
49th AIAA Aerosciences Meeting, January 4-7, 2011, Orlando, Florida 

 
American Institute of Aeronautics and Astronautics 

 

1 

Receptivity of Hypersonic Boundary Layers to Acoustic and 
Vortical Disturbances 

P. Balakumar* and Michael A. Kegerise** 

Flow Physics and Control Branch 
NASA Langley Research Center, Hampton, VA 23581 

Boundary layer receptivity to two-dimensional acoustic disturbances at different 
incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes 
equations for Mach 6 flow over a 7°  half-angle sharp-tipped wedge and a cone.  Higher 
order spatial and temporal schemes are employed to obtain the solution.  The results show 
that the instability waves are generated in the leading edge region and that the boundary 
layer is much more receptive to slow acoustic waves as compared to the fast waves. It is 
found that the receptivity of the boundary layer on the ‘windward’ side (with respect to the 
acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees.  
However, the receptivity coefficient for the ‘leeward’ side is found to vary relatively weakly 
with the incidence angle.  The maximum receptivity is obtained when the wave incident 
angle is about 20 degrees. Vortical disturbances also generate unstable second modes, 
however the receptivity coefficients are smaller than that for the acoustic waves. Vortical 
disturbances first generate the fast acoustic modes and they switch to the slow mode near the 
continuous spectrum. 

I.   Introduction 
RANSITION in hypersonic boundary layers in quiet environments occurs due to the growth of unstable 
second mode disturbances inside the boundary layer1. Numerical, experimental, and theoretical 

investigations have been performed to try to understand these instability modes for hypersonic boundary layers2-19. 
Stability characteristics of a boundary layer depend on several parameters including: boundary layer edge Mach 
number (M), local Reynolds number, pressure gradient, and wall conditions. The instability is governed by the 
linearized Navier-Stokes equations. The normal mode analysis of this equation yields an eigenvalue system that 
determines the stability characteristics of the boundary layer. The solution of this system yields several discrete and 
continuous eigensolutions. The eigensolutions corresponding to the continuous spectrum give the local forced 
response of the boundary layer to incoming or outgoing acoustic, vortical, or entropy disturbances. Without any 
local forcing, the contribution of the continuous spectrum to the boundary layer disturbances does not exist. Among 
the discrete eigensolutions, only one or a few, at most, may be unstable. These unstable modes grow exponentially 
downstream and cause the boundary layer to transition to turbulence. 

In hypersonic boundary layers, among all the discrete modes, the slow and the fast modes are the two relevant 
modes for boundary layer transition12, 13. The slow and the fast modes correspond to the discrete modes whose phase 
speeds approach the phase speeds of the slow and the fast acoustic wave, 1-1/M and 1+1/M, respectively, as the 
Reynolds number decreases towards zero. As the Reynolds number increases, the phase speed of the slow mode 
increases gradually from 1-1/M to 1.0 and the phase speed of the fast mode decreases gradually from 1+1/M to 1.0. 
As the phase speed of the fast mode approaches 1.0, the fast mode is absorbed into the continuous spectrum. 
Downstream of this point, a new mode with slightly different eigenvalues and eigenfunctions springs from the 
continuous spectrum. Even though there is a discontinuity in the eigenvalues and eigenfunctions across the 
continuous spectrum, the new mode is continued to be termed as the fast mode. Further downstream, the phase 
speed of the fast mode continues to decrease and at some point the phase speeds of the slow, and the fast modes 
cross each other. This point is termed as the synchronization point. However, the imaginary parts of the modes 
remain separate at this point.  
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Depending on the frequency, Mach number, and wall conditions, one of the modes, either the slow or the fast 
mode evolves into Mack’s unstable second mode, and the other mode evolves into the stable mode. Gushin et al. 
(1991) and Fedorov et al. (2001) developed an analytical model using a quadratic dispersion relation in the 
wavenumber and Reynolds number plane to explain the observed branching of the slow and the fast modes into 
stable and unstable modes. The boundary layer characteristics have been computed by many researchers without 
much difficulty. The important relevant and unanswered questions are: (1) How are the slow and the fast modes 
generated inside the boundary layers in wind tunnel and flight environments? (2) What are the initial amplitudes of 
these modes in a particular environment? (3) How and where do the slow and/or fast modes generate the unstable 
second mode? (4) What is the initial amplitude of the second mode? 

Building on the fact that the phase speeds of the slow and fast acoustic waves synchronize with the phase speeds 
of the slow and fast modes, several investigations were conducted on the interaction of acoustic waves with 
supersonic and hypersonic boundary layers. Fedorov and Khokhlov14,15,16 showed using asymptotic theory that eigen 
solutions are formed near the leading edge region of a flat plate during the diffraction of the acoustic wave by the 
growing boundary layer. This diffraction zone is very long in the streamwise direction on the order of ε-2λ in the 
streamwise direction, where ε is an asymptotically small parameter and λ is the wavelength of the free stream 
acoustic disturbances.  Fedorov [2003] also identified that the unstable second mode can be generated through the 
inter-modal exchange between the fast and the slow modes near the synchronization point. For an adiabatic wall, 
Fedorov [2003] found that receptivity to slow acoustic waves could be as much as 50 times the receptivity to the fast 
acoustic waves.  Thus, the leading-edge receptivity via the slow mode excitation is much stronger than in the case of 
inter-modal exchange.  

Ma and Zhong18,19 have performed a series of direct numerical simulations for a flow over a sharp Mach 4.5 flat-
plate boundary layer to investigate receptivity to fast acoustic waves. They used a fifth-order accurate shock-fitting 
method in the numerical simulation. They identified from the wavenumber and the eigenfucntions comparison with 
the linear stability calculations that the fast stable mode excited the unstable Mack’s second mode through the 
mechanism of inter-modal exchange. They also considered the effects of incidence angles on the receptivity of the 
supersonic boundary layer to fast acoustic waves. The results showed that maximum receptivity of the second mode 
is obtained when the incident wave angle approximately equals 26°. 

In previous work20-24, the interactions of slow and fast acoustic waves with hypersonic boundary layers over 
sharp and blunt flat plates, wedges, and cones were investigated. The results show that flows over geometries with 
sharp leading edges or tips produce instability waves, which originate very close to the leading edge or tip and have 
receptivity coefficients about 5 to10 times the amplitude of the forced slow acoustic wave. It was also found that the 
amplitude of the instability waves generated by the slow acoustic waves is about 20 times larger than that for fast 
acoustic waves. In addition, it was observed that bluntness and wall cooling stabilize the first-mode disturbances and 
the initial amplitudes of the instability waves are several orders of magnitude smaller than the amplitude of the 
forced acoustic waves. 

