SCSS Presentation Outline

- What and Why
- For Whom
- Design Approach
- Algorithm Development
- Solenoid Valve Modeling
- Implementation
- Testing
- Present status
- Future Steps & Intelligent Devices
- Summary and Conclusion
- Innovators, Contributors and Acknowledgements

Also Known as VALVE HEALTH MONITOR
What and Why?
What is SCSS?

"The SCSS is a non-invasive sensor that contains embedded knowledge (smarts) about the valve being monitored, and is capable of detecting and ultimately predicting potential faults before they happen (failure trending and prediction). This sensor was one of the first generations of Intelligent Devices (sensors and actuators) developed at KSC..."

- This work is also known by the name of Valve Health Monitor (VHM) System
- SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis)
- This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors
Why SCSS?

- To detect valve faults in the system (Fault Detection)
 - Relatively easy to identify, normally done using internal valve's measurements or associated system's measurements (flow, temperature, pressure, etc.)
 - Problem is identified after the fault occurs
 - Could generate high cost to program – i.e. launch scrub
 - SCSS provides real-time monitoring and fault detection to the valve, it does not rely on looking at associated measurements

- To diagnose the problem in the valve (Fault Isolation)
 - Performed offline of the system [at vendor/logistics facility]
 - Performed after valve is remove/replaced. Process might be lengthy in time.
 - SCSS provides identification of fault mode and identify most probable faulty components using current signature of the valve

- To predict valve's faults (Prognostics)
 - Data is collected during system checking/validation (when performed, not always)
 - Requires added temporary instrumentation to acquire the signature of the valve
 - Assessment of data is performed post test by engineer/operator
 - SCSS performs signature analysis in real-time and performs degradation assessment and impending failure identification that allows for valve replacement before failure occurs
Project Goals

Main Requirement

• Detect/Predict problems/faults in solenoid valves

Secondary Requirements (no less important...)

• Reduce system's processing/operational costs
• Increase system's Availability (higher reliability and lower maintainability costs)
• Provide continuous system's health status, detecting and ultimately predicting system's faults before they happen
• No increase in system's probability of failure - Operate independently and autonomously from monitored system
• Minimize human intervention, support autonomous operations concept

Project Objectives

Develop a sensor with following characteristics:

• Non-invasive (do not add to system probability of failure)
• Embed smart algorithms for monitoring and health management in design
• Provide real-time independent and autonomous monitoring and health checks

To determine valve's health and readiness support the mission, isolate faults to a specific component(s) in the valve, and predict impending faults in the future
For Whom?
For Whom: NASA

NASA Integrated Vehicle Health Management (IVHM) HEDS

- SCSS was developed to support IVHM HTD-2 flight experiment
- SCSS was to monitor Orbiter FCV valves for operation/problems/faults
- Since it was attached to a critical system in the Orbiter, it was decided to postpone its implementation until more experience was gained

Non Destructive Engineering (NDE) program at Langley Research Center

- Program funded KSC to develop a sensor with following characteristics:
 - Non-invasive (does not add to system probability of failure)
 - Intelligent (embed health assessment tools in design)
 - Perform non-destructive assessments

NASA KSC Shuttle Ground Support Equipment (GSE) transducers line

- Subsequently from IVHM, this technology was migrated to Ground Operations at KSC to detect faults/problems in the fuel/oxidizer storage and distribution system
- Murata solenoid valves were selected since they are commonly used across KSC
- Unfortunately, the Launch Processing System (LPS) was not capable to receive the type and amount of digital information provided by the SCSS
- Integration was not possible with present LPS architecture

HEDS: Human Exploration and Development of Space
HTD: HEDS Technology Demonstration
FCV: Flow Control Valve
Schaffer LLC

- Automotive Industry Small Business company
- Dedicate to diagnose and repair automatic transmissions
- Presently, no way to isolate which failed solenoid valve is the source of problems
- Average of $800 in solenoid valves in a transmission
- SCSS provided such capability
- Partial licensing of technology was granted to the company

Graftel INC

- Nuclear Industry Small Business company
- Dedicate to monitor, diagnose and repair valves in nuclear reactors applications
- Important to assess the health and predict potential failures before they happen
- Developing a portable system to perform its assessment function
- Licensing of technology was granted to the company

http://www.graftel.com/index.html
Design Approach
Design Approach

Targeted Valve for Ground Operations

- Selected valve for this project was MV74, manufactured by MAROTTA®
- Currently it is widely used at both Launch Pads at KSC
- Valve’s solenoid operates at 24 VDC and consumes 1 Ampere approximately
- Turn-on time for valve is typically 30 milliseconds (20-40 milliseconds range)
- Turn-off time for valve is typically 5 milliseconds (2-10 milliseconds range)
Design Approach

Why Current Signature?

- The electrical current signature is very repeatable
 - From cycle to cycle of the same solenoid valve
 - Within a family of solenoid valves
Design Approach - Components

Valve in **De-energized** mode

- Air Gap
- Magnet
- Electrical Coil
- Electromagnet
- Armature
- Normally Close Seat
- Sealing O-ring
- Poppet
- Normally Close Seat
- Sealing O-ring
- Spring
- QT Set Screw

Valve in **Energized** mode

KSC ENGINEERING
Design Approach

Why Current Signature?

- The electrical current signature of the valve directly represents:
 - The behavior of the valve's mechanical components (spring, poppet, etc)
 - The behavior of the valve's electrical components (electrical coil, etc)
 - It reflects any degradation or anomalous behavior of the valve

Magnetic Field Build-up Phase
information related to internal parameters (coil resistance, inductance) and external parameters (supply voltage, temperature effects, etc.)

Poppet Movement Phase
information related to mechanical movement (poppet travel, spring tension, friction, maximum travel, pre-set force) and proper seating and sealing (debris in seals, gas path, etc.)

Steady State Phase
information derived at this stage is related to internal electrical parameters like coil degradation, magnetic field degradation, etc.
Design Approach

Where to look for valve health information in signature?

