The Reconstruction and Failure Analysis of The Space Shuttle Columbia

Aircraft Airworthiness and Sustainment Conference – Australia

August 20, 2010

Rick Russell
NASA Materials Science Division
Kennedy Space Center, FL
Co-Authors

- Dr. Brian M. Mayeaux, NASA Johnson Space Center
- Thomas E. Collins, The Boeing Company
- Steven J. McDanel, NASA Kennedy Space Center
- Dr. Robert S. Piascik, NASA Langley Research Center
- Dr. Sandeep R. Shah, NASA Marshall Space Flight Center
- Greg Jerman, NASA Marshall Space Flight Center
- Woody Woodworth, United Space Alliance
M&P Team Members

<table>
<thead>
<tr>
<th>NASA-JSC</th>
<th>NASA-KSC</th>
<th>NASA – LaRC</th>
<th>Boeing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jay Bennett</td>
<td>Larry Batterson</td>
<td>Robert Berry</td>
<td>Rodger Capps</td>
</tr>
<tr>
<td>Glenn Ecord</td>
<td>Virginia Cummings</td>
<td>Stephen Smith</td>
<td>Tab Crooks</td>
</tr>
<tr>
<td>John Figert</td>
<td>Dionne Jackson</td>
<td>William Winfree</td>
<td>Jeff Hausken</td>
</tr>
<tr>
<td>Julie Henkener</td>
<td>Thad Johnson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julie Kramer-White</td>
<td>Hae Soo Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA-MSFC</td>
<td>Sandra Loucks</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Greg Jerman</td>
<td>Peter Marciniak</td>
<td>Cathy Clayton</td>
<td></td>
</tr>
<tr>
<td>NASA-GRC</td>
<td>Wayne Marshall</td>
<td>Stanley Shultz</td>
<td></td>
</tr>
<tr>
<td>Herb Garlick</td>
<td>Orlando Melendez</td>
<td>Bryan Tucker</td>
<td></td>
</tr>
<tr>
<td>Leslie Greenbauer-Seng</td>
<td>Scott H. Murray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Hull</td>
<td>Jaime Palou</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nathan Jacobson</td>
<td>Donald Parker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elizabeth Opila</td>
<td>Victoria Salazar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>James Smialek</td>
<td>Eric Thaxton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stan Young</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Launch – January 23, 2003 at 10:39 AM
• Launch + 81.9 seconds, External Tank left bipod foam strikes Columbia’s left wing
• February 1, 2003 8:15:30 am, Commander Husband and Pilot McCool execute de-orbit burn
• Entry interface (approx. 400,000 ft), 8:44:09 am
• Over California first signs of debris shedding observed at 8:53:46 am
• Approximately 1 minute 24 seconds into peak heating region of re-entry interface, 8:52:17, an off-nominal temperature in the left main landing gear brake line sensor
• First sign of trouble reported in mission control, at 8:54:24 when four hydraulic sensors were indicating “off-scale low”.
• Loss of signal from Columbia recorded at 8:59:32 am.
• Videos made by observers on the ground at 9:00:18 am revealed that the Orbiter was disintegrating
Foam Impact

Frame 4912
Recovery

- Columbia was traveling at Mach 18 at an altitude of 208,000 feet at time of breakup.
- The size of the debris field was 645 miles long and 10 miles wide.
- Each piece of debris was photographed, analyzed for potential hazards, given a unique identification.
- Each piece's location was noted and a preliminary identification was attempted.
- Debris was then sent to one of several stationing locations before being sent to the Kennedy Space Center for reconstruction.
- Over 83,900 items were recovered representing an estimated 38% of Columbia by weight.
Reconstruction

- Reconstruction is a common aircraft accident investigation tool used to trace damage patterns and failure clues to aid in the determination of probable cause.
- A 2-D Reconstruction plan was developed before the arrival of the debris.
- The option for possible 3-D reconstruction was deferred until the amount of debris and initial observations were made.
Reconstruction Plan
Reconstruction Hanger
Six items with similar thermal and mechanical damage to left wing components were selected for failure analysis.

Purpose was to develop failure analysis procedures for debris hardware and to obtain exploratory lab data.

Areas of interest included fracture surfaces, high temperature erosion and melting of fractures and other protrusions, various metal deposits, and various degrees of tile discoloration and deposits.

