NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Shuttle and ISS Food Systems ManagementRussia and the U.S. provide the current International Space Station (ISS) food system. Each country contributes half of the food supply in their respective flight food packaging. All of the packaged flight food is stowed in Russian provided containers, which interface with the Service Module galley. Each country accepts the other's flight worthiness inspections and qualifications. Some of the food for the first ISS crew was launched to ISS inside the Service Module in July of 2000, and STS-106 in September 2000 delivered more food to the ISS. All subsequent food deliveries will be made by Progress, the Russian re-supply vehicle. The U.S. will ship their portion of food to Moscow for loading onto the Progress. Delivery schedules vary, but the goal is to maintain at least a 45-day supply onboard ISS at all times. The shelf life for ISS food must be at least one year, in order to accommodate the long delivery cycle and onboard storage. Preservation techniques utilized in the US food system include dehydration, thermo stabilization, intermediate moisture, and irradiation. Additional fresh fruits and vegetables will be sent with each Progress and Shuttle flights as permitted by volume allotments. There is limited refrigeration available on the Service Module to store fresh fruits and vegetables. Astronauts and cosmonauts eat half U.S. and half Russian food. Menu planning begins 1 year before a planned launch. The flight crews taste food in the U.S. and in Russia and rate the acceptability. A preliminary menu is planned, based on these ratings and the nutritional requirements. The preliminary menu is then evaluated by the crews while training in Russia. Inputs from this evaluation are used to finalize the menu and flight packaging is initiated. Flight food is delivered 6 weeks before launch. The current challenge for the food system is meeting the nutritional requirements, especially no more than 10 mg iron, and 3500 mg sodium. Experience from Shuttle[Mir also indicated insufficient caloric intake for many crewmembers. Additional thermostabilized and irradiated foods have been developed for ISS to improve the ease of preparation and overall acceptability. Dehydrated foods offer limited advantage, since water must be delivered to ISS. An effort is underway to introduce other International Partner's food into the ISS food system. At first this will be one or two selected foods with the potential for more as the program matures. An increase in the variety of available foods would improve the overall acceptability. Additional galley capability will be required when the crew size increases on ISS. Anticipated improvements include freezers, refrigerators and microwave ovens. All of the ISS food development efforts are devoted to improving the food acceptability and subsequent consumption and mission success
Document ID
20110000670
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Kloeris, Vickie
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
October 1, 2000
Subject Category
Man/System Technology And Life Support
Report/Patent Number
JSC-CN-6544
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available