- **Solenoid Valve in "De-Energized Steady State" mode**
 - Valve is de-energized, no electrical current flow, *low interest* from health information aspect
 - Signature is affected by: system's electrical noise

- **Solenoid Valve in "Turn-On transition" mode**
 - Valve is energizing, short duration signal (≤ 40 milliseconds), fast rising electrical current flow, *very rich* in health information
 - Signature affected by: valve's electrical components, valve's mechanical components, external variables (supply voltage, temperature effects, etc.)

- **Solenoid Valve in "Energized Steady State" mode**
 - Valve is energized, steady-state electrical current flow, slow signal changes, *some interest* from health information aspect
 - Signature affected by: variables like coil degradation, magnetic field degradation, and external variables such as supply voltage, temperature effects, etc

- **Solenoid Valve in "Turn-Off transition" mode**
 - Valve is de-energizing, very short duration signal (≤ 10 milliseconds), fast decreasing electrical current flow, *very rich* in health information
 - Signature affected by: valve's electrical components, valve's mechanical components, external variables (supply voltage, temperature effects, etc.)
Algorithm Development
Algorithm Development

Algorithm – Information extraction

• Global and Local minima, maxima, and inflection points (and their location/duration with respect to time) of the Electrical Current Signature are linked to important health information of the monitored solenoid valve.

• The above parameters directly correlate to specific functions, regions and/or components of the valve actuation and they usually signal the transition from a predominantly electrical behavior to a predominant mechanical behavior and vice versa.

• These parameters can be identified/located in the time domain by taking successive derivatives of the filtered electrical current signature and by locating the zero crossing points on them (1st and 2nd derivatives).

• Electrical noise in the signal makes it difficult to locate these features accurately. Noise filtering algorithms and proper sensor’s shielding is important to achieve desired results.

• During the transition phases of the current signature, the peaks and valleys indicate starting/stopping of poppet movement.
Algorithm Development

Algorithm – Information extraction

- Acquire Current Signature
- Filter Electrical Signal
- Differentiate Signal
- Identify/Measure parameters; minima and maxima
- Differentiate Signal
- Identify/Measure parameters; inflection points
- Calculate Health parameters; apply tolerances

- Local Max/Min points primarily indicate mechanical movements in the valve
- The inflection points indicate a change in curvature in the current signature. They happen at the maximum rates of change in the current signature.
Algorithm Development

Algorithm – Information extraction

• There are many things affect the exact shape of the current signature. Some of the variables to consider are:
 • Valve’s Electrical Variables
 • coil inductance (L)
 • coil resistance (R)
 • electro-magnet material (permeability µ)
 • coil temperature (Tcoil)
 • Valve’s Mechanical Variables
 • physical geometry (shape/size, air gap g)
 • poppet’s pre-set force (F₀),
 • spring mechanical strength (elasticity k)
 • friction in the poppet’s path (damping b)
 • poppet’s mass (m)
 • External Variables to the Valve
 • supply voltage and current (V, I)
 • clamping diodes in the solenoid’s driving circuit
 • pressure inside the solenoid valve (P)
 • debris in the fluid path
 • environment temperature (Tamb)
 • etc
Algorithm Development

What does this signature tell us?

- Magnetic field buildup is completed, Steady state is reached
 - Coil impedance becomes constant and purely resistive at this time
 - Electrical current becomes constant

- Magnetic field in coil continues to build,
 - Coil impedance is less inductive and more resistive at this time
 - Electrical current continues to increase

- Magnetic field in coil starts to build,
 - Coil impedance decreases,
 - Dominant parameter is still inductance

- Magnetic field buildup creates a resulting force that is sufficient to overcome the preset mechanical force and initiates poppet movement

- Valve poppet is moving
 - Voltage (back emf) is generated by the coil,
 - Electrical current decreases

- Valve poppet stops moving, reaches end-of-travel
 - No more voltage (back emf) is generated by the coil
 - Electrical current starts to increase again

- "ON" command is received,
 - Electrical current starts to flow,
 - Dominant parameter is inductance (L)
Algorithm Development

What does this signature tell us?

"OFF" command is received
Magnetic field starts to collapse in coil
Voltage is generated in coil to maintain current flow

Magnetic field in coil continues to collapse
Electrical current continues to decrease

Magnetic field in coil continues to collapse
Force created by the Magnetic field no longer holds poppet
Valve's poppet starts to move back to "OFF" position

Valve's poppet is moving back to "OFF" position
Voltage (back emf) is generated by the coil
Resulting electrical current increases

Valve's poppet stops moving, reaches end-of-travel
No more voltage (back emf) is generated by the coil
Electrical current starts to decrease again

Magnetic field collapse is completed, Steady state is reached
Coil impedance becomes constant and purely resistive at this time
Electrical current is zero
Algorithm Development

"Turn-ON" Transition - Regions to look for information

Timing Chart for Valve Turn-On Cycle

- TURN-ON transition – 1st Order Derivative
- 1st Order Derivative – (red) filtered, (green) raw data
- TURN-ON transition of the Solenoid current
Algorithm Development

"Turn-OFF" Transition - Regions to look for information

Timing Chart for Valve Turn-Off Cycle

1st Order Derivative - (red)
filtered, (green) raw data

TURN-OFF transition -
1st Order Derivative

TURN-OFF transition of
the solenoid current

Current (Amp)

0.000
0.500
1.000
1.500
2.000
2.500

0.200
0.000
-0.200
-0.400
-0.600
-0.800
-1.000

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

Time (msec)

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400

0.000
0.100
0.200
0.300
0.400
Algorithm Development

Sample of Parameters of Interest

- RZC 1D1, RA1
- RZC 1D3, RA3
- RZC 1D2, RA2
- RZC 2D1, RAD1
- RZC 2D3, RAD3
- RZC 2D2, RAD2
- Falling Trigger Point (To)
- Rising Trigger Point (To)

- FZC 1D4, FA4
- FZC 1D3, FA3
- FZC 1D2, FA2
- FZC 1D1, FA1
- FZC 2D4, FAD4
- FZC 2D2, FAD2
- FZC 2D3, FAD3
- FZC 2D5, FAD5
- FZC 2D1, FAD1
- FZC 1D5, FA5
Algorithm Development

Sample of selected parameters being monitored

Rising Edge (energizing solenoid valve)

