

American Institute of Aeronautics and Astronautics

1

A Hardware Model Validation Tool for Use in Complex
Space Systems

Misty D. Davies* and Karen Gundy-Burlet†
NASA Ames Research Center, Moffett Field, CA, 94035

One of the many technological hurdles that must be overcome in future
missions is the challenge of validating as-built systems against the models
used for design. We propose a technique composed of intelligent parameter
exploration in concert with automated failure analysis as a scalable method
for the validation of complex space systems. The technique is impervious to
discontinuities and linear dependencies in the data, and can handle
dimensionalities consisting of hundreds of variables over tens of thousands of
experiments.

I. Introduction
ncreasing capabilities for space missions comes at the cost of ever-growing complexity and
highly interdependent system components. Design of one system component is often achieved

by modeling the other components, with the final integration only happening on the doorstep of
launch. We handle much of the complexity by taking advantage of new capabilities in software
engineering. As a result, software is integrated with almost every other component of the system
and depends on reliable models of sensors, actuators, processors, communications, and storage in
order to be robust. Validating the models against the as-built hardware in the system is difficult,
and mismatches have led to space system failures. As one example, the 1997 Lewis satellite
failed because it could not maintain its Sun-pointing mode.1 This mode had been tested using a
simulation that assumed perfect thrusters. It is likely that the final implementation of the thrust
system was well within the tolerance specified by the requirements; however, because this
tolerance was not accounted for in the model it was impossible to identify the fault in the flight
software.
 In order to avoid underspecification in system models, Jaffe et. al. have defined criteria for
requirements that include assignments for many properties of system interactions, inputs, and
outputs.2,3 The primary goal of these criteria is to formalize requirements generation and to
define a measure of when requirements are complete. However, in systems that have models
built according to these criteria, we have an added benefit: these models allow us to determine
the margins to failure in the interplay between the software and hardware components of the
system.
 The Margins Analysis3-5 is a multi-step Monte Carlo Filtering technique6,7 developed by the
Robust Software Engineering (RSE) group within the Intelligent Systems Division at NASA
Ames Research Center. The tool is used for beginning-to-end directed testing. The system
requirements become penalty functions used within a sampling algorithm to drive the system to

* Research Computer Engineer, Intelligent Systems Division, Mail Stop 269-3, AIAA Member.
† Research Scientist, Intelligent Systems Division, Mail Stop 269-3, AIAA Associate Fellow.

I

American Institute of Aeronautics and Astronautics

2

failure and identify suspicious inputs (and their critical ranges). By assuming that most hazards
are triggered by a maximum combination of two or three input variables we limit our number of
test vectors while still obtaining a coverage guarantee.8 This assumption allows us to analyze
hundreds of input and output parameters over tens of thousands of experiments. We analyze the
output behavior for unexpected structure using a combination of unsupervised9 and
supervised10,11 machine learning techniques. By driving the failure of requirements in an
automated loop, we can collect enough examples to determine which inputs demonstrate the
most sensitivity with respect to a particular undesired behavior. Defects within flight software or
within the system model can usually be found on the narrowed path between the implicated
inputs and the failed outputs.
 In order to validate hardware models, we take a multi-pronged approach. Prior to the delivery
of hardware, we use the appropriately specified parameters in the model to find the margins to
failure. This is possible (and simple to automate) when the hardware models include the details
Jaffe et.al. outline as being germane to requirements specification. We then expand these
parameters far beyond the expected ranges of the system. Our analysis at this stage gives us a
sense of how robust our system is within the assumptions inherent to the model. Assuming that
our model is reasonably correct, it should also give us the input parameters that the hardware
behavior is most sensitive to. Where it is possible, we will exercise the sensitive parameters in
our tests on the final hardware.
 After the hardware is delivered, or in the case that we have multiple fidelities of models below
the actual hardware, we can use the analysis to validate that abstraction assumptions do not
invalidate the results obtained from the overall system model. In this case, the penalty method
for the analysis is based on differences between the lower-fidelity and higher-fidelity systems.
The analysis will then illuminate the key input parameters related to the mistaken assumptions.

