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One of the many technological hurdles that must be overcome in future 
missions is the challenge of validating as-built systems against the models 
used for design.  We propose a technique composed of intelligent parameter 
exploration in concert with automated failure analysis as a scalable method 
for the validation of complex space systems.  The technique is impervious to 
discontinuities and linear dependencies in the data, and can handle 
dimensionalities consisting of hundreds of variables over tens of thousands of 
experiments. 

I. Introduction 
ncreasing capabilities for space missions comes at the cost of ever-growing complexity and 
highly interdependent system components.  Design of one system component is often achieved 

by modeling the other components, with the final integration only happening on the doorstep of 
launch.  We handle much of the complexity by taking advantage of new capabilities in software 
engineering.  As a result, software is integrated with almost every other component of the system 
and depends on reliable models of sensors, actuators, processors, communications, and storage in 
order to be robust.  Validating the models against the as-built hardware in the system is difficult, 
and mismatches have led to space system failures.  As one example, the 1997 Lewis satellite 
failed because it could not maintain its Sun-pointing mode.1 This mode had been tested using a 
simulation that assumed perfect thrusters.  It is likely that the final implementation of the thrust 
system was well within the tolerance specified by the requirements; however, because this 
tolerance was not accounted for in the model it was impossible to identify the fault in the flight 
software. 
 In order to avoid underspecification in system models, Jaffe et. al. have defined criteria for 
requirements that include assignments for many properties of system interactions, inputs, and 
outputs.2,3  The primary goal of these criteria is to formalize requirements generation and to 
define a measure of when requirements are complete.  However, in systems that have models 
built according to these criteria, we have an added benefit:  these models allow us to determine 
the margins to failure in the interplay between the software and hardware components of the 
system.   
 The Margins Analysis3-5 is a multi-step Monte Carlo Filtering technique6,7 developed by the 
Robust Software Engineering (RSE) group within the Intelligent Systems Division at NASA 
Ames Research Center.  The tool is used for beginning-to-end directed testing. The system 
requirements become penalty functions used within a sampling algorithm to drive the system to 
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failure and identify suspicious inputs (and their critical ranges). By assuming that most hazards 
are triggered by a maximum combination of two or three input variables we limit our number of 
test vectors while still obtaining a coverage guarantee.8 This assumption allows us to analyze 
hundreds of input and output parameters over tens of thousands of experiments.  We analyze the 
output behavior for unexpected structure using a combination of unsupervised9 and 
supervised10,11 machine learning techniques. By driving the failure of requirements in an 
automated loop, we can collect enough examples to determine which inputs demonstrate the 
most sensitivity with respect to a particular undesired behavior. Defects within flight software or 
within the system model can usually be found on the narrowed path between the implicated 
inputs and the failed outputs.   
 In order to validate hardware models, we take a multi-pronged approach.  Prior to the delivery 
of hardware, we use the appropriately specified parameters in the model to find the margins to 
failure.  This is possible (and simple to automate) when the hardware models include the details 
Jaffe et.al. outline as being germane to requirements specification. We then expand these 
parameters far beyond the expected ranges of the system.  Our analysis at this stage gives us a 
sense of how robust our system is within the assumptions inherent to the model.  Assuming that 
our model is reasonably correct, it should also give us the input parameters that the hardware 
behavior is most sensitive to.  Where it is possible, we will exercise the sensitive parameters in 
our tests on the final hardware. 
 After the hardware is delivered, or in the case that we have multiple fidelities of models below 
the actual hardware, we can use the analysis to validate that abstraction assumptions do not 
invalidate the results obtained from the overall system model.  In this case, the penalty method 
for the analysis is based on differences between the lower-fidelity and higher-fidelity systems.  
The analysis will then illuminate the key input parameters related to the mistaken assumptions. 