Most of the freestream acoustic field in wind tunnels is associated with the radiated noise from the nozzle wall. 
The nozzle wall boundary layer whether turbulent or laminar radiates the noise at an angle to the free stream. Most 
of our previous computations were performed for plane acoustic waves and in this paper we consider the effects of 
the acoustic incidence angle on the receptivity of instability waves in hypersonic boundary layers. In flight 
environments, however, these acoustic fields likely do not exist or dominate the disturbance field. The question then 
arises as to how these small-wavelength (~mm), high-frequency unstable disturbances are generated inside the 
boundary layers. One possible source may be the atmospheric turbulence. In this paper, we investigate the effects of 
(1) acoustic wave incidence angles and (2) vorticity waves on the receptivity of instability waves in hypersonic 
boundary layers over a 7° half-angle sharp-tipped wedge and a cone at a free stream Mach number of 6. 

II. Models and Flow Conditions 
The models are a 7° half-angle sharp-tipped wedge and a cone with a nose radius of 0.015 mm (Fig. 1).  

Computations were performed for a freestream Mach number of 6. The freestream stagnation temperature and 
pressure were 430°K and 12.2 kPa (140 psi), yielding a unit Reynolds number of 10.4*106/m. The simulations were 
performed for a constant wall temperature of 300°K.  The cone model geometry was tested in the Boeing/AFOSR 
Mach 6 Quiet Tunnel at the same freestream conditions.9 The flow parameters and the formulae that were employed 
are given in Table 1. 
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Table 1.  Flow parameters used in this study. 

Freestream Mach number M∞ = 6.0 

Free stream Reynolds number Re∞ = 10.4*106/m 

Free stream density  ρ∞ = 4.062*10-2 kg/m3 

Free stream pressure p∞= 611.36 N/m2 

Free stream velocity U∞ = 870.9 m/s 

Free stream temperature T∞ = 52.44 °K 

Sutherland viscosity formulae  

Free stream kinematic viscosity ν∞ = 8.369*10-4 m2/s 

Wall temperature   = 300 °K 

Prandtl number Pr = 0.70 

Ratio of specific heats γ  = 1.4 

Length scale 

€ 

ν∞x0
U∞

= 9.8032*10−5m. (

€ 

x0 = 0.1 m.) 

The non-dimensional frequency F is defined as F =
2πν∞ f
U∞
2 ,  

where f is the frequency in Hertz.  For the above flow conditions, F = 1*10-4 corresponds to a frequency 
of 144.23 kHz. 

III. Governing Equations 
The governing equations are the two-dimensional unsteady compressible Navier-Stokes equations, written in 

conservation form and in cylindrical coordinates: 
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Here, (x, r) are the cylindrical coordinates, (u, v) are the velocity components, ρ is the density, and p is the pressure. 
The total energy, E, is given by:  

€ 

E = e +
u2 + v 2

2
, 

 e = cvT ,  p = ρRT,                                                                        (3) 
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where e is the internal energy and T is the temperature. The fluxes F, G, and the source term S are described in Kara 
et al.21  The viscosity, µ, is computed using Sutherland’s law and the thermal conductivity, k, is given in terms of the 
Prandtl number, Pr. The variables ρ, p, T and velocity are non-dimensionalized by their corresponding reference 
variables ρ∞, p∞, T∞ and RT∞  respectively. The reference value for length is given by νx0 /U∞ , where x0 is a 
reference location. For the computations, the equations were transformed from the physical coordinate system (x, r) 
to the computational curvilinear coordinate system 

€ 

ξ,η( )  in a conservative manner. 

A. Solution Algorithm 
The governing equations were solved using a 5th-order accurate weighted essentially non-oscillatory (WENO) 

scheme for space discretization and a 3rd-order total-variation-diminishing (TVD) Runge-Kutta scheme for time 
integration. The WENO and TVD methods and formulas are explained in Shu25.  The application of the ENO 
method to the Navier-Stokes equations is presented by Atkins26.  The solution method implemented in the present 
computations is described in Balakumar27. 

A schematic diagram of the computational setup is shown in Fig. 1.  The outer boundary of the computational 
domain lies outside the shock and follows a parabola so that the boundary layer growth was accurately captured.  At 
the outflow boundary of the computational domain, an extrapolation boundary condition was used.  At the wall, the 
simulations employed viscous conditions for the velocities and a constant wall temperature for the temperature.  The 
density was computed from the continuity equation.  In the mean-flow computations, the free-stream values at the 
outer boundary were prescribed.  In all cases, the model centerline was aligned with the freestream flow.  In the 
unsteady computations, acoustic or vortical perturbations were superimposed on the uniform mean flow at the outer 
boundary of the computational domain.  

The solution procedure was to first compute the steady mean flow by performing unsteady computations using a 
variable time step until the maximum residual reaches a small value (~10-11).  For those computations, a CFL 
number of 0.2 was used.  The next steps were (1) to introduce unsteady acoustic or vortical disturbances at the outer 
boundary of the computational domain and (2) to perform time accurate simulations to investigate the interaction of 
these disturbances with the boundary layer and their subsequent downstream evolution. Linearized Euler equations 
in a uniform mean flow are solved in Cartesian and cylindrical coordinates to obtain analytical expressions for the 
acoustic and vortical disturbances that were to be superimposed at the outer boundary. Since we use a very fine 
spatial grid to resolve the leading-edge region, these computations require a very small time step, which is 
determined by the minimum time step allowed by a CFL number of 0.2.  In the nose region, about 400,000 time 
steps per cycle are used in the simulation.  The computational domain is divided into two regions and larger time 
steps are taken in the downstream region.  While the simulation allows nonlinear effects, the forcing amplitude is 
kept small enough in this study for dominant mechanisms to be governed by linear dynamics. 

The computational grid, which was generated using analytical formulae, stretches in the η direction close to the 
wall and is uniform outside of the boundary layer.  In the ξ direction, the grid was very fine near the nose and then 
uniform in the region downstream. The outer boundary that lays outside of the shock follows a parabola with its 
vertex located a short distance upstream of the leading edge of the plate. The computational domain extends from x 
= -0.001 to 0.5 meters in the axial direction.  This gives a maximum Reynolds number of Re = 2280.0 at the end of 
the computational domain.  Calculations were performed using a grid size of 7001*251.  