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZC 2D1</td>
<td>Rising Zero Crossing 2nd Derivative #1 (First inflection point of original signal)</td>
</tr>
<tr>
<td>RAD1</td>
<td>Amplitude of 1st derivative @ 1st inflection point (rate of change of the current)</td>
</tr>
<tr>
<td>RZC 1D1</td>
<td>First peak (Rising Zero Crossing 1st Derivative #1) (Poppet movement begins)</td>
</tr>
<tr>
<td>RA1</td>
<td>Amplitude of the first peak</td>
</tr>
<tr>
<td>RS1</td>
<td>Average slope from the trigger point to the first peak. The average slope is computed by adding up all of the points on the difference waveform and dividing by the number of points</td>
</tr>
<tr>
<td>RZC 2D2</td>
<td>Second inflection point (between when the poppet starts and stops).</td>
</tr>
<tr>
<td>RAD2</td>
<td>Amplitude of the 1st derivative at the second inflection point.</td>
</tr>
<tr>
<td>RZC 1D2</td>
<td>First valley (Rising Zero Crossing 1st Derivative #2) (Poppet movement completes)</td>
</tr>
<tr>
<td>RA2</td>
<td>Amplitude of the first valley.</td>
</tr>
<tr>
<td>RS2</td>
<td>Average slope between the first peak and the first valley.</td>
</tr>
<tr>
<td>RZC 2D3</td>
<td>Third inflection point (after the poppet stops).</td>
</tr>
<tr>
<td>RAD3</td>
<td>Amplitude of the 1st derivative at the third inflection point.</td>
</tr>
<tr>
<td>RZC 1D3</td>
<td>Second peak, (this is most likely the beginning of the “ON” steady state condition)</td>
</tr>
<tr>
<td>RA3</td>
<td>Amplitude of the second peak.</td>
</tr>
<tr>
<td>RS3</td>
<td>Average slope between the first valley and the second peak.</td>
</tr>
<tr>
<td>RZC 2D4</td>
<td>Forth inflection point, a high steady state point.</td>
</tr>
<tr>
<td>RAD4</td>
<td>Amplitude of the 1st derivative at the forth inflection point.</td>
</tr>
<tr>
<td>RZC 2D4</td>
<td>Second valley, a high steady state point.</td>
</tr>
<tr>
<td>RA4</td>
<td>Amplitude of the second valley.</td>
</tr>
<tr>
<td>RS4</td>
<td>Average slope between the second peak and the second valley.</td>
</tr>
</tbody>
</table>
Solenoid Valve Modeling
Solenoid Valve Modeling

GOAL:
- To develop a simple math model (physics-based model), which describes and explains the basic behavior of the MV74 Solenoid Valve

BASIC MODEL:
- Lumped Parameter, Electro-mechanical Model
- 2nd Order equation to describe the Mechanical portion of the valve (*Spring, Mass, and Damper*)
 \[A \cdot \frac{d^2 f(t)}{dt^2} + B \cdot \frac{df(t)}{dt} + C \cdot f(t) + D = 0 \]
- 1st Order equation to describe the Electrical portion of the valve (*Resistance and Inductance*)
 \[A \cdot \frac{df(t)}{dt} + B \cdot f(t) + C = 0 \]
- Inductance is a function of poppet displacement with time
 \[L(x[t]) = f[x(t)] \]
- Valve's driving force is proportional to the Gradient of Inductance and the square of the electrical current
 \[F(x[t]) = \frac{\ddot{f}(t)}{2} \frac{\partial L(x[t])}{\partial x} \]
Solenoid Valve Model Components

Electromagnet

Mass, \(m \)

Damping, \(b \)

Preset Force = \(F_0 \)

Spring, \(k \)

Set Screw - QT
Solenoid Valve Model Components

- **Air Gap**
 - Mechanical variable $x(t) - g$

- **Magnet**
 - Magnetic parameters B, μ

- **Electrical Coil**
 - Electrical parameters R, L, N

- **Electromagnet**

- **Armature**

- **Normally Close (N.C) Seat**

- **Sealing O-ring**
 - Mechanical parameter - Damping b

- **Poppet**
 - Mechanical parameter - Mass m

- **Sealing O-ring**
 - Mechanical parameter - Damping b

- **Spring**
 - Mechanical parameter - Spring k

- **QT Set Screw**
 - Mechanical parameter - Preset Force F_o

- **Port A**

- **Port B**

- **Port C**

Electrical variables:
- $i(t)$
- $V(t)$

Mechanical variable:
- $f(x,t)$
Solenoid Valve Model – Components

- a = mean radius of sleeve
- b = non-magnetic sleeve thickness
- c = radius of cylindrical plunger
- g = air gap
- l = magnetic core thickness
- l_{m} = magnetic core average length
- N = number of turns in coil
- μ = core permeability
- μ_{sleeve} = permeability of sleeve
- μ_{air} = permeability of air
- μ_{Core} = permeability of magnetic core
Solenoid Valve Model – Equivalent Circuit

Electro-mechanical Equivalent Circuit

Basic Solenoid Model

- \(a \) = mean radius of sleeve
- \(b \) = non-magnetic sleeve thickness
- \(c \) = radius of cylindrical plunger
- \(q \) = air gap
- \(l \) = magnetic core thickness
- \(l_m \) = magnetic core average length
- \(N \) = coil number of turns
- \(\mu_{\text{sleeve}} \) = permeability of sleeve
- \(\mu_{\text{air}} \) = permeability of air
- \(\mu_{\text{core}} \) = permeability of magnetic core
Solenoid Valve Model – Electrical Equations

Electrical equations:

\[A \cdot \frac{df(t)}{dt} + B \cdot f(t) + C = 0 \]

- \(V_o = V_{L(x,t)} + V_R = \frac{\partial}{\partial t} \left[L(x(t)) \cdot i(t) \right] + R \cdot i(t) \) for \(t \geq \) "ON" command
- \(0 = V_{L(x,t)} + V_R = \frac{\partial}{\partial t} \left[L(x(t)) \cdot i(t) \right] + R \cdot i(t) \) for \(t \geq \) "OFF" command