 

II. Methodology 
Monte Carlo testing guided by sensitivity analysis is subject to a number of pitfalls.  Models of 
space systems of sufficient fidelity provide high-dimensionalities of data.  This data is rarely 
independent, and is usually a mixture of continuous, periodic, and discrete distributions.  For 
systems as complex as those required for space missions, sensitivity analysis methods based on 
derivative techniques become trapped in the wealth of local minima.  Pattern-detecting 
algorithms like clustering and rule-based learners often assume independence and that the data 
can be described as mixtures of Gaussians.  
 To combat these problems, we’ve implemented a number of data transformations. We 
automatically sort the data to find delta functions and periodicities.  A peak occurring at a period 
boundary is handled by moving the boundaries.  The unsupervised clustering technique within 
the Margins Analysis utilizes an expectation-maximization algorithm that has numerical 
difficulties at high dimensionality.  As a consequence, we use a principal component analysis to 
reduce the dataset. In practice, we’ve found that more than 99% of the information is contained 
within fewer than half of the dimensions. 
 By contrast, the supervised treatment learning algorithm is a sampling technique and is 
unfazed by high dimensionality or by discontinuities. The treatment learning algorithm’s 
Achilles heel is the assumption that all of the parameters are independent.  When this assumption 
is false the treatment learner misses important sensitivities. For this step in the technique, we 
perform an analysis over the data simultaneously in the original space and in the rotated space of 
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the principle component analysis. The hyperrectangles in the principle component space are 
reduced in post-processing to two- and three-dimensional projections in the original variable 
space, so that they can be visualized and understood by domain experts. 

III. Results 

IV. Conclusion 
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One of the many technological hurdles that must be overcome in future 
missions is the challenge of validating as-built systems against the models 
used for design.  We propose a technique composed of intelligent parameter 
exploration in concert with automated failure analysis as a scalable method 
for the validation of complex systems.  The technique is impervious to 
discontinuities and linear dependencies in the data, and can handle 
dimensionalities consisting of hundreds of variables over tens of thousands of 
experiments. 

I. Introduction 
ncreasing capabilities for both vehicle and ground systems comes at the cost of ever-growing 
complexity and highly interdependent subsystem components.  Design of one subsystem 

component is often achieved by modeling the other components, with the final integration only 
happening on the doorstep of the final implementation. We handle much of the complexity by 
taking advantage of the flexibility inherent in software engineering.  As a result, software is 
integrated with almost every other component of the system and depends on reliable models of 
sensors, actuators, processors, communications, and storage in order to be robust.  Validating the 
models against the as-built hardware in the system is difficult, and mismatches have led to space 
system failures.  As one example, the 1997 Lewis satellite failed because it could not maintain its 
Sun-pointing mode.1 This mode had been tested using a thruster simulation that assumed the 
thrust vector would be perfect.  It is likely that the final implementation of the thrust system was 
well within the tolerance specified by the requirements; however, because this tolerance was not 
accounted for in the thruster model the fault in the flight software was impossible to find using 
simulation testing. 
 In order to avoid underspecification in system models, Jaffe et. al. 2,3 have defined criteria for 
requirements that include assignments for many properties of system interactions, inputs, and 
outputs.  The primary goal of these criteria is to formalize requirements generation and to define 
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a measure of requirement completeness.  However, in systems that have models built according 
to these criteria, we have an added benefit:  these models allow us to determine the margins to 
failure in the interplay between the software and hardware components of the system.   
 The Margins Analysis3-5, as shown in Figure 1, is a multi-step Monte Carlo Filtering 
technique6,7 developed by the Robust Software Engineering (RSE) group within the Intelligent 
Systems Division at NASA Ames Research Center.  The tool is used for beginning-to-end 
directed testing, with both the software and simulations of the hardware modeled together as the 
system-under-test. We then 
generate tests well into the off-
nominal (but still possible) 
flight envelopes. By assuming 
that most hazards are triggered 
by a maximum combination of 
two or three input variables we 
limit our number of test vectors 
while still obtaining a 
parametric coverage guarantee.8 
This assumption allows us to 
analyze hundreds of input and 
output parameters over tens of 
thousands of experiments. 

The system requirements are 
used to create penalty functions.  
Each run is graded according to 
the penalty function, and new 
tests are generated in order to 
fully explore the failure 
boundaries.  We use machine 
learning techniques9-11 in order 
to both identify suspicious 
inputs (and their critical ranges) 
and to find unexpected 
structure. By driving the failure 
of requirements in an automated 
loop, we can collect enough 
examples to determine which inputs demonstrate the most sensitivity with respect to a particular 
undesired behavior. Defects within flight software or within the system model can usually be 
found on the narrowed path between the implicated inputs and the failed outputs.   
 In order to validate hardware models, we propose a multi-pronged approach.  Prior to the 
delivery of hardware, we expand the hardware parameters in the model far beyond the nominal 
ranges of the system in order to find the margins to failure.  This is possible (and simple to 
automate) when the hardware models include the details Jaffe et.al.2,3 outline as being germane 
to requirements specification. Our analysis at this stage gives us a sense of how robust our 
system is within the assumptions inherent to the model.  Assuming that our model is reasonably 
correct, it should also give us the input parameters that the hardware behavior is most sensitive 
to.  We can use this information to plan tests on the final hardware. 