Plane waves. 
The linearized Euler equations in Cartesian coordinates in a uniform mean flow are: 
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                                                  (4) 

 

(a) Acoustic waves. 
The solution of this system for an acoustic wave can be written as 
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Here the pressure p is in the form 
 

€ 

p = pampe
i(αacx+ε acy+β acz−ωt ).                                                   (6) 

 
The dispersion relation among the wavenumbers αac, βac, εac and the frequency ω is given by 
 

€ 

(αacU0 −ω)
2 = (αac

2 + βac
2 + εac

2)a0
2.                                             (7) 

 
For acoustic disturbances with zero sweeps (i.e., βac=0), the x-wavenumber αac can be expressed as 
 

              

€ 

αac =
ω cosθy

(U0 cosθy ± a0)
.                                                        (8) 

Here 

€ 

θy = tan−1 εac
αac

 

 
 

 

 
  is the incident angle and for εac < 0 the plate is radiated from above and for εac > 0 the plate 

is radiated from below or represents the wave which is reflected from the plate. The plus sign corresponds to the fast 
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moving wave and the minus sign corresponds to the slow moving wave. The corresponding phase speeds are 

C =U0 ±
a0

cosθy
.  

 

(b) Vorticity waves. 
The solution of the linearized Euler equations for the vorticity waves can be written as 
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The dispersion relation among the wavenumbers αv, βv, εv and the frequency ω is given by 
 

€ 

(αvU0 −ω) = 0.                                                                            (10) 
 
The continuity equation imposes the following constrain on the velocity components 
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Computations are performed for a two-dimensional vortical disturbance with 
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Circular waves. 

The linearized Euler equations in cylindrical coordinates in a uniform mean flow are: 
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(a) Acoustic waves. 
The solution of this system for an acoustic wave can be written as 
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Here the pressure p is in the form 
 

€ 

p = pamp Jm (αnr) e
i(αacx+mθ −ωt ).                                                   (15) 

 
where, Jm is the Bessel function of order m.  The dispersion relation among the wavenumber αac and the frequency ω 
is given by 
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(b) Vorticity waves. 
The solution of the linearized Euler equations in cylindrical coordinates for the vorticity waves can be written as 
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The dispersion relation among the wavenumber αv and the frequency ω is given by 
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The continuity equation imposes the following constrain on the velocity components 
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Computations are performed for a two-dimensional vortical disturbance with 
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˜ v = − 1
2

i ˜ u r
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                                                                                          (20) 

 
 

 

Table 2 gives the wavenumbers and the wavelengths in dimensional and non-dimensional units for the slow and 
the fast acoustic waves, the vorticity waves and for the neutral stability waves for the wedge and the cone. It is 
interesting to see that in all the cases the wavelengths for the acoustic waves match with the wavelengths for the 
stability waves. The wavelengths of the slow and the fast acoustic waves at zero incidence at the frequency F = 
0.95*10-4 are 5.29 and 7.41 mm, and the wavelengths for the slow and the fast instability waves near the leading 
edge of the wedge are 5.16 and 7.41 mm. Similarly for the cone, they are (3.35, 4.69) and (3.47, 4.64). The 
wavelengths of the vorticity waves do not match the wavelengths of either the slow or the fast modes. The 
wavelength of the vorticity wave at the frequency of F = 0.95*10-4 is 6.35 mm which lies in the middle of the 
wavelengths for the slow and the fast stability modes. 

IV. Results 

A. 7°  Half-Angle Sharp-Tipped Wedge 

1. Mean Flow 
Figure 2 presents the computed mean density contours for the sharp-tipped wedge.  The flow field for the entire 

computational domain is shown in Fig. 2, while the insert shows a close-up view of the nose region. The leading 
edge shock is located approximately at 0.01 mm. upstream of the leading edge. The boundary layer edge values 
obtained from the simulation are compared in Table 3 with the results obtained from the shock relations for a wedge. 
The computed results are almost the same as that obtained from the inviscid analysis. 

 

Table 2. Values of αac  and wavelength for different incidence angles at the frequency of F = 0.95*10-4  for the 
wedge and at the frequency of F=1.5*10-4 for the cone. 

Wedge( Stability) 
X=20mm 

Cone (Stability) 
X=60mm θy Slow 

acoustic 
Fast 

acoustic 
Vorticity 

Slow Fast Slow Fast 

0 0.1162 
(5.29 mm) 

0.0830 
(7.41 mm) 

0.097 
(6.35 mm) 

0.119 
(5.16 mm) 

0.083 
(7.41 mm) 

  

0 
Cone 

0.1835 
(3.35 mm) 

0.1310 
(4.69 mm) 

0.153 
(4.02 mm) 

 
 

 0.1772 
(3.47 mm) 

0.1328 
(4.64 mm) 

10 0.1166 
(5.28 mm) 

0.0828 
(7.43 mm) 

     

20 0.1178 
(5.23 mm) 

0.0823 
(7.48 mm) 

     

30 0.1200 
(5.13 mm) 

0.0812 
(7.58 mm) 

     

Axi. Sym 
αn= 0.05 

0.185 
(3.33 mm) 

0.130 
(4.74 mm) 

   0.1772 
(3.47 mm) 

0.1328 
(4.64 mm) 



49th AIAA Aerosciences Meeting, January 4-7, 2011, Orlando, Florida 

 
American Institute of Aeronautics and Astronautics 

 

9 

Table 3. Comparison of conditions at the edge of the boundary layer with the inviscid solution downstream of 
the shock. 

 
The density profiles at x = 1.0, 3.0, 10.0, 20.0 30.0 and 50.0 cm. are plotted in Fig. 3(a). Figure 3(b) shows the 

same profiles in the similarity coordinates. The compressible Blasius similarity profile is also included for 
comparison. The boundary layer profiles slowly approach the Blasius similarity profile close to x = 50 cm. The 
boundary layer thickness near x = 50 cm is about 3 mm. 

2. Linear stability 
Linear stability results for the mean flow profiles obtained from the simulation are presented in Figs. 4 and 5.  

Figure 4(a) shows the growth rate for different frequencies F = 0.85*10-4, 0.90*10-4, 0.95*10-4, and 1.0*10-4 while 
Fig. 4(b) depicts the N-Factor curves for these frequencies. The growth rate curves exhibit a long region of neutrally 
stable Mack’s first mode followed by a narrow strongly unstable second mode region.  The unstable second mode 
region shifts downstream with decreasing frequency. The maximum N-Factor reached within the computational 
domain of x = 50 cm is about 4.0. The most amplified frequency is F = 0.95*10-4. 

