per milliliter with 1% formalin fixation and less than a 0.5 log reduction with 400 μg L$^{-1}$ ionic silver fixation (Fig. 2). As was expected, these results indicate that formalin has a greater negative effect on cellular metabolism than does silver. However, no differences were observed in the bulk fluid analyses based on material type. The benchmark for healthy cells exposed to Escherichia coli in terrestrial gravity is approximately 1 fg of ATP per cell (Crombrugge and Waes 1991). This indicates that the amount of ATP in the $P. \text{aeruginosa}$ cells during ground testing resembled the metabolic state of the benchmark samples. There was more ATP per cell in the samples exposed to short-term microgravity than in the ground-tested samples (Table 2). This effect was seen in a study with
plants in which cells exposed to short-term microgravity had an increased metabolic rate and then, after long-term exposure to microgravity, went into a relaxed metabolic state, even lower than the state experienced in terrestrial gravity (Hampp et al. 1997). In the cells that were not exposed to a fixative, there appeared to be more ATP per cell in the lunar-gravity flight samples than in those that experienced microgravity.

During the ATP analysis of the coupons, the unfixed cells on the coupons exposed to microgravity had 82.77% more ATP per square millimeter than the cells exposed to lunar-gravity parabolic-flight conditions (Fig. 3). This response was opposite the response observed in the bulk fluid samples. One explanation for this is that the surface proton concentration for the bacteria on the coupons can be significantly different than in the bulk fluid sample, which means that the pH would be different in the periplasmic space and would affect ATP levels (Hong and Brown 2010). In addition, the fixed cells had 47.38% less ATP per square millimeter than the unfixed cells. The samples fixed with 400 µg L⁻¹ ionic silver had 10.12% more ATP per square millimeter than the cells exposed to 1% formalin. The only exception to this condition was found in the polycarbonate samples. Titanium coupons exerted the most influence in cells not exposed to fixation, the ATP per millimeter found in the microgravity samples was more than six times that found in the lunar-gravity flight samples. Similarly, for the polycarbonate samples, cells not exposed to fixation exhibited more than twice as much ATP per square millimeter in the microgravity samples as in the lunar-gravity flight samples. The large increased response for the titanium coupons was also observed in the fixed cells.

Further evaluation will be conducted to optimize the ATP method for additional coupon materials and to confirm whether the increased ATP found in the lunar-gravity flight over the microgravity flight is specific to the flight conditions or time-dependent. Additional experiments
at longer durations of reduced gravity are necessary to extrapolate the microgravity and 2-g
segments of the parabolic data and to develop a better understanding of biofilm formation in
correlation to ATP. New antimicrobial materials will be developed and tested in 1-g
environments using ASTM methods to improve the antimicrobial response of materials.

Acknowledgements

The authors would like to thank FAST, the Facilitated Access to the Space Environment
for Technology Program of the NASA Innovative Partnerships Program (IPP), for providing the
opportunity to perform the reduced-gravity experiments aboard the Zero-G aircraft. In addition,
thanks to the KSC IPP Office for financially supporting the use of shuttle flight hardware for the
experiment.

Special thanks to LuminUltra Technologies Ltd. for providing the ATP testing materials,
developing custom testing methods, and providing research consultation during this experiment.

The authors acknowledge with appreciation the support of David J. Smith (University of
Washington); Griffin Lunn, Susan Manning-Roach, John Catechis, Jeremy O’Neal, LaShelle
McCoy (Dynamac Corporation); Leticia Vega and Michael Casteel (Jacobs Engineering); and
Dr. Karen Pickering, members of the NASA Advanced Water Recovery Systems Research and
Development Facility, and the NASA Reduced Gravity Research Program at Ellington Field
(NASA-Johnson Space Center).

Research support was provided by the NASA IPP and the Life Science Services Contract
(NAS10-02001).
References

Table 1. Recovered bulk fluid HPC results

<table>
<thead>
<tr>
<th>Bulk fluid samples</th>
<th>\log_{10} CFU mL$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground (n = 3)</td>
<td>5.63 ± 0.07</td>
</tr>
<tr>
<td>Lunar gravity (n = 18)</td>
<td>5.89 ± 0.18</td>
</tr>
<tr>
<td>Microgravity (n = 18)</td>
<td>5.70 ± 0.12</td>
</tr>
</tbody>
</table>
A. High cellular concentration ATP standard curve (n=9).

![High cellular concentration ATP standard curve](image1)

\[y = 518901e^{-2.408x} \]

\[R^2 = 0.9933 \]

B. Low cellular concentration ATP standard curve (n=9).

![Low cellular concentration ATP standard curve](image2)

\[y = 38.423e^{-0.815x} \]

\[R^2 = 0.9959 \]

Fig. 1 Luminescent assay ATP standard curves
Figure 2. Bulk fluid ATP results with and without fixation. Standard samples were processed immediately following the ground or flight processes. Fixed samples were processed after one week of storage.
<table>
<thead>
<tr>
<th>Bulk fluid samples</th>
<th>Standard</th>
<th>Formalin (1%)</th>
<th>Silver (400 µg L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microgravity (n = 51)</td>
<td>2.02E-03 ± 5.75E-04</td>
<td>N/A</td>
<td>2.30E-05 ± 9.07E-06</td>
</tr>
<tr>
<td>Lunar gravity (n = 51)</td>
<td>2.70E-03 ± 6.05E-04</td>
<td>2.82E-05 ± 5.57E-06</td>
<td>N/A</td>
</tr>
<tr>
<td>Earth gravity (n = 21)</td>
<td>1.10E-03 ± 3.81E-04</td>
<td>1.38E-04 ± 3.31E-05</td>
<td>2.81E-04 ± 8.83E-05</td>
</tr>
</tbody>
</table>
A. Standard samples with unfixed cells processed at the completion of each parabolic flight (n=9).

B. Samples that were fixed and then stored for 1 week (n=9). Microgravity samples were fixed with 400 µg L\(^{-1}\) ionic silver. Lunar-gravity samples were fixed with 1% formalin.

Fig. 3 Coupon ATP results by material type.