II. Methodology
Monte Carlo testing guided by sensitivity analysis is subject to a number of pitfalls. Models of
space systems of sufficient fidelity provide high-dimensionalities of data. This data is rarely
independent, and is usually a mixture of continuous, periodic, and discrete distributions. For
systems as complex as those required for space missions, sensitivity analysis methods based on
derivative techniques become trapped in the wealth of local minima. Pattern-detecting
algorithms like clustering and rule-based learners often assume independence and that the data
can be described as mixtures of Gaussians.
 To combat these problems, we’ve implemented a number of data transformations. We
automatically sort the data to find delta functions and periodicities. A peak occurring at a period
boundary is handled by moving the boundaries. The unsupervised clustering technique within
the Margins Analysis utilizes an expectation-maximization algorithm that has numerical
difficulties at high dimensionality. As a consequence, we use a principal component analysis to
reduce the dataset. In practice, we’ve found that more than 99% of the information is contained
within fewer than half of the dimensions.
 By contrast, the supervised treatment learning algorithm is a sampling technique and is
unfazed by high dimensionality or by discontinuities. The treatment learning algorithm’s
Achilles heel is the assumption that all of the parameters are independent. When this assumption
is false the treatment learner misses important sensitivities. For this step in the technique, we
perform an analysis over the data simultaneously in the original space and in the rotated space of

American Institute of Aeronautics and Astronautics

3

the principle component analysis. The hyperrectangles in the principle component space are
reduced in post-processing to two- and three-dimensional projections in the original variable
space, so that they can be visualized and understood by domain experts.

III. Results

IV. Conclusion

Acknowledgments
This research was conducted at NASA Ames Research Center. Reference herein to any

specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government.

References
1Harland, D. and Lorenz, M. Space Systems Failures: Disasters and Rescues of Satellites, Rockets, and Space Probes.

Springer, Chichester, 2005, pp. 216-218.
2Jaffe, M.S., Leveson, N.G., Heimdahl, M.P.E. and Melhart, B.E. Software requirements analysis for real-time process-

control systems. IEEE Transactions on Software Engineering. Vol. 17, No. 3, 1991, pp. 241-258.
3Leveson, N.G. Safeware: System Safety and Computers. Addison-Wesley, 1995.
3Gundy-Burlet, K., Schumann, J., Barrett, T., and Menzies, T., “Parametric Analysis of ANTARES Re-entry Guidance

Algorithms Using Advanced Test Generation and Data Analysis,” 9th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2007.

4Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., and Barrett, T. “Tool Support for Parametric Analysis of Large
Software Systems”, Proceedings of Automated Software Engineering, 23rd IEEE/ACM International Conference, 2008.

5Gundy-Burlet, K., Schumann, J., Barrett, T., and Menzies, T., “Parametric Analysis of a Hover Test Vehicle Using
Advanced Test Generation and Data Analysis,” AIAA Aerospace, 2009.

6Rose, K., Smith, E., Gardner, R., Brenkert, A. and Bartell, S. “Parameter Sensitivities, Monte Carlo Filtering, and Model
Forecasting Under Uncertainty,” Journal of Forecasting, Vol. 10, 1991, pp. 117-133.

7Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S., Global
Sensitivity Analysis: The Primer, Wiley, Chichester, 2008, Chaps. 1, 5.

8Barrett, A., “A Combinatorial Test Suite Generator for Gray-Box Testing”, Third IEEE International Conference on Space
Mission Challenges for Information Technology, 2009.

9Fischer, B., and Schumann, J. “Autobayes: A System for Generating Data Analysis Programs From Statistical Models,”
Journal of Functional Programming, Vol. 13, 2003, pp. 483-508.

10Hu, Y., “Treatment Learning: Implementation and Application,” Masters Thesis, Department of Electrical Engineering,
University of British Columbia, 2003.

11Hu, Y., and Menzies, T. “Data Mining for Very Busy People,” IEEE Computer, Vol. 36, No. 11, 2003, pp. 22-29.