- Magnetic Inductance \(L(x[t]) = \frac{N^2}{R} \)

- Magnetic Reluctance \(R = R_{\text{gap}} + [R_{\text{sleeve}}]/2 = \frac{x(t)}{\mu_0 \pi c^2} + \frac{b}{2\mu_s \pi a} \) where \(c = a - \frac{b}{2} \)

- Magnetic Inductance \(L(x) = \frac{2 \pi \mu_0 \mu_s a c^2 N^2}{2 \mu_s a c x(t) + \mu_0 b c^2} = \frac{k_1}{k_2 x(t) + k_3} \)
 where \(k_1 = 2 \pi \mu_0 \mu_s a c^2 N^2 \); \(k_2 = 2 \mu_s a c \); \(k_3 = \mu_0 b c^2 \)

- Electrical Resistance \(R = R_0 [\alpha (T - T_0) + 1] \); where \(T \) is its temperature, \(T_0 \) is a reference temperature (usually 25°C), \(R_0 \) is the resistance at \(T_0 \), and \(\alpha \) is the \% change in resistivity per unit temperature.

- Also Resistance \(R = \rho \cdot L / A \); where \(L \) is the conductor’s length (m), \(A \) is the conductor’s cross-sectional area (m²), \(\rho \) is the electrical resistivity (also called specific electrical resistance) of the material (Ω m)
Solenoid Valve Model – Electrical Equations

\[V_{L(x,t)} = \frac{\partial}{\partial t} [L(x[t]) \cdot i(t)] \]

\[\frac{\partial}{\partial t} [L(x[t]) \cdot i(t)] = L(x[t]) \frac{d}{dt} [i(t)] + i(t) \frac{d}{dt} [L(x[t])] = L(x[t]) \frac{d}{dt} [i(t)] + i(t) \frac{d}{dt} \left[\frac{k_1}{k_2 x(t) + k_3} \right] \]

\[\frac{d}{dt} \left[\frac{k_1}{k_2 x(t) + k_3} \right] = \frac{(k_2 x(t) + k_3) \frac{d}{dt} k_1 - k_1 \frac{d}{dt} [k_2 x(t) + k_3]}{[k_2 x(t) + k_3]^2} = -k_1 k_2 \frac{d}{dt} \left[x(t) \right] \]

so:

\[\frac{\partial}{\partial t} [L(x[t]) \cdot i(t)] = L(x[t]) \frac{d}{dt} [i(t)] - i(t) \frac{1}{(k_2 x(t) + k_3)^2} \]

and therefore:

\[V_0 = \frac{k_1}{k_2 x(t) + k_3} \frac{d}{dt} [i(t)] - i(t) \frac{k_1 k_2}{(k_2 x(t) + k_3)^2} + R i(t) ; \quad \text{for } t \geq \text{ "ON" command} \]

\[0 = \frac{k_1}{k_2 x(t) + k_3} \frac{d}{dt} [i(t)] - i(t) \frac{k_1 k_2}{(k_2 x(t) + k_3)^2} + R i(t) ; \quad \text{for } t \geq \text{ "OFF" command} \]
Solenoid Valve Model – Electrical Equations

\[\frac{d}{dt} \left[i(t) \right] + \left[\frac{R}{k_1} \left(k_2 x(t) + k_3 \right) \right] - \frac{k_2}{(k_2 x(t) + k_3)} \left[\frac{d}{dt} \left[x(t) \right] \right] \cdot i(t) - V_0 = 0 \quad \text{for} \quad t \geq \text{"ON" command} \]

\[\frac{d}{dt} \left[i(t) \right] + \left[\frac{R}{k_1} \left(k_2 x(t) + k_3 \right) \right] - \frac{k_2}{(k_2 x(t) + k_3)} \left[\frac{d}{dt} \left[x(t) \right] \right] \cdot i(t) = 0 \quad \text{for} \quad t \geq \text{"OFF" command} \]

<table>
<thead>
<tr>
<th>Case</th>
<th>Condition</th>
<th>Air Gap x(t)</th>
<th>Inductance (L(x(t)))</th>
<th>Electrical Equation</th>
<th>Boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Steady State "OFF", valve de-energized, poppet not moving</td>
<td>constant (g)</td>
<td>(L = \frac{k_1}{k_2 g + k_3})</td>
<td>(V(t) = 0; i(t) = 0)</td>
<td>(V_i = V_f = 0; I_i = I_f = 0; x_i = x_f = g;) (t) = continuous OFF steady state</td>
</tr>
<tr>
<td>(b)</td>
<td>Command set "ON", valve energized, poppet not moving</td>
<td>constant (g)</td>
<td>(L = \frac{k_1}{k_2 g + k_3})</td>
<td>(V(t) = R \cdot i(t) + L_1 \cdot \frac{d}{dt} i(t) = V_o)</td>
<td>(V_i = V_f = V_o; I_i = 0; I_f = V_o/R; x_i = x_f = g;) (t \in { t_{on}, t_1 })</td>
</tr>
<tr>
<td>(c)</td>
<td>Command set "ON", valve energized, poppet is moving</td>
<td>varies with time</td>
<td>(L = \frac{k_1}{k_2 x(t) + k_3})</td>
<td>(V(t) = R \cdot i(t) + L_2 \cdot \frac{d}{dt} i(t) - i(t)(L_2)^2 \cdot \frac{k_2}{k_1} \cdot \frac{d}{dt} x(t))</td>
<td>(V_i = V_f = V_o; I_i = I_{1i}; I_f = I_{1f}; x_i = x_f = g; x = 0;) (t \in { t_{on}, t_2 })</td>
</tr>
<tr>
<td>(e)</td>
<td>Command set "ON", valve energized, poppet is resting in "ON" position</td>
<td>constant (0)</td>
<td>(L = \frac{k_1}{k_3})</td>
<td>(V(t) = R \cdot i(t) + L_3 \cdot \frac{d}{dt} i(t) = V_o)</td>
<td>(V_i = V_f = V_o; I_i = I_{1i}; I_f = V_o/R; x_i = x_f = 0;) (t \in { t_{2i}, t_{on-ss} })</td>
</tr>
<tr>
<td>(f)</td>
<td>Command set "ON", valve energized, Steady State "ON"</td>
<td>constant (0)</td>
<td>(L = \frac{k_1}{k_3})</td>
<td>(V(t) = R \cdot i(t) = R \cdot I_{ss} = V_o)</td>
<td>(V_i = V_f = V_o; I_i = I_{1i} = V_o/R; x_i = x_f = 0;) (t) = continuous ON steady state</td>
</tr>
</tbody>
</table>