Figures 5(a) and 5(b) show the evolution of the eigenvalues along the axial direction for the slow (Mode S) and 
fast (Mode F) modes for the frequency F = 0.95*10-4. Figure 5(a) shows the evolution of phase speed cr and the 
growth rate -αi , and Fig. 5(b) shows the wavenumber αr and the wavelength. The slow mode or the Mode S 
synchronizes with the slow acoustic wave with the phase speed of (U-a) or 1-1/M as the Reynolds number or x 
becomes small. The fast mode or the Mode F synchronizes with the fast acoustic wave with the phase speed of 
(U+a) or 1+1/M as the Reynolds number becomes small. The phase speed of the slow mode increases from 1-1/M 
to 1.0 as the Reynolds number increases while the phase speed of the fast mode decreases from 1+1/M to a smaller 
value. As the fast mode evolves downstream, it merges with the continuous spectrum with phase speed cr = 1.0.  For 
this frequency of F = 0.95*10-4 the merging occurs around x = 281 mm. Downstream of the continuous spectrum a 
new mode with slightly different eigenvalues and eigenfunctions emerges. These points are also marked as red dots 
in Fig. 5(a). Hence, the fast mode has a discontinuity across the continuous spectrum. This may have some effects in 
the receptivity process of generating the unstable second mode. As the slow mode and the new fast mode evolve 
downstream, the slow mode becomes the unstable Mack’s second mode and the fast mode becomes the stable mode. 
Another observation is that the phase speeds of the slow mode and the fast mode coalesce near x = 400 mm. 
However, the growth rates of the slow mode and the fast mode at this point are quite different. The growth rates are 
-αi = 0.005 and -0.01 for the slow and the fast modes respectively. This point is also marked as a line in Figs 5(a) 
and (b). Fedorov (2001) called this point the synchronization point for the fast and the slow mode and claims that 
near this point inter-modal energy exchange could occur depending on the Mach number, frequency, and the wall 
conditions. He developed an analytical model using a quadratic dispersion relation to explain the observed growth 
rate pattern in hypersonic boundary layers. The important question is what happens when a fast mode evolves 
downstream? Does it generate an unstable second mode near the continuous spectrum point or near the 
synchronization point? We attempt to answer these questions in latter sections. 

3. Interaction of Acoustic Waves with the sharp-tipped wedge 
After the mean flow was computed, two-dimensional acoustic disturbances at different incidence angles of 0, 10, 

20, and 30 degrees were introduced at the outer boundary of the computational domain and time-accurate 
simulations were performed.  Computations were performed with the slow and fast acoustic waves at 0 degrees 
incidence angle and were performed with the slow wave for the other incidence angles. The amplitude of these 
forced acoustic disturbances was given a small value of 

€ 

˜ p ac / p∞ =1*10−5 to ensure that the disturbances evolving in 
the boundary layer remained in the linear regime. We present the results for a frequency of F = 0.95*10-4 (137 kHz). 
Figures 6(a-h) show the unsteady density fluctuations at a fixed time for the acoustic incidence angle of 0, 10, 20 
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7 
Inviscid 

14.838 5.048 2.587 1.924 1.344 1.34 

7  
Simulation 

15.0 5.03 2.60 1.94 1.35  
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and 30 degrees obtained with the slow acoustic wave and Figs. 6(i, j) show the results for the 0 deg with the fast 
acoustic wave. For each incidence angle, the top figure shows the density fluctuations for the entire domain and the 
bottom figure depicts the results inside the boundary layer. The observations are similar to our previous 
computational results20 for the flow over a flat plate at a supersonic Mach number of 4.5. The perturbation field can 
be divided into four regions. One region is the area outside the shock where the acoustic waves propagate uniformly. 
The second region is the shock layer across which the acoustic waves are transmitted. The third region is the area 
between the shock and the boundary layer. This region consists of the transmitted external acoustic field and the 
disturbances that are radiated from the boundary layer. The fourth region is the boundary layer where the boundary 
layer disturbances evolve. It is seen from Figs. 6(a-b) that at zero incidence angle for the slow mode, the acoustic 
waves are very weakly transmitted through the shock. It is also observed that the fluctuations inside the boundary 
layer are larger than the amplitude of the incoming acoustic field. It suggests that the boundary layers are perturbed 
strongly starting from the nose region. With increasing incidence angles Figs. 6(c-h), it is noted that the acoustic 
waves are still weakly transmitted through the shock in the lower part of the domain while they are strongly 
transmitted through the shock in the upper part as evident from the disturbed flow field between the wedge surface 
and the shock. Another observation is that the fluctuations inside the boundary layer in the lower part are lower than 
that in the upper part. Figures 6(i, j) display the density fluctuations induced by the fast mode at 0 degrees incidence 
angle. It is seen that the fast acoustic mode is transmitted strongly across the shock compared to the slow mode case, 
Figs. 6(a, b). The perturbations inside the boundary layer are larger than the amplitude of the incoming wave. 

Figures 7(a-d) show the amplitude of the pressure fluctuations at the lower and upper side of the wall for the 
incident angles of 0, 10, 20, and 30 degrees. Figure 7 also includes the results from the parabolized stability 
equations (PSE) computations obtained for the same mean boundary layer profiles. The growth of the disturbances 
agrees very well with the PSE results a short distance downstream of leading edge. Figure 7(a) shows the results for 
the slow and the fast modes at zero incidence angles. The figure for the slow wave clearly shows the initial 
generation and the eventual exponential growth of the instability waves inside the boundary layer. The slow acoustic 
wave whose wavelength (5.29 mm) is close to the wavelength (5.16 mm) of the slow mode (Mode S) near the 
leading edge transforms into instability waves rather directly. Similarly, the fast acoustic mode whose wavelength 
(7.41 mm) is close to the wavelength (7.41 mm) of the fast mode (Mode F) near the leading edge synchronizes with 
the instability mode near the leading edge region. As was observed in Fig. 5(a), the fast mode does not evolve into 
an unstable second mode as the Reynolds number increases. Figure 7(a) also illustrates that as the disturbance 
induced by the fast mode evolves downstream it first grows up to x ~ 12 cm. and then decreases to a smaller value 
near x ~ 34 cm. before it grows again due to the second mode instability. As we discussed earlier, the stable fast 
mode generated the unstable second mode near the continuous spectrum (x = 28 cm.) or near the 
synchronization point (x = 40 cm.). However, the unstable second mode generated by the fast mode is weak 
compared to that generated by the slow mode.  The maximum amplitudes obtained in different cases are given in 
Table 4. The maximum amplitude reached in the slow acoustic wave case is about 0.00154 and it is about 0.00044 in 
the fast acoustic case. Hence, the slow mode is about four times more efficient in generating the unstable mode 
compared to the fast mode. From these values the receptivity coefficients defined by the initial amplitude of the 
pressure fluctuations at the wall non-dimensionalized by the free-stream acoustic pressure can be evaluated.  