American Institute of Aeronautics and Astronautics

1

A Hardware Model Validation Tool for
Use in Complex Systems

Misty D. Davies* and Karen Gundy-Burlet†
NASA Ames Research Center, Moffett Field, CA, 94035

and

Greg Limes‡
CraigTech Industries, Tallahassee, FL, 32311

One of the many technological hurdles that must be overcome in future
missions is the challenge of validating as-built systems against the models
used for design. We propose a technique composed of intelligent parameter
exploration in concert with automated failure analysis as a scalable method
for the validation of complex systems. The technique is impervious to
discontinuities and linear dependencies in the data, and can handle
dimensionalities consisting of hundreds of variables over tens of thousands of
experiments.

I. Introduction
ncreasing capabilities for both vehicle and ground systems comes at the cost of ever-growing
complexity and highly interdependent subsystem components. Design of one subsystem

component is often achieved by modeling the other components, with the final integration only
happening on the doorstep of the final implementation. We handle much of the complexity by
taking advantage of the flexibility inherent in software engineering. As a result, software is
integrated with almost every other component of the system and depends on reliable models of
sensors, actuators, processors, communications, and storage in order to be robust. Validating the
models against the as-built hardware in the system is difficult, and mismatches have led to space
system failures. As one example, the 1997 Lewis satellite failed because it could not maintain its
Sun-pointing mode.1 This mode had been tested using a thruster simulation that assumed the
thrust vector would be perfect. It is likely that the final implementation of the thrust system was
well within the tolerance specified by the requirements; however, because this tolerance was not
accounted for in the thruster model the fault in the flight software was impossible to find using
simulation testing.
 In order to avoid underspecification in system models, Jaffe et. al. 2,3 have defined criteria for
requirements that include assignments for many properties of system interactions, inputs, and
outputs. The primary goal of these criteria is to formalize requirements generation and to define

* Research Computer Engineer, Intelligent Systems Division, Mail Stop 269-3, AIAA Member.
† Research Scientist, Intelligent Systems Division, Mail Stop 269-3, AIAA Associate Fellow.
‡ Senior Engineer, Intelligent Systems Division, 4836 Lake Park Dr., Talahasee, FL.

I

American Institute of Aeronautics and Astronautics

2

a measure of requirement completeness. However, in systems that have models built according
to these criteria, we have an added benefit: these models allow us to determine the margins to
failure in the interplay between the software and hardware components of the system.
 The Margins Analysis3-5, as shown in Figure 1, is a multi-step Monte Carlo Filtering
technique6,7 developed by the Robust Software Engineering (RSE) group within the Intelligent
Systems Division at NASA Ames Research Center. The tool is used for beginning-to-end
directed testing, with both the software and simulations of the hardware modeled together as the
system-under-test. We then
generate tests well into the off-
nominal (but still possible)
flight envelopes. By assuming
that most hazards are triggered
by a maximum combination of
two or three input variables we
limit our number of test vectors
while still obtaining a
parametric coverage guarantee.8
This assumption allows us to
analyze hundreds of input and
output parameters over tens of
thousands of experiments.

The system requirements are
used to create penalty functions.
Each run is graded according to
the penalty function, and new
tests are generated in order to
fully explore the failure
boundaries. We use machine
learning techniques9-11 in order
to both identify suspicious
inputs (and their critical ranges)
and to find unexpected
structure. By driving the failure
of requirements in an automated
loop, we can collect enough
examples to determine which inputs demonstrate the most sensitivity with respect to a particular
undesired behavior. Defects within flight software or within the system model can usually be
found on the narrowed path between the implicated inputs and the failed outputs.
 In order to validate hardware models, we propose a multi-pronged approach. Prior to the
delivery of hardware, we expand the hardware parameters in the model far beyond the nominal
ranges of the system in order to find the margins to failure. This is possible (and simple to
automate) when the hardware models include the details Jaffe et.al.2,3 outline as being germane
to requirements specification. Our analysis at this stage gives us a sense of how robust our
system is within the assumptions inherent to the model. Assuming that our model is reasonably
correct, it should also give us the input parameters that the hardware behavior is most sensitive
to. We can use this information to plan tests on the final hardware.

Figure 1: A flowchart for the Margins Analysis
process.