 
Figure 1: A flowchart for the Margins Analysis 
process. 
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 After the hardware is delivered (or in the case that we have multiple fidelities of models 
below the actual hardware) we can use the analysis to validate that the abstraction assumptions 
used at the lower fidelities don’t lead to behavior significantly different from the behavior of the 
final system as implemented.  In this case, the penalty method for the analysis is based on 
differences between the lower-fidelity and higher-fidelity systems.  The sensitivity analysis will 
then illuminate the key input parameters related to the mistaken assumptions. 

 

II. Methodology 
The most important step required for the validation of models is an understanding of the 
limitations and assumptions inherent in those models.  This step is non-trivial and requires 
human expertise.  Unfortunately, a methodology for how to perform this step is beyond the scope 
of this paper.  Interested readers should look to the work of Jaffe, et. al. 2,3, Nancy Leveson12, and 
to the NASA Modeling and Simulation Standard.13  For the purposes of this paper, what is 
important to note is that it is impossible to measure effects that have not been instrumented.  In 
the case of clarifications like the expected (and possible) ranges on sensor inputs it is possible to 
design a system that will remind the engineer to complete specifications.  However, other 
modeling assumptions (e.g. the linearity of springs), are harder to automatically detect.  This 
point cannot be stressed highly enough:  if assumptions on the design are not documented, it is 
(at least) difficult or (likely) impossible to determine whether those assumptions will affect the 
behavior of the overall system. 
 Instrumenting the model with the appropriate assumptions at design time allows for 
experiments that determine how appropriate those assumptions are.  The first and most obvious 
step is to perform a sensitivity analysis of the hardware design parameters.  Spring constants, 
friction, pointing errors, etc. will all have an expected set of values and a larger possible set of 
values.  Running sensitivity analyses over the possible range of values allows the engineers and 
designers to know how close to failure they are, and which parameters are most critical to 
control. 
 Tests of complex systems provide high dimensionalities of data.  This data is rarely 
independent, and is usually a mixture of continuous, periodic, and discrete distributions.  As a 
result, sensitivity analysis methods based on derivative techniques become trapped in the wealth 
of local minima.  Pattern-detecting algorithms like clustering assume that the data can be 
described as mixtures of Gaussians.  Rule-based learners like the one we are using for our 
sensitivity analysis often assume linear independence of the outputs.  
 To combat these problems, we’ve implemented a number of data transformations within the 
Margins Analysis. We automatically sort the data to find delta functions and periodicities.  A 
peak occurring at a period boundary is handled by moving the boundaries.  The unsupervised 
clustering technique within the Margins Analysis utilizes an expectation-maximization algorithm 
that has numerical difficulties at high dimensionality.  As a consequence, we use a principal 
component analysis to reduce the dataset. In practice, we’ve found that more than 99% of the 
information is contained within fewer than half of the dimensions. 
 We use a supervised treatment learning algorithm14 for the sensitivity analysis within the 
Margins Analysis.  Treatment learning is a sampling technique and is unfazed by high 
dimensionality or by discontinuities. The treatment learning algorithm’s Achilles heel is the 
assumption that all of the parameters are independent.  When this assumption is false the 
treatment learner misses important sensitivities. For this step in the technique, we perform an 
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analysis over the data simultaneously in the original space and in the rotated space of the 
principle component analysis. We then project the results back into the original variable space, 
so that they can be visualized and understood by domain experts15. 
 Knowing the areas of greatest sensitivity in a lower-fidelity model allows a test designer to 
intelligently plan tests on higher-fidelity models (including the actual hardware itself).  Making 
sure that ranges in which the greatest change is expected are adequately covered provides for 
stronger statistical confidence that the data obtained from low-fidelity simulation and higher-
fidelity testing are actually from the same distribution. 
 The fact that the sensitivity analysis we are using here is impervious to discrete and 
continuous variables allows for another layer of validation when models of differing fidelity 
exist and the data obtained from bisimulation of those models is shown to differ.  The sensitivity 
analysis can be tuned to discover the likely root causes of the differing data—giving the test 
engineer valuable information about which parts of the model or which hardware component are 
most in need of extra analysis and possible change.   
 