                        

€ 

Crecpt,pwall
=
(pwall )n
pac

                                                                              (21) 

The computed receptivity coefficient associated with the slow acoustic wave is about 
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Figures 7(b-d) show the pressure fluctuations at the upper and the lower walls for different incidence angles 10, 
20, and 30 degrees. Figures show that the maximum amplitudes are consistently smaller on the lower (windward) 
side compared to the upper (leeward) side. This effect increases with increasing angles of incidence. Table 4 gives 
the maximum amplitudes reached on the lower and the upper walls for the incidence angles 10, 20, and 30 degrees. 
The maximum amplitudes of the pressure fluctuations reached on the upper wall for the different incidence angles 0, 
10, 20, and 30 degrees are 0.0015, 0.0023, 0.0027, and 0.0023, respectively. The maximum amplitudes reached on 
the lower walls are 0.0015, 0.00093, 0.00058, 0.00038, respectively. Hence the receptivity becomes weaker on the 
lower side compared to the upper side with increasing incidence angles. The maximum amplitude on the upper 
surface increased by a factor of 1.8 for 20 degrees incidence angle and then decreases slowly for larger incidence 
angles.  

To see how the wavenumber of the fluctuations inside the boundary layer varies along the streamwise direction 
and how they compare with the wavenumber obtained from the linear stability computations, the wavenumber of the 
pressure fluctuations along the wall is computed. This is achieved by first decomposing the fluctuations in to 
harmonic components of the form 

  

€ 

p(x,z,t) = ˜ p (x)e− iωt + c.c                                                    (22) 
 

and then evaluating the wavenumber of the fluctuations from the expression 

 

€ 

α(x) = ( 1
i˜ p (x)

∂˜ p (x)
∂x

)

=α r + iα i

                                                            (23) 

 
Figure 8 shows the pressure fluctuations along the surface at a fixed time in a linear scale. Figures 8(a, b) display 

the disturbances induced by the slow acoustic wave at 0 degrees incidence angles. Figure 8(a) depicts the results for 
the entire domain and Fig. 8(b) depicts the results near the leading edge region. Similarly, Figs. 8(c, d) show the 
results for the fast acoustic wave at 0 degrees incidence angles. Figures 8(e, f) show the results for the 20 degree 
incidence angles acoustic wave on the bottom surface and Figs. 8(g, h) show the results for the top surface. The first 
observation is that except for the disturbances induced by the fast acoustic wave, the wave pattern behaves smoothly 
for the entire domain without much modulation. In the case of the fast acoustic waves, the waves behave smoothly 

Table 4. Maximum amplitudes of pressure fluctuations for different incident angles. 
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up to x ~ 30 cm., and between the region of x ~ 30 to 40 cm., the disturbance amplitudes decrease to small values 
and the wave patterns consists of short and long wavelengths.  

Figure 9 shows the computed wavenumber variation along the streamwise direction. Figure 9(a) gives the results 
for both the slow and fast acoustic waves cases while Fig. 9(b) gives the results for the 20 degrees incidence angle 
case.  The figures also include the wavenumber distributions obtained from linear stability computations for the slow 
and the fast modes.  Downstream of the leading-edge region x > 10.0 mm, the wavenumber distributions computed 
using Eq. (23) agree very well with the linear stability theory results in all the cases. The wavenumber variations 
very near the nose region are shown in the inserts in Fig. 9(a). The wavenumber first decreases up to x ~ 1 mm, it 
then increases slowly for x > 1 mm and merges with the slow and the fast instability modes around x ~ 10 mm.  The 
two solutions, from the simulation and the linear stability calculations, continue to agree beyond this point for the 
slow modes.  The fast stability mode is also excited very near the leading edge as is evident by the agreement 
between the linear stability and the numerical simulation results.  At a location close to x ~ 200 mm, the 
wavenumber starts to oscillate and merges with the values corresponding to the slow mode around x ~ 400 mm. This 
is the region where the energy is transferred to the unstable second mode from the fast mode. The locations 
corresponding to the continuous spectrum and to the synchronization point are also marked in the figure.  

Figure 10 displays the amplitude variation of the density at several axial stations x = 50, 200, 350, and 400 mm 
generated by the slow acoustic waves at 0 degrees incidence angles. The results are compared with the 
eigenfunctions obtained from the PSE calculations. As expected from the previous wavenumber and the amplitude 
comparisons, the simulation results agree with the PSE results starting from the leading edge region. This confirms 
that the slow instability mode is generated near the leading edge by the free stream slow acoustic wave. Similarly, 
Fig. 11 shows the amplitude distribution of the density generated by the fast acoustic waves at 0 degrees incidence 
angles. The eigenfunction distributions for the slow and fast instability modes are also included for comparison. As 
observed in Fig. 6(i), the fast acoustic waves transmit through the shock and perturb the region above the boundary 
layer. This is evident in Figs. (11) by the appearance of disturbances outside the boundary layer.  At the stations x = 
200 and 250 mm, the eigenfunctions for the fast instability mode agree with that obtained from the simulation. This 
confirms that the fast instability mode is generated near the leading edge by the free stream fast acoustic wave. 
Beyond x > 350 mm, the simulation results agree with the eigenfunctions for the slow instability mode. Hence the 
switching or the transformation from the fast instability mode to the unstable second mode should have occurred 
between the stations x = 275 to 350 mm. This observation favors the theory of Ref. [17] that the inter-modal energy 
exchange in this region causes the fast mode to switch to the unstable second mode. 

3. Interaction of Vorticity Waves with the sharp-tipped wedge 
Figures 12(a-d) show the density and the vertical velocity, v, perturbations generated by the interaction of 

vortical disturbances with the boundary layer. Figures 12(a), (b) display the density fluctuations near the leading 
edge and inside the boundary layer in the middle of the domain, respectively. Figures 12(c) and (d) similarly depict 
the fluctuations for the vertical velocity component. Since vortical disturbances do not contain density or pressure 
fluctuations in the free stream, density fluctuations appear only between the shock and the wall due to the interaction 
of vortical disturbances with the shock. The flow field revealed by the velocity perturbations can be divided, as 
discussed in the previous section, into four regions. One is the region outside the shock where the perturbations are 
uniform and governed by the linerized Euler equations. The second is the region between the shock and the 
boundary layer away from the leading edge. Here, the incoming vortical wave is diffracted towards the normal to the 
shock and the amplitude of the wave is increased across the shock. However, the diffracted waves do not penetrate 
the boundary layer. The third is the region between the shock and the wall near the leading edge. Here, the incoming 
vortical disturbances are diffracted and elongated and the amplitude is decreased across the shock. The fourth is the 
boundary layer region. Figures 12(a) and (d) show that the perturbations inside the boundary layer are generated 
starting from the leading edge. 

