Passive Thermal Control Challenges for Future Exploration Missions

Transformational Space Concepts and Technologies Workshop
Houston, Texas
March 2004

Presented by:

Steven L. Rickman
ES3/Chief, Thermal Design Branch
Structural Engineering Division
Engineering Directorate
NASA-Lyndon B. Johnson Space Center
Presentation Contents

• Background

• Passive Thermal Control Challenges for Exploration
 • General
 • Electronics
 • Environment Characterization
 • Analysis
 • Testing

• Wrap-up

Photo Credits: NASA, N. Williams, D. Newswander, Malin Space Science Systems, Space Telescope Science Institute, Jet Propulsion Laboratory
Background

• The President’s recently announced vision refocuses attention to exploration;

• Emphasis shifts from Earth orbit operations to travel to the Moon, establishing a lunar base, and an eventual journey to Mars;

• Humans went to the Moon during Apollo, but only for short stays – a different set of challenges arises when we consider going to the Moon to stay for extended periods;

• Humans have yet to visit Mars but work on advanced programs has identified some key challenges associated with sending humans to Mars.

NOTE: This presentation will focus only on passive thermal control – thermal protection (entry-related technologies) will be covered in a separate presentation.
General

• Improved Thermo-optical Coatings:
 • Low solar absorptance to infrared emittance ratio (α/ε) – potential use on radiators;
 • Inexpensive – some current low α/ε coatings are very expensive;
 • Easy to apply;
 • Resistance to property changes (due to ultra-violet radiation);
 • Resistance to atomic oxygen;
 • Long lifetime with stable properties;
 • Can be easily maintained (in lunar- or martian-dust environment);
 • Variable/user specified optical properties.

• Thermal Instrumentation:
 • Inexpensive;
 • Reliable;
 • Robust.
General (Continued)

• Cryogenic Boil-Off:
 • Improved storage of cryogens for prolonged periods.

• Insulation/Isolation Technologies:
 • Vacuum panels;
 • Use of aerogels;
 • Multi-Layer Insulations (MLI);
 • Thermal Compartments;
 • Thermal Switches.

• Lunar Day/Night Survival:
 • Lunar days and nights each last ~two weeks;
 • Extreme temperatures during lunar day (> +250 deg F);
 • Lunar soil reaching high temperatures in prolonged sunlight;
 • Lunar nighttime produces surface temperatures < -300 deg F
Electronics

• With further miniaturization of electronics components, power density and the associated challenges of electronics heat dissipation will provide new challenges -- Potential needs include power reductions that keep pace with electronics miniaturization;

• Improved means of heat transfer from electronics components:
 • Gap Fillers;
 • Gaskets;
 • Improved interface conductance.

Involvement by the thermal community is critical early in the development process.
Analysis

- Improved modeling of systems;

- Potential for large model sizes

- Improved modeling of electronics components;

- Improved thermal environment characterization;
 - Planet/moon surface environments, atmospheric extinction, diffuse sky heating components;
 - Improved convective heat transfer calculations for Mars surface;

- Improved compatibility with concurrent engineering tools:
 - Thermal \Rightarrow Structural;
 - CFD \Rightarrow Thermal;
 - Orbit \Rightarrow Thermal;
 - Etc.

- Thermal Analysis of Inflatable Structures
Environment Characterization

- **Lunar and Martian Orbit Environments:**
 - Lunar albedo and infrared emission;
 - Martian albedo and infrared emission.

- **Mars Surface Environments:**
 - Atmosphere optical depth and dust storm characteristics;
 - Diffuse sky solar and infrared heating components;
 - Detailed wind profiles;
 - Atmospheric temperature profiles near the surface.
Testing

Facilities to support large-scale thermal-vacuum testing for lunar- and martian surface environments are needed:

- Solar simulation;
- CO2 environment at low pressure (for martian surface simulation);
- Lunar and Mars surface simulation.
Wrap-up

• Expect additional technical challenges to arise as an architecture for exploration matures;

• Key aspects of passive thermal control arise as a consequence of spacecraft integration:
 • Utilizing waste heat from one system to accommodate the needs of another system;
 • The entire system must function successfully as a unit.