American Institute of Aeronautics and Astronautics

3

 After the hardware is delivered (or in the case that we have multiple fidelities of models
below the actual hardware) we can use the analysis to validate that the abstraction assumptions
used at the lower fidelities don’t lead to behavior significantly different from the behavior of the
final system as implemented. In this case, the penalty method for the analysis is based on
differences between the lower-fidelity and higher-fidelity systems. The sensitivity analysis will
then illuminate the key input parameters related to the mistaken assumptions.

II. Methodology
The most important step required for the validation of models is an understanding of the
limitations and assumptions inherent in those models. This step is non-trivial and requires
human expertise. Unfortunately, a methodology for how to perform this step is beyond the scope
of this paper. Interested readers should look to the work of Jaffe, et. al. 2,3, Nancy Leveson12, and
to the NASA Modeling and Simulation Standard.13 For the purposes of this paper, what is
important to note is that it is impossible to measure effects that have not been instrumented. In
the case of clarifications like the expected (and possible) ranges on sensor inputs it is possible to
design a system that will remind the engineer to complete specifications. However, other
modeling assumptions (e.g. the linearity of springs), are harder to automatically detect. This
point cannot be stressed highly enough: if assumptions on the design are not documented, it is
(at least) difficult or (likely) impossible to determine whether those assumptions will affect the
behavior of the overall system.
 Instrumenting the model with the appropriate assumptions at design time allows for
experiments that determine how appropriate those assumptions are. The first and most obvious
step is to perform a sensitivity analysis of the hardware design parameters. Spring constants,
friction, pointing errors, etc. will all have an expected set of values and a larger possible set of
values. Running sensitivity analyses over the possible range of values allows the engineers and
designers to know how close to failure they are, and which parameters are most critical to
control.
 Tests of complex systems provide high dimensionalities of data. This data is rarely
independent, and is usually a mixture of continuous, periodic, and discrete distributions. As a
result, sensitivity analysis methods based on derivative techniques become trapped in the wealth
of local minima. Pattern-detecting algorithms like clustering assume that the data can be
described as mixtures of Gaussians. Rule-based learners like the one we are using for our
sensitivity analysis often assume linear independence of the outputs.
 To combat these problems, we’ve implemented a number of data transformations within the
Margins Analysis. We automatically sort the data to find delta functions and periodicities. A
peak occurring at a period boundary is handled by moving the boundaries. The unsupervised
clustering technique within the Margins Analysis utilizes an expectation-maximization algorithm
that has numerical difficulties at high dimensionality. As a consequence, we use a principal
component analysis to reduce the dataset. In practice, we’ve found that more than 99% of the
information is contained within fewer than half of the dimensions.
 We use a supervised treatment learning algorithm14 for the sensitivity analysis within the
Margins Analysis. Treatment learning is a sampling technique and is unfazed by high
dimensionality or by discontinuities. The treatment learning algorithm’s Achilles heel is the
assumption that all of the parameters are independent. When this assumption is false the
treatment learner misses important sensitivities. For this step in the technique, we perform an

American Institute of Aeronautics and Astronautics

4

analysis over the data simultaneously in the original space and in the rotated space of the
principle component analysis. We then project the results back into the original variable space,
so that they can be visualized and understood by domain experts15.
 Knowing the areas of greatest sensitivity in a lower-fidelity model allows a test designer to
intelligently plan tests on higher-fidelity models (including the actual hardware itself). Making
sure that ranges in which the greatest change is expected are adequately covered provides for
stronger statistical confidence that the data obtained from low-fidelity simulation and higher-
fidelity testing are actually from the same distribution.
 The fact that the sensitivity analysis we are using here is impervious to discrete and
continuous variables allows for another layer of validation when models of differing fidelity
exist and the data obtained from bisimulation of those models is shown to differ. The sensitivity
analysis can be tuned to discover the likely root causes of the differing data—giving the test
engineer valuable information about which parts of the model or which hardware component are
most in need of extra analysis and possible change.