Figures 13(a) and (b) depict the wall pressure fluctuations generated by the interaction of vortical disturbances 
with the wedge. Figure 13(a) displays the results in the linear scale, while Fig. 13(b) shows the results in the log 
scale. The results show that up to x ~ 28 cm, the oscillations consist of short wavelength disturbances that are 
modulated by long wavelength disturbances. Beyond x ~ 28 cm, the short wavelength disturbances merge into the 
unstable second mode wave. Figure 14 compares the wall pressure oscillations generated by the slow and fast 
acoustic wave and by the vortical disturbance. The maximum amplitudes obtained in different cases are given in 
Table 4. The maximum amplitudes generated by the interaction with these waves are 0.0015, 0.00044 and 0.00035, 
respectively. Hence the fast acoustic wave is about 3.4 times less efficient than the slow acoustic wave, and the 
vorticity wave is about 4.2 times less efficient in generating the unstable second mode in an adiabatic boundary layer 
over a wedge. These numbers may change with frequencies, however, the conclusions will remain the same. 
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Figure 15 shows the calculated wavenumber variation for this case. The wavenumbers computed from the linear 
instability are also included in the figure for comparison. It is interesting to see that the wavenumber of the 
fluctuations follows the wavenumber for the fast instability mode up to x ~ 250 mm and jumps to the wavenumber 
for the slow instability mode near x ~ 280 mm. This is the location where the fast mode is absorbed into the 
continuous spectrum. Hence the switching or the transformation from the fast instability mode to the unstable 
second mode in this case occurs near the continuous spectrum. 

Figures 16(a-i) show the amplitude distribution of the density at several streamwise locations x = 200 to 425 
mm. The eigenfunction distributions for the slow and fast instability modes are also included in these figures for 
comparison. To understand the evolution of the waves along the streamwise direction, it is better to begin from the 
downstream locations and to trace backwards. Figure 16(i) displays the amplitude distribution at x = 425 mm. The 
amplitude distribution from the simulation exhibit two peaks, one near y = 2.6 mm and the other near y = 2.2 mm. 
The eigenfunction for the slow instability mode agrees with the simulation results up to the lower peak. The upper 
peak in the simulation results is the forced disturbance caused by the transmitted disturbance field. If we trace the 
peaks upstream, the lower peak is clearly seen at x = 400, 350 and 275 mm. The lower peak is not discernable at x = 
375, 325 and 300 mm. However, the eigenfuntion for the slow instability mode agrees better with the simulation 
results from x = 275 to 425 mm.  

B. 7°  Half-Angle Sharp-Tipped Cone 

1. Mean Flow  
Figure 17(a) and (b) show the computed mean density contours for the sharp-tipped cone.  The flow field for the 

entire computational domain is shown in Fig. 17(a), while Fig. 17(b) shows a close-up view of the nose region. The 
mean flow boundary layer profiles and linear stability results were given in Ref. 24. The boundary layer profiles 
slowly approach the Blasius similarity profile by x = 3.0 cm. The maximum N-factor obtained is about 7.0 and the 
corresponding frequency is F=1.5*10-4 (217 kHz).  

Similar to the wedge case, Figs. 18(a) and 18(b) show the evolution of the eigenvalues along axial direction for 
the slow (Mode S) and fast (Mode F) modes for the frequency F = 1.5*10-4. Figure 18(a) shows the evolution of 
phase speed cr and the growth rate -αi and Fig. 18(b) shows the wavenumber αr and the wavelength. The 
observations are the same as for the wedge case. As the fast mode evolves downstream, it merges with the 
continuous spectrum with phase speed cr = 1.0.  For this frequency of F = 1.5*10-4 the merging occurs around x = 
281 mm. Downstream of the continuous spectrum a new mode with slightly different eigenvalues and 
eigenfunctions emerges. These points are also marked as red dots in Fig. 18(a). As the slow mode and the new fast 
mode evolve downstream, the slow mode becomes the unstable Mack’s second mode and the fast mode becomes the 
stable mode. The synchronization of the phase speeds for the slow and the fast modes occurs near x = 360 mm. The 
growth rates of the slow mode and the fast mode at this point are -αi = 0.005 and -0.02, respectively. The continuous 
spectrum and the synchronization point are also marked as vertical lines in Figs 18(a) and (b), respectfully. 

2. Interaction of Slow and Fast Acoustic Waves with the cone 
As in the previous case, after the mean flow was computed, two-dimensional slow and fast acoustic disturbances 

(with an amplitude of 

€ 

˜ p ac / p∞ =1*10−5) at an incidence angle of 0 degrees were introduced at the outer boundary of 
the computational domain and time-accurate simulations were performed.  Here, we present the results for a 
frequency of F = 1.5*10-4 (217 kHz). Contours of the density fluctuations generated by the slow acoustic waves are 
shown in Fig. 19(a) for the nose region, and in Fig. 19(b) for the tip region.  Figure 19(c) displays the contours of the 
density fluctuations generated by the fast acoustic wave for the entire domain and Fig. 19(d) displays the results in 
the middle of the domain from x = 12 to 22 cm. The flow features are similar to the wedge case. For the slow mode, 
the acoustic waves are very weakly transmitted through the shock. It is also observed that the fluctuations inside the 
boundary layer are larger than the amplitude of the incoming acoustic field. It suggests that the boundary layer is 
perturbed strongly starting from the nose region. The fast acoustic mode is transmitted strongly across the shock as 
compared to the slow mode case. The perturbations inside the boundary layer are larger than the amplitude of the 
incoming wave. Fig. 19(d) also shows that the amplitude inside the boundary layer does not increase or decrease 
uniformly. In some regions it increases and in some region it decreases to very small values. 

Figures 20(a-b) show the amplitude of the pressure fluctuations along the surface of the cone for the slow and the 
fast acoustic waves. Figure 20 also includes the results from the parabolized stability equations (PSE) computations 
obtained for the same mean boundary layer profiles. The figure for the slow wave clearly shows the initial 
generation and the eventual exponential growth of the instability waves inside the boundary layer. The slow acoustic 
wave whose wavelength (3.35 mm) is close to the wavelength of the slow mode (Mode S) near the leading edge 
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(3.47 mm) transforms into instability waves rather directly. Similarly, the fast acoustic mode whose wavelength 
(4.69 mm) is close to the wavelength of the fast mode (Mode F) near the leading edge (4.64 mm) synchronizes with 
the instability mode near the leading edge region. As was observed in Fig. 18(a), the fast mode does not evolve into 
an unstable second mode as the Reynolds number increases. Figure 20(b) shows that as the disturbance induced by 
the fast mode evolves downstream it first grows up to x ~ 12 cm, then decreases and oscillates before it grows due to 
the second mode instability. The unstable second mode generated by the fast mode is weak compared to that 
generated by the slow mode. The maximum amplitude reached in the slow acoustic wave case is about 0.213 and it 
is about 0.0023 in the fast acoustic case. Hence, the slow mode is about ninety times more efficient in generating the 
unstable mode compared to the slow mode. From these values the receptivity coefficients defined by the initial 
amplitude of the pressure fluctuations at the wall non-dimensionalized by the free-stream acoustic pressure can be 
evaluated.  
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(pwall )n
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                                                                              (24) 