The results of the tests and analyses were intended to provide guidance of future failure analyses and provide a basis for debris damage interpretation.
Aluminum Pathfinder

- Intergranular fracture primary failure mode
Early Analysis – Left MLG Door Area

- LH MLG Strut
- MLG Tires
- MLG Door Up-lock
- Skin Panel

Heaviest splatter on inboard side
• Evidence of extreme overheating and heavy deposits on specific WLE hardware appeared to correlate with the instrumentation and sensor data (MADS Recorder).

• To validate proposed break-up scenarios under consideration the investigation was concentrated on three areas of interest associated with the Wing leading Edge Subsystem (LESS):
 - Carrier Panel Tiles
 - RCC Panels
 - Wing substructure attach hardware
Wing Leading Edge Subsystem (LESS)
3D Reconstruction of Left WLE
Left Wing Tile Table
LESS Observations

- Unique indications of heat damage:
 - Excessive overheating and slumping of carrier panel tiles
 - Eroded and knife-edged RCC rib sections
 - Heavy deposits on select pieces of RCC panels
Left Hand Wing Debris Points to RCC 8/9 - Slumped Tile

(#) = Number of attach fitting bolts on the piece
T = Tile piece, no structure
F = Fitting with some RCC in it
S = Spar only (metal, no RCC)

Upper C/P:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>
| 14906 | | | 19041 | 51033 | 21066 | 22510 | 50314 | 50338 | }

Fitting:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>8534(4)</td>
<td>783(4)</td>
<td>54643(4)</td>
<td>50950(4)</td>
<td></td>
</tr>
</tbody>
</table>

T-Seal:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>32171</td>
<td></td>
<td></td>
<td>24430(4)</td>
<td>49830</td>
<td>17974</td>
<td>26220</td>
<td></td>
</tr>
</tbody>
</table>

RCC:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>
| 518 | 52098 | 34389 | 1847 | 47937 | 47918 | 24736 | 32044 | 732 | 17969 | 29288 | 36519 | 32155 | 59527 | 61137 | 31985 | 26014 | 23663 | 2200 | 17957 | 18477 | 43790 | 1022 | 27543 | 29741 | 49619 | 52618 | 61143 | 29233 | 34713 | 43388 | 34664 | 266270 | 51645 | }

Lower C/P:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>
| 24086 | 24543 | 26022 | 24082 | 52285T | 50166T | 88207 | 1399 | 27580T | 38901T | 26560T | 16692T | 26571T | 51645T | }

Slumped
Flow Patterns Indicates C/P 9 Was Not Dropped Down Into Flow

Open question: Location of Plasma Flow From Panel 8 to tiles on 9?
Slumping and erosion patterns suggest plasma flow across the carrier panel tile (from 8 toward 10)
Slumping and erosion patterns suggest plasma flow out of leading edge cavity (consistent with vent)
Left Hand Wing Debris Points to RCC 8/9 - Erosion (▲) and RCC with attach hole intact (●)

(#) = Number of attach fitting bolts on the piece T = Tile piece, no structure
F = Fitting with some RCC in it S = Spar only (metal, no RCC)

RCC attach holes intact
Erosion

RCC 8/9 - Erosion (▲) and RCC with attach hole intact (●)
Erosion on Panel 8 Upper Outboard Rib

Outboard apex

Item 49619

Close-ups of knife edge, note fibers not visible on internal surface of panel due to deposits. Rib tapers from design thickness of .365" to .05".
External/Outboard surfaces:
- Matching eroded plies between items 24724 and 58291, shows heat flow external to the panel while panel heel and lug were attached
- Metallic deposits at lug attach points - evidence that metallic deposited after lug no longer attached to fitting
- Inconel bushings missing at holes

Lug fragment tapers from design thickness of .499”, to a Knife Edge with a minimum thickness of 0.063”

Heel fragment tapers from design thickness of .233”, to a Knife Edge with a minimum thickness of 0.052”
Erosion on Panel 9 Upper Inboard Rib

7025 to 52018 interface shows severe thermal erosion – thickness ranges from 0.270 to knife edge of 0.040

7025 internal side shows presence of metallic deposits
Erosion indicates prolonged exposure in the panel 8-9 joint area.
Slumping Source for Carrier Panel 9 Tile was Revealed

Slumping of C/P 9 Tile #1 Corresponds with Design Slot in Corner of RCC Panel 8

Slumping and erosion patterns suggest plasma flow across the carrier panel tile (from 8 toward 10)

