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Intelligent Data Understand

The IDU group develops novel algorithms to
detect, classify, and predict events in large
data streams for scientific and engineering
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Key areas of research in dat

Research Topic Areas Application Areas
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NASA Data System:

* Earth and Space Science

— Earth Observing System generates ~21 TB of
data per week.

— Ames simulations generating 1-5 TB per day
* Aeronautical Systems

— Distributed archive growing at 100K flights per
month with 2M flights already.

* Exploration Systems

— Space Shuttle and International Space station
downlinks about 1.5GB per day.



Developing Virtual

e Virtual Sensors predict the value of one
sensor measurement by exploiting the
nonlinear correlations between its values
and other sensor readings.

e Useful for emulating sensors back in time
or estimating the value of one sensor
based on other sensor measurements

Z: Sensors measurements
A: Wavelength or Frequency
u: Position

Z(ua A, t) = [Zu()\a t)]
= [Zul ()\7 t)a Z’uz ()\7 t)v R Zun ()\7 t)]T

Measurement

;L(Z(B)) — /F(Z(B))Z(B)dB Predicted Sensor

2(2(8)) = [0(2(B) - u(Z(B))P2(B)B [ Extimated

Uncertainty




Virtual Sensors in the
Earth Sciences

Collaborators
Ashok N. Srivastava, NASA Ames
Nikunj C. Oza, NASA Ames
Julienne Stroeve, National Snow and Ice Data Center
Ramakrishna Nemani, NASA Ames
Petr Votava, NASA Ames



Has Cloud Cover Chang
Greenland in the past :

* New sensors on the MODIS system can detect clouds over snow and ice in the
1.6um band (circa 1999).

e Difficult over snow and ice-covered surfaces because of low contrast in visible
and thermal infrared wavelengths.

e Older sensors from the AVHRR system do not detect cloud cover over snow
and ice because of poor contrast. MODIS
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Joint work with Nikunj Oza, Julliene Stroeve, Rama Nemani, Brett Zane-Ulman



 MODIS 1.6um has enough contrast for this task.
* However 1.6um channel not available in AVHRR/2.
* Predict 1.6um channel using a Virtual Sensor
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e True Positive = number of times channel 6 indicated a
cloud and the model predicted cloud

e True Negative = number of times channel 6 indicate no
cloud and the model predicted no cloud



Verification of Models on |
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Application of Models
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Summary

Application to entire historical record is a significant task

because of data quality issues and transitions from one sensor
system to another.

Method applied to emulation of physics models to calculate
corrections for surface albedo measurements resulted in an
increase in speed by factor of 27 compared to existing methods.

Potential to depl%y Virtual Sensors for generation of a historical
cloud mask record.

Model verification and validation must be done by hand since
we have no signal for comparison.

A. N. Srivastava, N. C. Oza, and J. Stroeve, “Virtual Sensors: Using Data Mining
Techniques to Efficiently Estimate Remote Sensing Spectra,” Special Issue on Advanced
Data Analysis, IEEE Transactions on Geoscience and Remote Sensing, March 2005.



Virtual Sensors in
Astrophysics

Collaborators
Michael J. Way, NASA Goddard Institute of Space Science
Leslie Foster, San Jose State University
Ashok N. Srivastava, NASA Ames
Paul Gazis, NASA Ames
Jeffery Scargle, NASA Ames



Declination

Estimating Photometric R
in the Sloan Digital Sky ¢

SDSS DR3 GREAT Histogram

Photometry
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Joint work with Michael J. Way, Leslie Foster, Paul Gazis, and Jeffrey Scargle



Photometric Redshifts are
Measurements of Sp

NGC5102 and SDSS Filters
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Gaussian Process Regreé:

* Can have high accuracy and also measure of uncertainty

 some low-rank matrix approximations work well but
can have numerical problems.

Training Data: o Form covariance matrix K (n x n),
o X — data matrix of observations - n x d cross covariance matrix K* (n* x n) and
» y — vector of target data—n x 1 select parameter
Testing Data: SPIEdiChyLISIng
o X" — matrix of new observations — n* x d yr =K (NI+K) Ty
Goal. o the n x n matrix (\?/ + K) is large for large
o predict y* corresponding to X* data sets

o Memory: Storing covariance matrix — O(n?)
o Time: Solving linear system — O(n®)

o Numerical stability: accurate calculations.



Standard Least Square:

o Given:
nxmmatrix A, n>m
n x 1 vectory

o Solve min ||y — Ax]||

» Normal Equations: x = (ATA) 1A'y
potential numerical instabilities

s QR:A=QR,x =R 'Q'y
stable calculation



Computational

o Subset of Regressors [Wahba, 1990]

i

Y =KV Ki + K{Kp) 'Ky

o Memory: Storing covariance matrix — O(nm)
o Time: Solving linear system — O(nm?)

o Numerical stability: ?7?7.