 The computed receptivity coefficients associated with the slow acoustic wave is about 
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Figure 21 shows the computed wavenumber variation along the streamwise direction for the slow and fast 

acoustic waves cases.  The figures also include the wavenumber distributions obtained from linear stability 
computations for the slow and the fast instability modes.  Downstream of the leading-edge region x > 10.0 mm, the 
wavenumber distributions computed using Eq. (23) agree very well with the linear stability theory results for the 
both cases. The wavenumber variations very near the nose region are shown in the inserts in Fig. 21. The 
wavenumber first decrease up to x ~ 1.5 mm, it then increases slowly for x > 1.5 mm and merges with the slow and 
the fast instability modes around x ~ 10 mm.  The two solutions, from the simulation and the linear stability 
calculations, continue to agree beyond this point for the slow modes.  The fast stability mode is also excited very 
near the leading edge as is evident by the agreement between the linear stability and the numerical simulation 
results.  At a location close to x = 120 mm, the wavenumber starts to oscillate and shifts to a lower value of 0.13. 
Further downstream around x ~ 360 mm, the wavenumber jumps to the value corresponds to the slow wave. The 
synchronization point for this case also occurs near x ~ 360 mm. Hence, the energy is transferred from the fast mode 
to the unstable second mode near the synchronization point.  

3. Interaction of Axisymmetric Slow Acoustic Waves at Incidence with the cone 
Figures 22 and 23 show the results for the interaction of an axisymmeric slow acoustic wave with the cone. The 

axisymmetric acoustic waves are governed by the zeroth order Bessel function. The simulations are performed for a 
frequency of F = 1.5*10-4 and an incidence wavenumber of αn = 0.05. The acoustic field oscillates and decays in the 
radial direction. Figure 22 presents the density perturbations near the nose region (Fig. 22(a)) and near the tip region 
(Fig. 22(b)). It is seen as we mentioned previously, that the acoustic field oscillates and decays in the free stream. 
The acoustic field is concentrated along the axis of the cone. This resembles the acoustic field that will appear in 
wind tunnels with axisymmetric nozzles. As in the interaction of plane acoustic waves, the disturbances appear 
inside the boundary layer very near the tip of the cone. Figure 23 displays the pressure fluctuations along the wall. 
The evolution is similar to the previous case. The maximum amplitudes generated by the acoustic disturbances are 
0.213 and 0.267 for the plane and the circular waves respectively. Hence, the axisymmetric wave with the wave 
number in the radial direction of αn = 0.05 is about 1.25 times more efficient than the plane acoustic wave. As in the 
previous cases, Fig. 24 shows the wavenumber variation along the streamwise direction for this case. The 
wavenumber initially oscillates between 0.23 and 0.15 and further downstream close to x ~ 30 mm merges with the 
wavenumber for the slow instability mode.  

4. Interaction of Vorticity Waves with the sharp-tipped cone 
Figures 25(a-d) show the contours of the density and the axial velocity, u, perturbations generated by the 

interaction of vortical disturbances with the boundary layer. Figures 25(a) and (b) display the density fluctuations for 
the entire domain and in the middle of the domain x = 30 to 35 cm, respectively. Figures 25(c) and (d) similarly 
depict the fluctuations for the axial velocity component. Since vortical disturbances do not contain density or 
pressure fluctuations in the free stream, density fluctuations appear only between the shock and the wall due to the 
interaction of vortical disturbances with the shock. The flow field revealed by the velocity perturbations are similar 
to that observed in the wedge case. 
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Figures 26(a) and (b) depict the wall pressure fluctuations generated by the interaction of vortical disturbances 
with the cone. Figure 26(a) displays the results in the linear scale, while Fig. 26(b) shows the results in the log scale. 
The results show that the disturbances grow up to x ~ 30 cm, then decrease to a minimum value close to x = 33 cm. 
and increase downstream due to the second mode instability. The maximum amplitude obtained in this case is about 
0.078. Table 5 summarizes the maximum amplitudes reached by the disturbances in different cases. The fast mode is 
about 93 times less efficient than the slow mode, the axi-symmetric mode at an incidence wavenumber of αn = 0.05 
is about 1.25 times more efficient and the vortical disturbance is about 2.7 times less efficient. 

 
Table 5. Maximum amplitudes of pressure fluctuations for different cases F=1.5*10-4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27 shows the calculated wavenumber variation for this case. The wavenumbers computed from the linear 

instability are also included in the figure for comparison. The wave number oscillates around 0.155 until x ~ 300 
mm, then increases slowly and merges with the wavenumber for the slow mode instability. It is observed that the 
wavenumber in the freestream for the vorticity wave is also about 0.153 (Table 2). This suggests that the 
disturbances in the boundary layer up to x ~ 300 mm are dominated by the transmitted vorticity waves. It is also 
noticed that the large oscillations in the wavenumber and the minimum amplitude in the pressure (Fig. 26(a)) occur 
near the same location around x ~ 330 mm. At this point, we do not know the significance of this coincidence, 
however, it may be a hint in identifying the mechanism for generating the unstable second mode in this case. It 
would be interesting to compare the shape of the amplitude distributions with the eigenfunctions for the slow and the 
fast modes. That will be studied in our future work. 

V. Conclusions 
The receptivity of the instability waves to two-dimensional acoustic and vortical waves in hypersonic flows over 

a sharp-tipped wedge and a cone at a free stream Mach number of 6 and at a Reynolds number of 10.4*106/meter 
was numerically investigated. The effect of the incidence angles of the acoustic waves was also investigated. Both 
the steady and unsteady solutions were obtained by solving compressible Navier-Stokes equations using the 5th-
order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using a third-order 
total-variation-diminishing (TVD) Runge-Kutta scheme for time integration.  

The results show that the slow and the fast acoustic waves directly synchronize with the slow and fast instability 
modes very close to the leading edge. For the wedge case, the receptivity coefficient for the slow mode based on the 
wall pressure fluctuations near the leading edge is about 2.5 times the amplitude of the freestream slow acoustic 
wave. We also found that the amplitude of the instability waves generated by the slow acoustic waves is about three 
times larger than that for the case of fast acoustic waves.  This factor is smaller than other findings16, 20 because of 
the frequency we selected in this computation reached an N-Factor of only 4. The general conclusion agrees with 
other findings that forcing by slow acoustic wave is much more relevant in the transition process involved in 
supersonic and hypersonic boundary layers with adiabatic wall conditions. The results also showed that the 
receptivity on the leeward side increases slightly with increasing incidence angle and decreases on the windward 
side. The receptivity is the highest, by a factor of 1.8, for an incidence angle of 20 degrees. The vortical disturbances 
also generate the second mode disturbances in hypersonic boundary layers. The receptivity coefficient is about four 
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times smaller than that for the slow acoustic wave. The wavenumber of the fluctuations showed that the vorticity 
waves generate the fast mode near the leading edge and the switching or the transformation of the fast instability 
mode to the slow instability mode in this case occurs near the continuous spectrum. 