\(k_1, k_2, k_3 \) are constants related to the valve and its operating characteristics.
Solenoid Valve Model – Electrical Equations

\[\frac{d}{dt} \left[i(t) \right] + \left[\frac{R \left[k_2 x(t) + k_3 \right]}{k_1} \right] - \frac{k_2}{k_1} \frac{d}{dt} \left[x(t) \right] \left(k_2 x(t) + k_3 \right) \right] \cdot i(t) - V_0 = 0 \quad \text{for } t \geq \text{ "ON" command}

\[\frac{d}{dt} \left[i(t) \right] + \left[\frac{R \left[k_2 x(t) + k_3 \right]}{k_1} \right] - \frac{k_2}{k_1} \frac{d}{dt} \left[x(t) \right] \left(k_2 x(t) + k_3 \right) \right] \cdot i(t) = 0 \quad \text{for } t \geq \text{ "OFF" command}

### Case	Condition	Air Gap \(x(t) \)	Inductance \(L(x(t)) \)	Electrical Equation	Boundary conditions
(g) | Steady State "ON", valve energized, poppet not moving | constant \(0 \) | \(L = \frac{k_1}{k_3} = L_3 \) | \(V(t) = R i(t) = R \cdot i_{ss} = V_0 \) | \(V_1 = V_1 = V_0 \); \(i_1 = V_0/R \); \(x_1 = x_1 = 0 \); \(t = \text{continuous ON steady state} \)
(h) | Command set "OFF", valve de-energizing, poppet not moving | constant \(0 \) | \(L = \frac{k_1}{k_3} = L_3 \) | \(V(t) = R i(t) + L_3 \frac{d}{dt} i(t) = 0 \) | \(V_1 = V_1 = 0 \); \(i_1 = \frac{V_0}{R} \); \(i_1 = i_{ss} \); \(x_1 = x_1 = 0 \); \(t \in [t_{cm}, t_3] \)
(i) | Command set "OFF", valve de-energizing, poppet is moving | varies with time | \(L = \frac{k_1}{k_2 x(t) + k_3} = L_2 \) | \(0 = R i(t) + L_2 \frac{d}{dt} i(t) - i(t)(L_3)^2 \cdot \frac{k_2}{k_1} \frac{d}{dt} x(t) \) | \(V_1 = V_1 = 0 \); \(i_1 = i_{ss} \); \(i_1 = i_{ss} \); \(x_1 = x_1 = 0 \); \(x_1 = x_{ss} = 0 ; t \in [t_3, t_4] \)
(j) | Command set "OFF", valve de-energizing, poppet is resting in "OFF" position | constant \(0 \) | \(L = \frac{k_1}{k_2 g + k_3} = L_1 \) | \(V(t) = R i(t) + L_1 \frac{d}{dt} i(t) = 0 \) | \(V_1 = V_1 = 0 ; i_1 = 0 ; i_1 = 0 ; x_1 = x_1 = 0 ; x_1 = g ; t \in [t_4, t_{off,ss}] \)
(k) | Command set "OFF", valve de-energized, Steady State "OFF" | constant \(0 \) | \(L = \frac{k_1}{k_2 g + k_3} = L_1 \) | \(V(t) = 0 ; i(t) = 0 \) | \(V_1 = V_1 = 0 ; i_1 = 0 ; i_1 = 0 ; x_1 = x_1 = g ; t = \text{continuous OFF steady state} \)

35
Solenoid Valve Model – Mechanical Equations

Mechanical equations:

\[m \cdot \frac{\partial^2 x(t)}{\partial t^2} + b \cdot \frac{\partial x(t)}{\partial t} + k \cdot x(t) = F \]

where

- \(m \) is the mass of the system
- \(b \) is the friction (damping) coefficient of the system
- \(k \) is the spring constant
- \(x(t) \) is the displacement of the system
- \(F \) is the required force to produce the displacement

\[A \cdot \frac{\partial^2 f(t)}{\partial t^2} + B \cdot \frac{\partial f(t)}{\partial t} + C \cdot f(t) + D = 0 \]

- **Energy** stored in an Inductance \(L \), carrying a current \(i \) is:

\[W_m = \frac{1}{2} L \cdot i^2 = \frac{1}{2} L \cdot (x(t)) \cdot i^2(t) \]

- **Force** created by current excitation of an inductance is:

\[F_e = \partial W_m (i, x) / \partial x \]

- As defined before, the solenoid Inductance is:

\[L (x(t)) = \frac{N^2}{R} \]

\[= \frac{2 \pi \mu_0 \mu_s a l c^2 N^2}{2 \mu_s a l x(t) + \mu_0 b c^2} = k_1 x(t) + k_3 \]

- So the **Force** created by current excitation of the inductance is:

\[F_e = \partial W_m (i, x) / \partial x = \partial \left(\frac{1}{2} L \cdot i^2 \right) / \partial x = \frac{1}{2} i^2(t) \cdot \partial L / \partial x = \frac{1}{2} i^2(t) \cdot \partial \left(\frac{k_1}{k_2 x(t) + k_3} \right) / \partial x \]

\[F_e = \frac{1}{2} i^2(t) \cdot \left(\frac{-k_1 k_2}{(k_2 x(t) + k_3)^2} \right) \]

where the minus sign indicates that the force tends to decrease the air gap.
Solenoid Valve Model – Mechanical Equations