Cures for Numerical Instability: The"

Approach

1. Select columns to make
K, well conditioned

2. Use stable technique
for least squares
problem such as

QR factorization
e \V method

3. Requirement: maintain
O(nm) memory use and
O(nm?) efficiency.

Column Selection

1. Use Cholesky factorization

with pivoting to partially
factor K

selects appropriate
columns for K|

K; will be well conditioned
if cond(K,) is O(condition
of optimal low rank
approximation).

The V-Method is the innovation of Leslie Foster and his students at San Jose State University



The V-Methc

o Factor Ky = VV/, where V is n x mand Vj;
IS m x m lower triangular

o V' = KiV T (V21 + VTV) 1y Ty

o V Is a rescaling of a well conditioned matrix
o method is numerically stable

o can be faster and need less memory

o related to [Peters and Wilkinson, 1970],
[Wahba, 1990]



Number of Cases

Number of Cases
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Our ensemble models
produce the best
redshift estimates
published to date.

We are developing
Gaussian Process
Regression methods to
scale to 10° galaxies
and beyond.



— 5R-N
—==5R-NP
— 5RO
———SR-QF
— 3RY
—==5R\E
— GPR

[nF] o0
_ _

Calculation time {seconds)
= e
—_ =

—_

e [h5)
i_ —
(=) -

(%)
—_
)

Calculation time (seconds)

Scalability Re

Data Set 1; u-g-r-i-z, RANK=200

T T T T T T T T
’f
- )
- -]
J’;”!
B i
-~
—
TP -
- -
- sl
S
- e
-
Pt e i
- o
- g
.-‘g’ PR
=
o
-ﬂ
e — e S

50000 100000 150000 50000 100000 150000 50000 100000 150000

Data Set 1; u-g-r-i-z, RANK=600

50000 100000 150000 50000 100000 150000 50000 100000 150000
Training-Set sample size

250

200

150

100

a0

1000

800

600

400

200

Data Set 1; u-g-r-i-z, RANK=400

DLJ:;---===EE============5==!
50000 100000 150000 S0000

100000 150000 50000 100000 150000

Data Set 1; u-g-r-i-z, RANK=800

50000 100000 150000 50000

100000 150000 50000 100000 150000
Training-Set sample size



0.024

0.023
n
= 0.022¢
14

0.021

SRN 0.02

~—-SRNP
—— S8R0
~==SRQP
—1 R
=== SRVP 0.024

0.023 ¢
n
=2 0.022r
o

0.021¢

0.02

Data Set 1; u-g-r-i-z, Sample=20000

““--;'---.,_",.‘—_-

500 1000 1500
RANK

Data Set 1; u-g-r-i-z, Sample=60000

500 1000 1300
RANK

0.024

0023}
2 nonl
o

0.021

0.02

0.024

0.023
)
= 0,022+
o

0.021 ¢

0.02

Data Set 1: u-g-r-i-z, Sample=40000

--'I-'_"-l———h-——

Data Set 1: u-g-r-i-z, Sample=80000

500 1000 1500
RANK

* To the best of our knowledge
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Results for Redshift Pre

* The V-Formulation provides an extremely
scalable and numerically stable method to
compute Gaussian Process Regression for
arbitrary kernels.

* With low-rank matrix inversion approximations
GPs performed better than all other methods.

* Allows us to compute GPs for O(200K) points in
a few seconds on a standard desktop PC.

L. Foster, A, A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky, C. Satyavolu, M. J. Way, P.
Gazis, and A. N. Srivastava, “Stable and Efficient Gaussian Process Calculations,” Journal
of Machine Learning Research, 10(Apr):857--882, 2009.



() wunze Data Mining
Supporting the
Flight Readiness Review for STS-119

Collaborators
Ashok N. Srivastava, NASA Ames
Dave Iverson, NASA Ames
Bryan Matthews, SGT
Bill Lane, NASA Johnson Space Center
Bob Beil, NASA Kennedy Space Center
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Ashok received a request to support the Flight Readiness Review for STS-119 which
was scheduled for 2/20/09 as the Data Mining Subject Matter Expert.

Data mining algorithms developed at NASA were applied to these data to
determine whether any anomalies can be detected in STS-126 and its predecessor
flight STS-123 for Space Shuttle Endeavor.




Algorithms and Dai

IMS (Inductive Monitoring System): a data point
is anomalous if it is far away from clusters of
nominal points.