Evidence of Hot Gas Flow Exiting Design Slot Indicates Significant Breach Was Into Panel 8
Debris Indicates Highest Probability Initiation Site

- Wing failure initiated in the panel 8 area
- Most likely at the panel 8 area near 8-9 joint
- Condition existed before or shortly after entry interface
Left Hand Wing Debris Points to RCC 8/9 – Metallic Deposits

(#) = Number of attach fitting bolts on the piece
T = Tile piece, no structure
F = Fitting with some RCC in it
S = Spar only (metal, no RCC)

<table>
<thead>
<tr>
<th>Upper C/P</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14906</td>
<td></td>
<td>19041</td>
<td>51033</td>
<td>21066</td>
<td>22510</td>
<td>50314</td>
<td>50336</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fitting</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>853(4)</td>
<td></td>
<td>786(4)</td>
<td>54943</td>
<td>59950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12322(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36228</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T-Seal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32171</td>
<td></td>
<td>24330</td>
<td>49530</td>
<td>17974</td>
<td>26229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>518</td>
<td>2629</td>
<td>27436</td>
<td>59527</td>
<td>326556</td>
<td>11985</td>
<td>2200</td>
<td>61143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16563</td>
<td>24736</td>
<td>32044</td>
<td>36519</td>
<td>23663</td>
<td>1957</td>
<td>6137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36464</td>
<td>26014</td>
<td>10477</td>
<td>43709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fitting</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>717(2)</td>
<td>703(2)</td>
<td>42(2)</td>
<td>823</td>
<td>64805</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower C/P</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24086</td>
<td>24543</td>
<td>26822</td>
<td>24682</td>
<td>52885T</td>
<td>56166T</td>
<td>1399</td>
<td>27590T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Metallic Deposits

Metallic Deposits

Metallic Deposits

Metallic Deposits

Metallic Deposits

Metallic Deposits

Metallic Deposits
Qualitative deposition assessment:
from “Very Light” to “Very Heavy”

Distribution of metallic deposition volume was centered around panels 8 & 9
Metallic Deposit Example, LH RCC 8

Metallic Deposit on "INSIDE"
RCC
High Level Questions

Sample the metallic deposits on RCC & Tiles to:

- Identify the location of breach in the wing leading edge.
- Identify the sequence of deposition/events
- Understand plasma flow direction and related thermal damage.
• Understand Pros and Cons of Analysis Techniques (destructive and non-destructive)
 ✷ Objective is to downselect analysis techniques fast.

• What are the leading edge materials?

• Understand Chemistry of reactions with atmospheric elements.

• Understand effects of melting and mixing of different materials.

• All analysis to be complete by end of May, 2003. Wrap-up in June.
Analysis Techniques

<table>
<thead>
<tr>
<th>Analysis Technique</th>
<th>Purpose</th>
<th>Why/Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photography</td>
<td>Photo documentation</td>
<td>Documentation to maintain traceability</td>
</tr>
<tr>
<td>Scanning Electron Microscopy – SEM/EDS</td>
<td>Semi-quantitative elemental composition</td>
<td>Elements present, identify difference between top and bottom of sample</td>
</tr>
<tr>
<td>X-ray Diffraction - XRD</td>
<td>Identify compounds</td>
<td>Identify compounds of crystalline structure</td>
</tr>
<tr>
<td>Electron Microprobe</td>
<td>Identify elements</td>
<td>Determine exact composition</td>
</tr>
<tr>
<td>Fourier Transform Infra-Red - FTIR</td>
<td>Qualitative organic composition</td>
<td>If organic, aid in identification</td>
</tr>
<tr>
<td>ESCA/XPS</td>
<td>Identify inorganic & organic compounds</td>
<td>Aid in tracking of oxidation states, such as oxide; compound identification</td>
</tr>
<tr>
<td>Metallography + SEM</td>
<td>Layering of material</td>
<td>Composition through deposit layers</td>
</tr>
<tr>
<td>Inductively coupled plasma - ICAP</td>
<td>Quantitative elemental composition</td>
<td>Elements present, Quantify bulk composition of sample</td>
</tr>
<tr>
<td>NDE Inspections - Radiography, CT, Ultrasonics</td>
<td>Non-destructive Inspection and identification</td>
<td>See through the material, identify differences in materials, identify defects</td>
</tr>
</tbody>
</table>