III. Test Examples
As a proof of concept, we are using three different test examples. All of the test examples have
been coded in MATLAB’s Simulink modeling language. The first example is of a simple
spring-mass-damper system with a
constant force applied, as shown in
Figure 2. The Simulink model for the
simple system is shown in Figure 3. All
of the nominal values are shown in
Figure 3. Integrations are performed
using a continuous Runge-Kutta scheme
with a variable timestep and the spring is
assumed to be a linear spring. For our
tests, we dispersed the mass of the
vehicle (m1) between 1 and 3 kg, the gain
on the damper (c) between 150 and 500
N*sec/meter, the spring equilibrium distance (L0) between 0.03 and 0.09 meters, the constant
force (f) between 0 and 16 N, the linear spring constant (k) between 200 and 400 N/meter, the
initial position of the vehicle (x1(0)) between -0.1 and 0.1 meters, and the initial velocity of the
vehicle (x1_dot(0)) between -0.1 and 0.1 meters/sec.
 As a slightly more complicated test example we also implemented the system shown in Figure
4. This system has two interacting masses, with three springs, two dampers and two forces.
The Simulink model for the simple system is shown in Figure 5, along with all of the nominal
values for the system. As in the simple, second-order system, integrations are performed using
a continuous Runge-Kutta scheme with a variable timestep and all of the springs are assumed
to be linear springs. For this test case, we dispersed the width of the vehicles (d1 and d2), the
total distance (d3), the vehicle masses (m1 and m2), the equilibrium spring positions (L01,
L02, and L03), and the initial vehicle positions (x1(0) and x2(0)) to +/- 10% of their nominal
values. The rationale for the dispersion range for these variables is that these values were the
most likely to be easily and accurately measured, so the dispersions could be narrower. The

Figure 2: A simple, second-order, spring-
mass-damper system.

American Institute of Aeronautics and Astronautics

5

Figure 3: The resulting Simulink model for the system shown in Figure 2.

Figure 4: A more complicated spring-mass-damper system. This system has three
springs, two masses, two dampers, and two independent forces.

American Institute of Aeronautics and Astronautics

6

first spring constant (k1) was dispersed between 150 and 600 N/meter, the second spring
constant (k2) was dispersed between 250 and 500 N/meter, the third spring constant (k3) was
dispersed between 200 and 800 N/meter, the first damper constant (c1) was dispersed between 4
and 16 N*sec/meter, the second damper constant (c2) was dispersed between 5 and 20
N*sec/meter, the first force (f1) was dispersed between -20 and 40 N, and the second force (f2)
was dispersed between -10 and 5 N. The initial velocities (x1_dot(0) and x2_dot(0)) were
dispersed between -0.1 and 0.1 meters/sec. These wider dispersions were chosen to capture the
greater amount of uncertainty on these values and the possible effects of unmodeled dynamics
like unexpected friction forces. At this point, we note that there are still uninstrumented sources
of error in the model—for example, the springs are still modeled as linear springs. Without

Figure 5: The Simulink model for the system shown in Figure 4

American Institute of Aeronautics and Astronautics

7

specifically instrumenting this assumption and providing a comparison (like a higher-fidelity
spring model), it is impossible to be sure that this is a reasonable assumption for our system.
 The final test example for this work is a gravity model based on JPL’s Lunar Constants and
Models document.14 This model takes the gravitational “lumpiness” of the body into account by
creating a model based on
spherical harmonics. This
particular application uses the
gravitational constants for the
Moon, Earth, and Mars, along
with the diameter of the
Moon, all of which have some
uncertainty in measurement.
For this paper, we’ve assumed
that the last two significant
digits for each of these
parameters have some
uncertainty. The gravity
model can be tuned to
fidelities between 1 (for the
coarsest level model) to over
75. At the highest orders,
computational errors remove
any quantitative difference
between the fidelities of
adjacent orders, as shown in
Figure 6. The recommended
fidelity for this model is of the
order of 50. However,
increasing fidelities also
greatly increase computational
cost per point location. For a
recent example, illustrated in
Figure 7, the coarsest model
took 10.19 ms per point
location, order 40 took 28.7
ms per point location, and
order 75 took 234 ms per
point location. This model is
intended to run as the
environment simulator for
processor-in-the-loop testing.
In order to return results
quickly enough for the
processor to process them, it
will likely be necessary to run

Figure 6: Error in the gravity model for differing orders
of fidelity.

Figure 7: Calculation time for a point location given
differing orders of fidelity within the gravity model.

American Institute of Aeronautics and Astronautics

8

at an order below the highest fidelity. An important question to ask is which parameters are most
likely to be affected by this cost-performance trade.