Orca: a data point is anomalous if it is far away
from its nearest neighbors.

Virtual Sensor: a data point is anomalous if the
actual value is far away from the predicted value.

Data: 13 pressure, temperature, and control
variables related to the Flow Control Valve
subsystem.



IMS Distance from Nominal

STS-123 FCV Pressures IMS Analysis
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IMS Distance from Nominal

STS-126 FCV Pressures IMS Analysis
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IMS An

IMS Individual
Parameter Deviations

STS-126 FCV Pressures IMS Analysis
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* Redlines
correspond to 3-
sigma nominal error
rate on STS-118.

*STS-126 shows
anomalous behavior
after 93.6 seconds.

Virtual Sensor: STS-118 ai
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Virtual Sensors with Adapti\
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A. N. Srivastava, B. Matthews, D. Iverson, B. Beil, and B. Lane, “Multidimensional
Anomaly Detection on the Space Shuttle Main Propulsion System: A Case Study,”
submitted to IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2009.
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The Role of Data Mining in
Aviation Safety

Ashok N. Srivastava, Principal Investigator
Claudia Meyer, Project Manager
Robert Mah, Project Scientist



Integrated Vehicle Health Mana
An Aviation Safety Pi

Level 4 — Ajrcraft Level

Goal -- Validated multidisciplinary integrated vehicle health management tools
and techniques to enable automated detection, diagnosis, prognosis and mitigation of

IVHM 4.1 Ground! | IVHM 4.2 Systems | adverse events during flight. | m43 | vHM 4.4 Research
Flight Demo Analysis Dashlink | Testand Integration

IVHM 3.1 IVHM 3.2 VHM 3.3 IVHM 3.4 VHM 35
Detection Diagnosis Prognosis Mitigation Integrity Assurance

Level 2 -
Subsystems
IVHM 2.1 Aircraft VHM 2.2 VHM 2.3 IVHM 2.4
Systems HM Airframe HM Propulsion HM Software HM
Level 1 -
Foundational ,

VHM 1.1 Advanced
Sensors
and Materials

IVHM 1.2 Modeling

VHM 1.3 Advanced
Analytics and
Complex Systems

IVHM 1.4 Verification
and Validation
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DASHIink.arc.nasa.gt

DASHIink harnesses the power of web 2.0 to further Systems Health
and Data Mining research

Download
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DASHlink is a virtual laboratory for ’
scientists and engineers to
disseminate results and collaborate
on research problems in health
management technologies for
aeronautics systems.
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Organizatior

Principal Investigator: Ashok Srivastava
*Project Operations S ‘

Manager: Jeff Rybak Project Scientist: Robtlart Mah - ARC, DFRC, GRC, LaRC Center
Project Manager: Claudia Meyer POCs
‘NRA !
Manager: Lilly Spirkovska i

ARC APM: Steve Jacklin
DFRC POC: Mark Dickerson
GRC APM: Bob Kerczewski
*Level 4 LaRC APM: Sharon Graves

*Multidisciplinary Ground/ *Research Test and *DASHIink
Flight Demos Integration

Systems Analysis for
Health Management

Lead: Mary Reveley

Lead: Robert Mah Lead: Elizabeth Foughty

*Leads: PI, PS, PM

*Level 3 Associate Principal Investigators
*Detection *Diagnosis *Prognosis Mitigation *Integrity Assurance

API: John Lekki API: Rick Ross API: Kai Goebel API: Eric Cooper API: Eric Cooper

ol evel 2

Aircraft Systems Airframe Propulsion Systems Software

T~ .
Traditional Aircraft Subsystems — well represented in Levels 1,3 and 4 Lead: Paul Miner
Newly Recognized Aircraft Subsystem

ol evel 1 Lead Researchers

«Advanced Sensors and *Modeling *Advanced Analytics and *Verification and Validation
Materials Complex Systems Lead: Steve Jacklin
Lead: Tim Bencic Lead: Kevin Wheeler Lead: Nikunj Oza




The Data Mining Tear

Group Members
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Virtual Sensors A

e Given MODIS channels 1, 2, 20, 31, 32 correspond to five AVHRR/2 channels
e Develop a model for MODIS channel 6 (1.6mm) as a function of these channels
e Use function to construct estimate of 1.6mm channel for AVHRR/2

Model Construction

Model Application



Characterizing the Larg
Structure of the Uni

SDSS DR3 GREAT Spectra | There are between 125 and 500 billion
Wi s galaxies in the universe.