Repeatability and Reproducibility of results emphasized
Analysis Approach

- Radiograph RCC panels & Tiles
- Strategically locate samples - minimize the sample count. Two samples of each feature.
- Use diagnostic techniques (X-section, SEM, Microprobe, XRD) to identify:
 - Content of metallic deposits
 - Layering of metallic deposits
- Use "Interpretation Criteria" to correlate deposit analysis <=> WLE source material

Apply results to ALL radiographs and visual features to answer the high level questions.
Erosion indicates prolonged exposure to plasma heating
Four types of deposit patterns were identified from LH RCC Panel 8:
- Uniformly thick; Spheroidal; Tear-shaped; Globular
Radiography WLE LH Panel 8

X-ray Image

Hardware
LH RCC 8 Upper Apex
LH RCC 8 – Deposit Feature: Thick Tear Shaped

Item 43709, Sample 2A1

Radiograph of Item 43709

+ Alumina + Inconel

Cerachrome + Type A Coating

SiC

Carbon-Carbon
Item 2200, Sample 6A1

Radiograph of Item 2200
LH RCC 8 - Deposit Feature: Spheroids

Item 2200, Sample 6C1

Radiograph of Item 2200

Type A Casting
SiC
Carbon-Carbon

Inconel 718
Alumina
Aluminum + Alumina + Inconel
LH RCC 8 - Deposit Feature: Uniform Deposit

Item 16523, Sample 4A1

Radiograph of Item 16523

Cerachrome + Aluminum + Inconel + Alumina
Aluminum + Inconel + Cerachrome + Type A Coating
SiC
Carbon-Carbon
Significant Findings - Sampling LH RCC Panel 8

- Large amounts of melted ceramic cerachrome insulator
 - High temperature >3200°F
- No indication of stainless steel spar fittings (A286) in metallic deposits
 - Breach location away from spar fittings
- Cerachrome + Inconel in first deposited layers
 - Melting of spanner/foil/fittings + Insulator
- Aluminum deposition secondary event

Layering of metallic deposits suggests plasma impingement location

Distribution & shape of metallic deposits suggests plasma flow direction and deposition duration
Significant Findings – Sampling All Other Panels

- Significant findings includes all LH RCC Panels except panel 8 and all RH RCC panels sampled
- All analyzed metallic deposit layers contain aluminum
 - CONCURRENT Spar/Inconel/Insulator melting
- Metallic deposits are generally uniform and relatively thin
 - No region where melting was concentrated
 - i.e. plasma heating for short periods
Flow Exiting through RCC 8 on to lower Carrier Panel 9 tiles
Corroborating Information - RCC Panel Debris Locations

- Panels at RCC 8 and Aft Dropped First
- All Eroded RCC Pieces (in 8 & 9) Found to the West
- R/H Wing Panels and L/H Wing Panels 1-8 Found to the East
Corroborating Information – LH OMS Pod Analysis

Flow Lines Approximated By Visual Inspection
Corroborating Information - LH OMS Pod Analysis

High-Z Spheroids

Estimated Flows
Overall Forensic Conclusions

- Overall forensic assessment is consistent with M&P Team conclusions
- All forensic evidence suggests a breach occurred on the lower surface of the LH RCC panel 8, close to the T-seal with panel 9
- The breach was present early during reentry allowing the ingestion of hot gasses into the wing leading edge cavity, which continued for several minutes prior to vehicle breakup
- Sequence of events:
 - Melting and vaporizing the Inconel 601 foil-covered cerachrome insulation blankets
 - Slumping the wing carrier panel tile immediately aft of the breach
 - Eroding the RCC adjacent to, and downstream of, the breach
 - Melting and/or weakening the Inconel 718 and A286 leading edge attach hardware
 - Destroying the nearby instrumentation and wire bundles
 - Penetrating the aluminum wing leading edge spar
Conclusions

- The hot gasses, having flooded the wing interior, quickly heated the upper and lower wing surfaces allowing the aluminum honeycomb facesheets and the wing tiles to debond. The thin-wall aluminum truss tubes would soon collapse and the aerodynamic and structural integrity of the left wing would be effectively destroyed.

- The forensic evidence is consistent with the observed External Tank foam impact 81 seconds into launch. This is the most probable cause of the damage to the RCC leading edge.