For all of our test examples, we assume that the data obtained using the nominal values for the
highest-fidelity model are the ‘true’ data, and we compare the differences between the ‘true’
results and the results obtained when the design values are dispersed. For the spring-mass-
damper systems, the critical values are the positions of the masses at every timestep. For the
gravity model, the critical values are the values of the gravity vector at a 40 point location subset
randomly selected from the 32,000 point locations available in the model.

	

IV. Results
1. Simple Second Order Spring Model

The simple second order spring-mass-damper model shown in Figures 2 and 3 was intended to
be an easily understood benchmark for the sensitivity analysis shown here. The system-level
requirement of interest for this for
this test case was the final
equilibrium position of the vehicle,
with the equilibrium position of the
nominal case considered to be the
ideal. Two sensitivity analyses
were run: the first asked the
analysis to find the input variables
associated with position values near
the ideal, the second asked the
analysis to find the input variables
associated with position values
farthest from the ideal. The
analysis for each case automatically
generated 10 solutions. Every
solution implicated a combination
of the input force (f) and spring
equilibrium value (L0) as being the
most critical to either success or
failure. An example is shown in
Figure 8. The blue data points
represent values close to the ideal
while the red data points represent
values from the ideal. What is
immediately apparent from the plot
is that the most critical relationship
is the linear relationship between
the two values. Sensitivity results
from the “best” analysis chose ranges outlining the blue points across the diagonal of the plot,
while sensitivity results from the “worst” analysis chose ranges outlining the red points at the top

Figure 8: A figure showing the highest-ranked
solution in the sensitivity analysis results. Each
data point represents a different simulation trial, and
the color of the data point represents the difference
between the desired and actual vehicle equilibrium
positions, with blue being most ideal and red farthest
from the ideal. This plot highlights the clear linear
relationship between the force and the spring
equilibrium position.

American Institute of Aeronautics and Astronautics

9

right and bottom left corners. A sensitivity analysis that included PCA data would not have been
limited to results along the
variable axes, and may have
been able to select the entire
linear range; this analysis will
be performed in future work.
The analysis performed here is
completely automated and is
capable of finding correlations
for more complicated systems,
as shown in the next two test
examples.

2. Two Mass Spring Model

The two mass spring-damper

system shown in Figures 4 and
5 is arguably more difficult to
analyze using a traditional
sensitivity analysis since the
differential equations describing
the system are much more
complicated and are
interrelated. The Margins
Analysis simply looks for
relationships within the output
data, without regard for the
form of the equations. The
system-level requirement of
interest for this for this test case
was the final equilibrium
position of both of the vehicle,
with the equilibrium positions
of the nominal case considered
to be the ideal. Two sensitivity
analyses were run: the first
asked the analysis to find the
input variables associated with
position values near the ideal,
the second asked the analysis to
find the input variables
associated with position values
farthest from the ideal. The
analysis for each case
automatically generated 10

Figure 9: A figure showing the relationship between k3
and d3 for the two mass spring system. Blue data points
were runs that had final positions near the ideal, while red
data points involved final positions farthest from the ideal.

Figure 10: A figure showing the relationship between k1
and d2 for the two mass spring system. Blue data points
were runs that had final positions near the ideal, while red
data points involved final positions farthest from the ideal.

American Institute of Aeronautics and Astronautics

10

solutions. For this case, all 20 solutions involved 4 variables: k1, k3, d2, and d3. Example
components for these solutions are shown in Figures 9 and 10. Both Figures 9 and 10 were
selected from the sensitivity analysis that was looking for relationships explaining the “best”
data. The red boxes are regions that the analysis chose as having a high number of “good” points
and a small number of “bad” points. In Figure 8, we see that there is an inverse linear
relationship between k3 and d3, and that the best data lies on a diagonal in the center of the plot.
The worst data lies in the upper right and lower left corners of the plot. Figure 9 shows a linear
correlation between k1 and d2 (similar plots show the relationship between k1 and d3). The
sensitivity analysis selecting for behavior farthest from the ideal selected the same plots, but
highlighted the data in the corners were the majority of the data points are red. An analyst can
quickly see from these plots that the important relationships for tolerance control will be the
spring constants and the distances in the system.