Obtaining a good estimate of their 3-D
position in the sky would help determine
the filamentary structure of the universe

" ‘, | to constrain cosmological models.
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understanding of how the universe evolved after the Big Bang.
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What are Photometric Redsl

Photometric Redshifts: A rough estimate of the redshift of
a galaxy without having to measure a spectrum.
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The Empirical Approack
Redshift Estimation

Training sample consists of galaxies with

* known spectroscopic redshift

 a comparable range of magnitudes (u g r i z) to our photometric
survey objects

Galaxy Photometric Redshift Prediction History

 Linear Regression was first tried in the 1960s

e Quadratic & Cubic Regression (1970s)

 Polynomial Regression (1980s)

 Neural Networks (1990s)

 Kd Trees & Bayesian Classification Approaches (1990s)
e Support Vector Machines & GP Regression (2000s)



Kernels Incorporate Prior |




Gaussian Process Regress

A large # of hidden units in a Neural Network

l

Gaussian Process Regression (Neal 1996).

® &
& m Outputs
Johann Carl Friedrich Gauss (1777—
. . 1855), painted by Christian Albrecht
Inputs Hidden Jensen (wikipedia)

Units



Large Scale Gaussian Proce

With our SDSS (DR3) Main Galaxy spectroscopic sample
(180,000 galaxies) the matrix size is 180,000 x 180,000

* Need a supercomputer with a LOT of ram and cpu time?

* One can take a random sample of ~1000 galaxies & invert that
while bootstrapping n times from full sample
 However, some low-rank matrix approximations work well

such as Cholesky Decomposition, Subset of Regressors but can
have numerical problems.

e Solution: V-method (Cholesky decomposition with pivoting)

The V-Method is the innovation of Leslie Foster and his students at San Jose State University



Numerical Instability
Subset of Regressors Me

o In SR formula consider special case A =0
o V= KHK Ke) 'Ky
o Exactly normal equations solution to the
least squares prediction problem:
min|ly — Kix|| and y* = K;x
o Note: can be easily extended for A £ 0
o Potential numerical instability



Low Rank A



Results from Other

Method Name O,ms Dataset! [nputs” Source

CWW 0.0666 SDSS-EDR  ugriz Csabal et al. (2003)
Bruzual-Charlot 0.0552 SDSS-EDR ugriz Csabai et al. (2003)
ClassX 0.0340 SDSS-DR2 ugriz Suchkov et al. (2005)
Polvnomial 0.0318 SDSS-EDR  ugriz Csabai et al. (2003)
support Vector Machine  0.0270  SDSS-DR2 ugriz Wadadekar (2005)
Kd-tree 0.0254 SDS5-EDR  ugriz Csabai et al. (2003)
Support Vector Machine  0.0230 SDSS-DR2  ugriz+rb04+1r90  Wadadekar (2005)
Artificial Neural Network 0.0229 SDSS-DR1  ugriz Collister & Lahav (2004)

Stanford 08



Summary of Our Re:

Results: SDSS (DR3) Main Galaxy Sample

* Paper |: Compared linear, quadratic, Neural Networks
and GPs on the SDSS

* With ONLY 1000 samples GPs performed well
compared to the other methods

e Paper ll: With low-rank matrix inversion
approximations GPs performed better than all other

methods

Stanford 08



Virtual Sensor: STS-123

OV-105-1301-STS-123
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Summary of Research Needs in /

Aircraft aging and durability
— Full fundamental knowledge about legacy aircraft
— Start on knowledge about likely emerging materials and structures

On-board system failures and faults — airframe, propulsion, aircraft systems (physical and
software)

— Early prediction, detection and diagnosis
— Prognosis
— Mitigation
Monitoring for problems before they become accidents
— Vehicle issues
— Airspace issues
Loss-of-control

— Understanding aircraft dynamics of current and future vehicles in damaged and upset
conditions

— Control systems robust to the unanticipated and anticipated
— Aircraft guidance for emergency operation
Flight in hazardous conditions
— Modeling and sensing airframe and engine icing and icing conditions
— Sensing and portraying environmental hazards
New operations
— Design of robust collaborative work environments Integrated Vehicle
— Design of effective, robust human-automation systems Health
— Information management and portrayal for effective decision making Management




The Powers of Aviation Safety

* There is no one ‘silver bullet’ — we must look
at all contributors to safety

* Consider the space we must consider:

— Safety at the smallest level
— Safety spanning the nation (and the world!)

* Let us consider these different sizes, expressed
as ‘Powers of Ten’
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The Aircraft as a Computer Peripheral — and Network!
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Recent Safety Ad

U.S. and Canadian Operators Accident Rates by Year
Fatal Accidents - Worldwide Commercial Jet Fleet — 1959 Through 2006
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