Mechanical equations:

\[m \cdot \frac{\partial^2 x(t)}{\partial t^2} + b \cdot \frac{\partial x(t)}{\partial t} + k \cdot x(t) = - \left[F_e + F_o \right] \]

where

- \(F_o \) is the solenoid valve's preset force; it is a constant value
- \(F_e = F(i, x) \) is the resultant magneto motive force (mmf) generated by the magnetic field

\[m \cdot \frac{\partial^2 x(t)}{\partial t^2} + b \cdot \frac{\partial x(t)}{\partial t} + k \cdot x(t) = - \left[\frac{1}{2} i(t) \frac{-k_1 k_2}{(k_2 x(t) + k_3)^2} \right] + F_o \]

and

\[F_e = \left[\frac{1}{2} i(t) \frac{-k_1 k_2}{(k_2 x(t) + k_3)^2} \right] \]
Solenoid Valve Model – Mechanical Equations

\[m \cdot \frac{\partial^2 x(t)}{\partial t^2} + b \cdot \frac{\partial x(t)}{\partial t} + k \cdot x(t) = - \left[\frac{1}{2} i^2(t) \frac{-k_1 k_2}{(k_2 x(t) + k_3)^2} + F_e \right] \]

\[F_e = \left[\frac{1}{2} i^2(t) \frac{-k_1 k_2}{(k_2 x(t) + k_3)^2} \right] \]

\[A \cdot \frac{\partial^2 f(t)}{\partial t^2} + B \cdot \frac{\partial f(t)}{\partial t} + C \cdot f(t) + D = 0 \]

for \(t \geq \) “ON” command

<table>
<thead>
<tr>
<th>Case</th>
<th>Condition</th>
<th>Air Gap (x(t))</th>
<th>Inductance (L(x))</th>
<th>Mechanical Equation</th>
<th>Boundary conditions</th>
</tr>
</thead>
</table>
| (a) | Steady State “OFF”, valve de-energized, poppet not moving | constant (g) | \(k_1 \)
\(L = \frac{k_1}{k_2 g + k_3} = L_1 \) | \(F_e = 0; \ i(t) = 0; \ x(t) = g \) | \(V_i = V_o = 0; \ i = 0; \ x = g; \)
\(t = \text{continuous OFF steady state} \) |
| (b) | Command set “ON”, valve energized, poppet not moving | constant (g) | \(k_1 \)
\(L = \frac{k_1}{k_2 g + k_3} = L_1 \) | \(F_e = - \frac{k_1 k_2}{2(k_2 g + k_3)^2} \hat{p}(t); \)
\(k_g = - [F_e(t) + F_o] \) | \(V_i = V_o; \ i = 0; \ i_1 = V_o/R; \ x = g; \)
\(t \in [t_1, t_2] \) |
| (c) | Command set “ON”, valve energized, poppet is moving varies with time | \(k_1 \)
\(L = \frac{k_1}{k_2 x(t) + k_3} = L_2 \) | \(F_e(t) = - \frac{k_1 k_2}{2(k_2 x(t) + k_3)^2} \hat{p}(t); \)
\(m \cdot \frac{\partial^2 x(t)}{\partial t^2} + b \cdot \frac{\partial x(t)}{\partial t} + k \cdot x(t) = - [F_e(t) + F_o] \) | \(V_i = V_o; \ i = i_{11}; \ i_1 = V_o/R; \ x = g; \)
\(x = 0; \)
\(t \in [t_1, t_2] \) |
| (e) | Command set “ON”, valve energized, poppet is resting in “ON” position constant (0) | \(k_1 \)
\(L = \frac{k_1}{k_3} = L_3 \) | \(F_e(t) = - \frac{k_1 k_2}{2(k_3)^2} \hat{p}(t); \)
\(m \cdot \frac{\partial^2 x(t)}{\partial t^2} + b \cdot \frac{\partial x(t)}{\partial t} + k \cdot x(t) = - [F_e(t) + F_o] \) | \(V_i = V_o; \ i = i_{12}; \ i_1 = V_o/R; \ x = x_i = 0; \)
\(t \in [t_2, t_{on-s}] \) |
| (f) | Command set “ON”, valve energized, Steady State “ON” constant (0) | \(k_1 \)
\(L = \frac{k_1}{k_3} = L_3 \) | \(F_e(t) = - \frac{k_1 k_2}{2(k_3)^2} (V_o/R)^2 = F_{e-max} \) | \(V_i = V_o; \ i = i_1 = V_o/R; \ x = x_i = 0; \)
\(t = \text{continuous ON steady state} \) |
Solenoid Valve Model – Mechanical Equations

\[
m \cdot \frac{\partial^2 x(t)}{\partial t^2} + b \cdot \frac{\partial x(t)}{\partial t} + k \cdot x(t) = - \left[\frac{1}{2} i^2(t) \right] \frac{-k_1 k_2}{(k_2 x(t) + k_3)^2} + F_e
\]

\[
F_e = \left[\frac{1}{2} i^2(t) \right] \frac{-k_1 k_2}{(k_2 x(t) + k_3)^2}
\]

\[
A \cdot \frac{\partial^2 f(t)}{\partial t^2} + B \cdot \frac{\partial f(t)}{\partial t} + C \cdot f(t) + D = 0
\]