3. Gravity Model

The gravity model was the most complicated system run for this analysis, and was the only

analysis involving multiple fidelities. We ran four separate sensitivity analyses for the gravity
model—one that dispersed the order between 47 and 53 and one each at orders 10, 50, and 75.
The other dispersed parameters were the gravitational constants for the Moon, Earth, and Sun,
along with the Moon diameter, for a total of 5 dispersed parameters. Order 50 is the
recommended fidelity in the model’s documentation. The gravitational parameters are in units of
meters3/(sec2) and are nominally: Sun=132712440.028*109, Earth=398600.4376*109,
Moon=4902.801056*109. Each of the gravitational parameters are dispersed by +/- 2*107. As

Figure 11: Results from the Margins Analysis showing that the discrete model
order has a much greater effect than any of the uncertain parameters in the model.

American Institute of Aeronautics and Astronautics

11

an example, the actual uncertainty in the Earth’s gravitational parameter is about 1 in
500,000,000. The radius of the moon is nominally 1,736,000 meters and is dispersed by +/-
2000 meters. Each trial is penalized by the root mean square of the distances between that trial’s
gravity vectors and the gravity vectors of a much higher-order run at the nominal gravitational
parameters and Moon radius.

We first perform an analysis to see which of the parameters creates the most difference in the
behavior. The results from the sensitivity analysis that included dispersed order are shown in
Figure 11. The order of the model for this
analysis ranges discretely from 47 to 53
(remember that 50 is the recommended
order for the model). The analysis quickly
illustrates that the order of the model is the
largest determinant of the model behavior,
even though the mean RMS Error of the
model is relatively flat (as shown in Figure
6). The blue points are the points with the
least error, while the red points are the ones
with the most error.

We now attempt to see if we can use a
lower order model to predict the behavior
of higher order models. We choose three
differing fidelities, at orders 10, 50, and 75
respectively, and treat each of these three

fidelities as a different model. Figures 12-14 consistently show that the radius of the moon is the
next most sensitive parameter. This trend is clear even though there are fewer trials at order 50
and many fewer trials at order 75. In this case we see that the behavior of the models is clearly
qualitatively the same. Future work will focus on demonstrating that the models are
quantitatively the same or different.

Figure 12: Results from the Margins
Analysis run at order 10 with 469 individual
trials.

Figure 13: Results from the Margins
Analysis run at order 50 with 70
individual trials.

Figure 14: Results from the Margins
Analysis run at order 75 with 23 individual
trials.

American Institute of Aeronautics and Astronautics

12

V. Conclusion
The results shown here demonstrate the benefits of performing a Margins Analysis type
sensitivity analysis across models to validate space systems. At the most basic level, such an
analysis reveals the most brittle inputs to the model. In the case of our simple spring-mass-
damper system, we saw that the key set of variables for control was actually the linear
relationship between the force and the equilibrium distance of the spring. In the case of the more
complicated two mass spring-damper system, we saw that the key relationships to monitor were
the relationships between the linear spring constants and the distances between the springs.
Finally, for the gravity model, we saw that accurate gravity vectors depend most on the order of
the model (even near the recommended order), followed by the precision of the moon’s radius.
The gravitational parameters for the Sun, Moon, and Earth had little to no effect.
 A significant benefit of performing this type of analysis is that it forces the designers and
engineers to examine the assumptions and appropriate ranges for the models. Unless these
assumptions and ranges are instrumented, the sensitivity analysis will be unlikely to reveal their
effects. We need research on design practices that will allow us to automatically collect this key
information during the design process.
 Another important area for future research is to be able to estimate how many low-fidelity and
high-fidelity trials need to be run in order to have statistical confidence that low-fidelity
experiments predict the behavior of high-fidelity experiments. Experiments at the highest
fidelity (for example, hardware-in-the-loop testing) tend to be expensive in terms of time and
also tend to come late in the design process. With as few experiments as possible, you’d like to
be certain that the high-fidelity components behave in the ways predicted by your model. As an
example of this sort of analysis, examine Figures 12 through 14. The trials in Figure 12 ran in
approximately 11 sec., while the trials in Figure 14 take over 240 sec. to run. The standard
statistical test that determines whether two datasets are from the same distribution is the two-
sample Kolmogorov-Smirnov test. A future research direction should be to build ways of
estimating the number of tests likely to be needed in order to achieve acceptable confidence
intervals for a two-sample Kolmogorov-Smirnov test, based only on the data from lower fidelity
tests.
 Additionally, it is likely that we will often say with statistical certainty that our higher-fidelity
systems are not adequately modeled by our lower-fidelity systems. In that case, we’d like to be
able to run a sensitivity analysis that tells us which component models within the system are
most in need of examination. In order to do this, we will need to a way to (preferentially
automatically) instrument two different systems to determine in what ways the component
models differ. A sensitivity analysis of the Margins Analysis type will have some advantage
over traditional sensitivity analyses for this exploration because it easily handles both continuous
and discrete input variables simultaneously. It is likely that the sensitivity analysis results given
in this paper will aid the further, proposed analyses by focusing the efforts.