III. Test Examples 
As a proof of concept, we are using three different test examples.  All of the test examples have 
been coded in MATLAB’s Simulink modeling language.  The first example is of a simple 
spring-mass-damper system with a 
constant force applied, as shown in 
Figure 2. The Simulink model for the 
simple system is shown in Figure 3.  All 
of the nominal values are shown in 
Figure 3.  Integrations are performed 
using a continuous Runge-Kutta scheme 
with a variable timestep and the spring is 
assumed to be a linear spring.  For our 
tests, we dispersed the mass of the 
vehicle (m1) between 1 and 3 kg, the gain 
on the damper (c) between 150 and 500 
N*sec/meter, the spring equilibrium distance (L0) between 0.03 and 0.09 meters, the constant 
force (f) between 0 and 16 N, the linear spring constant (k) between 200 and 400 N/meter, the 
initial position of the vehicle (x1(0)) between -0.1 and 0.1 meters, and the initial velocity of the 
vehicle (x1_dot(0)) between -0.1 and 0.1 meters/sec. 
 As a slightly more complicated test example we also implemented the system shown in Figure 
4.  This system has two interacting masses, with three springs, two dampers and two forces. 
The Simulink model for the simple system is shown in Figure 5, along with all of the nominal 
values for the system.  As in the simple, second-order system, integrations are performed using 
a continuous Runge-Kutta scheme with a variable timestep and all of the springs are assumed 
to be linear springs.  For this test case, we dispersed the width of the vehicles (d1 and d2), the 
total distance (d3), the vehicle masses (m1 and m2), the equilibrium spring positions (L01, 
L02, and L03), and the initial vehicle positions (x1(0) and x2(0)) to +/- 10% of their nominal 
values.  The rationale for the dispersion range for these variables is that these values were the 
most likely to be easily and accurately measured, so the dispersions could be narrower.   The 

 
Figure 2: A simple, second-order, spring-
mass-damper system. 
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Figure 3: The resulting Simulink model for the system shown in Figure 2. 
 

 
Figure 4: A more complicated spring-mass-damper system.  This system has three 
springs, two masses, two dampers, and two independent forces. 
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first spring constant (k1) was dispersed between 150 and 600 N/meter, the second spring 
constant (k2) was dispersed between 250 and 500 N/meter, the third spring constant (k3) was 
dispersed between 200 and 800 N/meter, the first damper constant (c1) was dispersed between 4 
and 16 N*sec/meter, the second damper constant (c2) was dispersed between 5 and 20 
N*sec/meter, the first force (f1) was dispersed between -20 and 40 N, and the second force (f2) 
was dispersed between -10 and 5 N.  The initial velocities (x1_dot(0) and x2_dot(0)) were 
dispersed between -0.1 and 0.1 meters/sec.  These wider dispersions were chosen to capture the 
greater amount of uncertainty on these values and the possible effects of unmodeled dynamics 
like unexpected friction forces.  At this point, we note that there are still uninstrumented sources 
of error in the model—for example, the springs are still modeled as linear springs.  Without 

 
Figure 5: The Simulink model for the system shown in Figure 4 
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specifically instrumenting this assumption and providing a comparison (like a higher-fidelity 
spring model), it is impossible to be sure that this is a reasonable assumption for our system. 
 The final test example for this work is a gravity model based on JPL’s Lunar Constants and 
Models document.14  This model takes the gravitational “lumpiness” of the body into account by 
creating a model based on 
spherical harmonics.  This 
particular application uses the 
gravitational constants for the 
Moon, Earth, and Mars, along 
with the diameter of the 
Moon, all of which have some 
uncertainty in measurement.  
For this paper, we’ve assumed 
that the last two significant 
digits for each of these 
parameters have some 
uncertainty. The gravity 
model can be tuned to 
fidelities between 1 (for the 
coarsest level model) to over 
75.  At the highest orders, 
computational errors remove 
any quantitative difference 
between the fidelities of 
adjacent orders, as shown in 
Figure 6.  The recommended 
fidelity for this model is of the 
order of 50.  However, 
increasing fidelities also 
greatly increase computational 
cost per point location. For a 
recent example, illustrated in 
Figure 7, the coarsest model 
took 10.19 ms per point 
location, order 40 took 28.7 
ms per point location, and 
order 75 took 234 ms per 
point location.  This model is 
intended to run as the 
environment simulator for 
processor-in-the-loop testing. 
In order to return results 
quickly enough for the 
processor to process them, it 
will likely be necessary to run 

 
Figure 6: Error in the gravity model for differing orders 
of fidelity. 
 