for \(t \geq \) "OFF" command

Table: Boundary conditions

<table>
<thead>
<tr>
<th>Case</th>
<th>Condition</th>
<th>Air Gap (x(t))</th>
<th>Inductance (L(x))</th>
<th>Mechanical Equation</th>
<th>Boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td>Steady State “ON”, (x(t)) (k_1) (k_3), poppet not moving</td>
<td>(L = \frac{k_1}{k_3} = L_3)</td>
<td>(F_e(t) = -\frac{k_1 k_2}{2(k_3)^2}) (V_i = V_f = V_o, I_i = I_f = V_o/R, x_i = x_f = 0); (t) = continuous ON steady state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Command set “OFF”, (x(t)) (k_1) (k_3), valve de-energizing, poppet not moving</td>
<td>(L = \frac{k_1}{k_3} = L_3)</td>
<td>(F_e(t) = -\frac{k_1 k_2}{2(k_3)^2}) (i^2(t); 0 = -[F_e(t) + F_o]); (V_i = V_f = 0, I_i = V_o/R, I_f = I_{13}, x_i = x_f = 0); (t \in \left[t_{off}, t_3 \right])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>Command set “OFF”, (x(t)) (k_1) (k_3), valve de-energizing, poppet is moving</td>
<td>Varies with time (L = \frac{k_1}{k_3 x(t) + k_3} = L_2)</td>
<td>(F_e(t) = \frac{-k_1 k_2}{2(k_3)^2} i^2(t); 0 = -[F_e(t) + F_o]); (m \frac{\partial^2 x(t)}{\partial t^2} + b \frac{\partial x(t)}{\partial t} + k \cdot x(t) = -[F_e(t) + F_o]); (V_i = V_f = 0; I_i = I_{13}, I_f = I_{14}, x_i = 0; x_f = g; (x_i = x_f = 0); (t \in \left[t_3, t_4 \right])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td>Command set “OFF”, (x(t)) (k_1) (k_3), valve de-energizing, poppet is resting in “OFF” position</td>
<td>(L = \frac{k_1}{k_2 g + k_3} = L_1)</td>
<td>(F_e(t) = \frac{-k_1 k_2}{2(k_2 g + k_3)^2} i^2(t); kg = -[F_e(t) + F_o]); (V_i = V_f = 0; I_i = I_{14}, I_f = 0; x_i = x_f = g; (t \in \left[t_4, t_{off-ss} \right])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k)</td>
<td>Command set “OFF”, (x(t)) (k_1) (k_3), Steady State “OFF”</td>
<td>(L = \frac{k_1}{k_2 g + k_3} = L_1)</td>
<td>(F_e = 0; i(t) = 0; x(t) = g); (V_i = V_f = 0; I_i = I_f = 0; x_i = x_f = g; (t) = continuous OFF steady state</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Backup Information
SCSS Implementation
SCSS Implementation

SCSS Components

- A non-invasive current sensor (Hall Effect sensor) to monitor the electrical current signature of the solenoid valve
- An Analog Module that provides signal conditioning and sensor compensation
- A Digital Module that processes the data from the sensors and provides the resulting information/health assessment to the users/operators
- An embedded set of software algorithms that interpret the data from the sensor and assess the health of the valve in real-time and indicates how the valve parameters are behaving prior and during operation of the valve
- A communication circuit to transmit the information to the user
- A Graphical User Interface (GUI) to display information to users/operators
SCSS Implementation

Block Diagram

Hall Effect Sensor

Temperature Sensor

Sensor Assembly

Signal Conditioner and Controller Assembly

SENSOR OFFSET AND GAIN COMP.

ANALOG OUT

ADC

μProcessor

DIGITAL COMM.
SCSS Implementation - Hardware

Sensor Assembly

• The Sensor Assembly acquires the electrical current signature from the valve’s electrical conductors
 • A Hall effect sensor picks up the associated magnetic field from the electrical current and translate it in an equivalent voltage signal
 • A temperature sensor monitors the Sensor Assembly’s temperature information to provide temperature compensation to the SCSS
• Shielding and magnetic flux concentration is provided by the housing
SCSS Implementation - Hardware

Signal Conditioner and Controller Assembly

ANALOG MODULE
- Provides signal conditioning to Sensor Assembly
- Extend Hall Effect sensor's acquisition range over temperature to meet required accuracy
 - Provides real-time autonomous compensation
 - Provides real-time calibration adjustments

DIGITAL MODULE
- Processes the data from the sensors in the Sensor Assembly (Hall, temperature)
-Executes the SCSS embedded software algorithms in real-time
 - Filters the current signal from the valve
 - Obtains the first and second derivatives of signal
 - Extracts the valve's parameters of interest
 - Identifies the parameters that are out of tolerance
 - Stores information related to the valve on board the SCSS
 - Communicates information/health status to the users/operators
- Contains a Digital Signal Processor (DSP) for complex calculations
SCSS Implementation - Software

Embedded Software Modes of Operation

SCSS Learning Mode

a. Exercise good valve N cycles to acquire the valve's nominal profile
b. Calculate the identified parameters for each of the signature regions
c. Calculate and baseline the representative values for each parameter
d. Calculate and baseline their associated tolerances

SCSS Operational Mode

1) Monitoring Mode (in SCSS)

a. Keep count of the total number of times the valve is cycled
b. Calculate all the identified parameters for each region
c. Verify that the obtained values fall within the nominal (baseline) values plus or minus the specified tolerances for each of the parameters
d. Keep count and record the number of times any "out of tolerance" is detected for any of the parameters in the valve
e. If any "out of tolerance" is detected, report the cycle as "an anomalous" cycle as well as report all the "anomalous" parameters
f. Keep count the total number of "anomalous" cycles in the valve
Embedded Smart Software Algorithm

2) Reporting Mode (in SCSS)
 a. Remain in Monitoring Mode until user/customer requests data
 • Switch to transfer data to user/customer
 • Output the Total Number of cycles
 • Output the Total Number of anomalous cycles
 • Report parameters that were out of tolerance

3) Analyze, Store, Display Mode (User Interface, external to SCSS)
 a. External program which reads the data from the Digital Module
 b. Stores information in user's hard-drive, and displays on SCSS GUI
 c. Analyzes which reported anomalous parameters correspond to physical failures, changes or degradation in the valve. Start with known failures to build up the knowledge base of how the valves behave under anomalous / failure conditions.
SCSS Implementation - Graphical User Interface

Valve Control Source
- Program
- Data Source
- Live Data

Operational Mode

Rising Edge Parameters

<table>
<thead>
<tr>
<th>Param</th>
<th>Measured</th>
<th>Nominal</th>
<th>Tolerance</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Peak</td>
<td>2.59E-1</td>
<td>2.30E-1</td>
<td>1.72E-1</td>
<td>2.09E-1</td>
</tr>
<tr>
<td>1st Valley</td>
<td>2.44E-1</td>
<td>2.17E-1</td>
<td>1.62E-1</td>
<td>2.63E-1</td>
</tr>
<tr>
<td>1st High</td>
<td>3.66E-1</td>
<td>2.90E-1</td>
<td>2.29E-1</td>
<td>3.79E-1</td>
</tr>
<tr>
<td>2nd High</td>
<td>3.66E-1</td>
<td>2.90E-1</td>
<td>2.29E-1</td>
<td>3.79E-1</td>
</tr>
</tbody>
</table>