Acknowledgments
This research was conducted at NASA Ames Research Center. Reference herein to any

specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government.

American Institute of Aeronautics and Astronautics

13

References
1Harland, D. and Lorenz, M. Space Systems Failures: Disasters and Rescues of Satellites, Rockets, and Space Probes.

Springer, Chichester, 2005, pp. 216-218.
2Jaffe, M.S., Leveson, N.G., Heimdahl, M.P.E. and Melhart, B.E. Software requirements analysis for real-time process-

control systems. IEEE Transactions on Software Engineering. Vol. 17, No. 3, 1991, pp. 241-258.
3Leveson, N.G. Safeware: System Safety and Computers. Addison-Wesley, 1995.
3Gundy-Burlet, K., Schumann, J., Barrett, T., and Menzies, T., “Parametric Analysis of ANTARES Re-entry Guidance

Algorithms Using Advanced Test Generation and Data Analysis,” 9th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2007.

4Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., and Barrett, T. “Tool Support for Parametric Analysis of Large
Software Systems”, Proceedings of Automated Software Engineering, 23rd IEEE/ACM International Conference, 2008.

5Gundy-Burlet, K., Schumann, J., Barrett, T., and Menzies, T., “Parametric Analysis of a Hover Test Vehicle Using
Advanced Test Generation and Data Analysis,” AIAA Aerospace, 2009.

6Rose, K., Smith, E., Gardner, R., Brenkert, A. and Bartell, S. “Parameter Sensitivities, Monte Carlo Filtering, and Model
Forecasting Under Uncertainty,” Journal of Forecasting, Vol. 10, 1991, pp. 117-133.

7Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S., Global
Sensitivity Analysis: The Primer, Wiley, Chichester, 2008, Chaps. 1, 5.

8Barrett, A., “A Combinatorial Test Suite Generator for Gray-Box Testing”, Third IEEE International Conference on Space
Mission Challenges for Information Technology, 2009.

9Fischer, B., and Schumann, J. “Autobayes: A System for Generating Data Analysis Programs From Statistical Models,”
Journal of Functional Programming, Vol. 13, 2003, pp. 483-508.

10Hu, Y., “Treatment Learning: Implementation and Application,” Masters Thesis, Department of Electrical Engineering,
University of British Columbia, 2003.

11Hu, Y., and Menzies, T. “Data Mining for Very Busy People,” IEEE Computer, Vol. 36, No. 11, 2003, pp. 22-29.
12Leveson, N. Safeware: System Safety and Computers. Addison-Wesley, Boston, 1995.
13NASA-STD-7009, Standard for Models and Simulations (11 July 2008).
14Gay, G., Menzies, T., Davies, M., Gundy-Burlet, K. “How to Automatically Find the Control Variables for Complex

System Behavior.” Automated Software Engineering, Dec, 2010. (to be published)
15Davies, M., Gundy-Burlet, K. Visualization of Global Sensitivity Analysis Results Based on a Combination of Linearly

Dependent and Independent Directions. AIAA Infotech 2010, Atlanta, GA, Apr. 20, 2010.
16Roncoli, R. Lunar Constants and Models Document. JPL Technical Document D-32296. Sept. 23, 2005.