In the cone case, the receptivity coefficient for the slow mode is about 5 times the amplitude of the freestream 
slow acoustic wave. It is also found that the amplitude of the instability waves generated by the slow acoustic waves 
is about ninety times larger than that for the case of fast acoustic waves. This also illustrates the importance of the 
slow acoustic wave compared to the fast wave in causing transition in adiabatic hypersonic boundary layers. The 
receptivity to axisymmetric acoustic waves is slightly higher than that due to plane acoustic waves. The receptivity 
coefficient is about 1.25 times that for the plane acoustic wave. Axisymmetric vortical disturbances also generate 
unstable second modes in hypersonic boundary layers. The receptivity coefficient is about three times smaller than 
that for the slow acoustic wave. We have not compared the shape of the amplitude distributions with the 
eigenfunctions for the slow and the fast modes in this paper. That will be studied in our future work. 
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Figure 1. Schematic diagram of the computational model for flow over a 7-degree sharp-tipped wedge and a 

cone. 

 
                 Figure 2. Mean density contours for flow over a 7-degree sharp-tipped wedge at Mach 6. 

 
Figure 3. Boundary layer density profiles (a) in physical and (b) similarity coordinates at different axial 

locations for flow over a 7-degree sharp-tipped wedge at Mach 6. 
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Figure 4. (a) Growth rate and (b) N-Factor curves computed from the linear stability analysis. 

 
Figure 5. Eigenvalues from the linear stability computations for fast (blue) and slow (red)  modes for the 
frequency F=0.95*10-4. (a) Phase speed cr and growth rates -α i and (b) wavenumber α r and wavelength. 
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Figure 6. Density fluctuations generated by the interaction of a two-dimensional acoustic wave with the 
sharp-tipped wedge, incident angles 0, 10, 20,30 degrees. F=0.95*10-4. 
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Figure 7. Pressure fluctuations at the top and bottom surfaces of the sharp-tipped wedge generated by two-
dimensional slow and fast acoustic waves at incident angles of 0, 10, 20, and 30 degrees. F=0.95*10-4. 



49th AIAA Aerosciences Meeting, January 4-7, 2011, Orlando, Florida 

 
American Institute of Aeronautics and Astronautics 

 

22 

 

 
 

Figure 8. Pressure fluctuations along the surface of the sharp-tipped wedge generated by two-dimensional 
acoustic waves at incident angles of 0 and 20 degrees. F=0.95*10-4. 
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Figure 9. Wavenumber of the pressure fluctuations along the wall generated by two-dimensional acoustic 
waves at incident angles of 0 and 20 degrees and comparison with the linear stability. F=0.95*10-4. Solid black 

line is the location of the continuous spectrum; dotted line is the synchronization point. 
 

 
Figure 10. Amplitude distributions for the density at different axial stations generated by the slow acoustic 

wave at 0 degrees incidence and comparison with the PSE calculations. F=0.95*10-4. 
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Figure 11. Amplitude distributions for the density at different axial stations generated by the fast acoustic 
wave at 0 degrees incidence and comparison with the PSE calculations. F=0.95*10-4. 
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Figure 12. Density and vertical velocity, v, fluctuations generated by the interaction of a two-dimensional 
vortical disturbance with the sharp-tipped wedge. F=0.95*10-4. 

 
Figure 13. Wall pressure fluctuations generated by the interaction of two-dimensional vortical disturbances 

with the wedge. F=0.95*10-4. 
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Figure 14. Comparison of the wall-pressure fluctuations along the surface of the wedge generated by the slow 

and fast acoustic waves, and by the vortical disturbances. F=0.95*10-4. 

 
Figure 15. Wavenumber of the pressure fluctuations along the wall generated by the interaction of two-

dimensional vortical disturbances with the wedge and comparison with the linear stability. Solid black line is 
the location of the continuous spectrum; dotted line is the synchronization point.  F=0.95*10-4 
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Figure 16. Amplitude distributions for the density at different axial stations generated by the interaction of 

vortical disturbances with the wedge and comparison with the linear stability calculations. F=0.95*10-4. 
 
 

  

Figure 17. Mean density contours for flow over a 7-degree sharp-tipped cone at Mach 6. 
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Figure 18. Eigenvalues from the linear stability computations for fast (blue) and slow (red)  modes for the 

frequency F=1.5*10-4. (a) Phase speed cr and growth rates -α i and (b) wavenumber α r and wavelength. 
 

  
 
 

Figure 19. Density fluctuations generated by the interaction of a two-dimensional plane slow and fast acoustic 
waves with the sharp-tipped cone, incident angle 0 degrees. F=1.5*10-4. 
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Figure 20. Wall-pressure fluctuations along the sharp-tipped cone obtained from the DNS for two-

dimensional plane slow and fast acoustic waves. 

 
Figure 21. Wavenumber of the pressure fluctuations along the wall and comparison with the linear 
stability. Solid black line is the location of the continuous spectrum; dotted line is the synchronization point. 

F=1.5*10-4. 
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Figure 22. Density fluctuations generated by the interaction of a slow two-dimensional circular acoustic wave 

with the sharp-tipped cone. F=1.5*10-4. 

 
 

Figure 23. Wall-pressure fluctuations along the sharp-tipped cone obtained from the DNS for a circular 
acoustic wave. 

 
Figure 24. Wavenumber of the pressure fluctuations generated by the interaction of a slow two-dimensional 

circular acoustic wave with the sharp-tipped cone and comparison with the linear stability. Solid black line is 
the location of the continuous spectrum; dotted line is the synchronization point.  F=1.5*10-4 
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Figure 25. Density (a, b) and u velocity (c, d) fluctuations generated by the interaction of an axi-symmetric 
vortical disturbance with the sharp-tipped cone. F=1.5*10-4 

 

 
Figure 26. Wall pressure fluctuations generated by the interaction of an axi-symmetric vortical disturbances 

with the cone (a) in linear scale (b) in log-scale. F=1.5*10-4. 
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Figure 27. Wavenumber of the pressure fluctuations along the wall generated by the interaction of an axi-
symmetric vortical disturbance with the sharp-tipped cone and comparison with the linear stability. Solid 
black line is the location of the continuous spectrum; dotted line is the synchronization point.  F=1.5*10-4 