Falling Edge Parameters

<table>
<thead>
<tr>
<th>Param</th>
<th>Measured</th>
<th>Nominal</th>
<th>Tolerance</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Valley</td>
<td>3.29E-1</td>
<td>3.18E-1</td>
<td>6.07E-2</td>
<td>1.07E-1</td>
</tr>
<tr>
<td>1st Peak</td>
<td>4.11E-1</td>
<td>3.96E-1</td>
<td>8.09E-2</td>
<td>1.50E-1</td>
</tr>
<tr>
<td>1st Low</td>
<td>2.28E-1</td>
<td>2.24E-1</td>
<td>5.17E-2</td>
<td>1.02E-1</td>
</tr>
<tr>
<td>1st Low</td>
<td>2.39E-1</td>
<td>2.24E-1</td>
<td>5.17E-2</td>
<td>1.02E-1</td>
</tr>
</tbody>
</table>

G.R.P Count
- 0

G.F.P Count
- 0

Valve State
- Low

Operational Mode

Graphical User Interface
SCSS Testing
SCSS Testing

- Testing of the SCSS was very comprehensive and included several valves of same family and many cycles for each of the valve

- Testing was conducted at room temperature and at extreme temperature ranges (controlled temperature in an environmental chamber)

- These valve parameters, among others, were controlled and/or physically modified during testing to test/demonstrate the SCSS algorithm:
 - Temperature of the solenoid valve and the Sensor Assembly (T_{amb})
 - Valve's Spring mechanical strength (k)
 - To simulate degradation of spring
 - Valve's poppet travel (x)
 - To simulate degradation and/or debris in the poppet seat
 - Friction in the poppet's path (b)
 - To simulate degradation and/or debris in the valve
 - External power supply voltage (V)
 - Pressure inside the valve (P)
SCSS Testing examples

Current Signature (Healthy Valve)
SCSS Testing examples

Current Signature (Partially Jammed Poppet)
SCSS Testing examples

Current Signature (Poppet Pulled Slightly Out of the Solenoid Before Energizing, The De-Energizing Phase is Normal)
SCSS Testing examples

Current Signature (Poppet Pulled Significantly Out of the Solenoid Before Energizing, The De-Energizing Phase is Normal)
SCSS Testing examples

Current Signature (Poppet Jammed in the Energized State)
SCSS Testing examples

Current Signature (Poppet Jammed in the De-Energized State)
SCSS Present Status
Present status

• Technology Present Status
 • Software Algorithms and prototype were developed and tested in the laboratory under extreme temperature environment
 • A few prototypes were built to demonstrate the technology
 • Associated User interface software was generated, tested and implemented in a laptop environment
 • Simulation software was created to run algorithms against recorded data
 • No additional funding was received for the project

• Commercial Spin-Off
 • Limited licensing agreement with Schaffer LLC for commercialization (2006)
 • Limited licensing agreement with Graftel LLC for commercialization (2009)

• Technology Patents and Awards
 • US Patent was awarded to KSC for this design (U.S. # 6,917,203 - 2005)
 • Honorable Mention by the Federal Laboratories Consortium FLC Southeast region for Excellence in Technology Transfer (2010)
Future Steps & Intelligent Devices
Future Steps for SCSS

Hardware
- Implementation needs to be redesigned due to components' obsolescence (DSP, memory)
- Auto-calibration circuit needs to be implemented in hardware
- New implementation should be redesigned to conform to latest Intelligent Devices architecture/standards

Software
- DSP embedded code needs to be updated/upgraded to the new available DSP

Algorithms
- Additional algorithms should be developed to include embedded prognosis capabilities

Health algorithms could be implemented in many different hardware platforms
Intelligent Devices

INTELLIGENT DEVICES GOALS
- Provide valid information (assess and qualify the validity of the data)
- Provide information versus raw data (data conversion and compensation)
- Provide sensor/actuator health status (degradation and failure detection)
- Provide embedded self-healing capabilities (self-calibration and self-reconfiguration)
- Provide networking capability (wired and/or wireless)
- Provide higher reliability and longer calibration cycles
- Provide automation and ultimately autonomy, reducing human intervention (reduced maintainability costs)
- Provide measurement standardization (IEEE 1451, Power over Ethernet, etc)

INTELLIGENT DEVICES CHARACTERISTICS
- Self-identification (Configuration Control)
- Embedded intelligence
 - Data digitization and conversion,
 - Time stamping and data synchronization
 - Complex signal processing (trending, averaging, etc)
 - Data storage
 - Self-health assessment (Data Validity and Availability)
 - Auto-calibration capability
 - Self-reconfiguration capability
 - Health Management capability
- Proposed Health Electronic Data Sheets (HEDS) approach

PROJECT STATUS
- Sensor Architecture has been defined and baselined
- Hardware prototypes have been developed and tested for temperature and pressure
- Implementation of IEEE 1451 standards have been demonstrated
- Implementation of IEEE 1588 Precision Time Protocol (PTP) standard has been demonstrated
- Implementation of IEEE 802.3af Power over Ethernet (PoE) standard has been demonstrated
- Communication over Ethernet and ControlNet protocols have been demonstrated
Summary/Conclusion
• Algorithm has been designed and demonstrated
• An implementation of the design has been built and demonstrated
• Commercialization of the design has been done
• Intellectual property has been secured through patent
• Design needs to be incorporated in the new Ground Operations architecture
Innovators, Contributors and Acknowledgements
SCSS Development Team

Development Team
- Mr. Angel Lucena, NASA, Embedded Systems Developer
- Mr. Mario Bassagnani, NASA, Mechanical Designer
- Mr. Curtis Ihlefeld, NASA, Electrical/Electronics Designer
- Mr. Bradley Burns, ASRC, Electrical Electronics Designer
- Dr. John Lane, ASRC, Valve Modeling

Contributors
- Dr. Carl Latino, Oklahoma State University, Neural Networks algorithms
- Dr. Ibrahim Tansel, Florida International University, Wavelet algorithms
QUESTIONS