Truly incomplete and complex chromosomal exchanges in human fibroblast cells 
exposed in situ to energetic heavy ions

HONGLU WU1,*, MARCO DURANTE2, YOSHIYA FURUSAWA3, KERRY GEORGE1, 
TETSUYA KAWATA4 and FRANCIS A. CUCINOTTA5

1Wyle Laboratories, Houston, Texas, USA; 2 University of Naples, Naples, Italy; 3 National Institute 
of Radiological Sciences, Chiba, Japan; 4Chiba University, Chiba, Japan and 5NASA Johnson Space 
Center, Houston, Texas, USA

Confluent human fibroblast cells (AG1522) were irradiated with γ rays, 490 MeV/nucleon Si, or 
with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 °C for 24 
hours after exposure, and a chemically induced premature chromosome condensation (PCC) 
technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and 
complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal 
breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole 
chromosome specific probes and probes specific for the telomere region of the chromosome. Results 
showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, 
and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 
440 keV/μm, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon 
Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that 
allows identification of both complex and truly incomplete exchanges. Results of the mFISH study 
showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple 
exchanges and incomplete to complete exchanges, values for which were higher than those obtained 
after a 6 Gy γ exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve 
three or four chromosomes, which is a likely indication of the maximum number of chromosome 
domains traversed by a single Fe ion track.