 
Figure 7: Calculation time for a point location given 
differing orders of fidelity within the gravity model. 
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at an order below the highest fidelity.  An important question to ask is which parameters are most 
likely to be affected by this cost-performance trade. 

For all of our test examples, we assume that the data obtained using the nominal values for the 
highest-fidelity model are the ‘true’ data, and we compare the differences between the ‘true’ 
results and the results obtained when the design values are dispersed.  For the spring-mass-
damper systems, the critical values are the positions of the masses at every timestep.  For the 
gravity model, the critical values are the values of the gravity vector at a 40 point location subset 
randomly selected from the 32,000 point locations available in the model. 
 
	
  

IV. Results 
1. Simple Second Order Spring Model 

 
The simple second order spring-mass-damper model shown in Figures 2 and 3 was intended to 
be an easily understood benchmark for the sensitivity analysis shown here.  The system-level 
requirement of interest for this for 
this test case was the final 
equilibrium position of the vehicle, 
with the equilibrium position of the 
nominal case considered to be the 
ideal.  Two sensitivity analyses 
were run:  the first asked the 
analysis to find the input variables 
associated with position values near 
the ideal, the second asked the 
analysis to find the input variables 
associated with position values 
farthest from the ideal.  The 
analysis for each case automatically 
generated 10 solutions.  Every 
solution implicated a combination 
of the input force (f) and spring 
equilibrium value (L0) as being the 
most critical to either success or 
failure.  An example is shown in 
Figure 8.  The blue data points 
represent values close to the ideal 
while the red data points represent 
values from the ideal.  What is 
immediately apparent from the plot 
is that the most critical relationship 
is the linear relationship between 
the two values.  Sensitivity results 
from the “best” analysis chose ranges outlining the blue points across the diagonal of the plot, 
while sensitivity results from the “worst” analysis chose ranges outlining the red points at the top 

 
Figure 8:  A figure showing the highest-ranked 
solution in the sensitivity analysis results.  Each 
data point represents a different simulation trial, and 
the color of the data point represents the difference 
between the desired and actual vehicle equilibrium 
positions, with blue being most ideal and red farthest 
from the ideal.  This plot highlights the clear linear 
relationship between the force and the spring 
equilibrium position. 
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right and bottom left corners.  A sensitivity analysis that included PCA data would not have been 
limited to results along the 
variable axes, and may have 
been able to select the entire 
linear range; this analysis will 
be performed in future work. 
The analysis performed here is 
completely automated and is 
capable of finding correlations 
for more complicated systems, 
as shown in the next two test 
examples. 

 
 

2. Two Mass Spring Model 
 
The two mass spring-damper 

system shown in Figures 4 and 
5 is arguably more difficult to 
analyze using a traditional 
sensitivity analysis since the 
differential equations describing 
the system are much more 
complicated and are 
interrelated.  The Margins 
Analysis simply looks for 
relationships within the output 
data, without regard for the 
form of the equations. The 
system-level requirement of 
interest for this for this test case 
was the final equilibrium 
position of both of the vehicle, 
with the equilibrium positions 
of the nominal case considered 
to be the ideal.  Two sensitivity 
analyses were run:  the first 
asked the analysis to find the 
input variables associated with 
position values near the ideal, 
the second asked the analysis to 
find the input variables 
associated with position values 
farthest from the ideal.  The 
analysis for each case 
automatically generated 10 

 
Figure 9: A figure showing the relationship between k3 
and d3 for the two mass spring system. Blue data points 
were runs that had final positions near the ideal, while red 
data points involved final positions farthest from the ideal.  
 

 
 

Figure 10: A figure showing the relationship between k1 
and d2 for the two mass spring system. Blue data points 
were runs that had final positions near the ideal, while red 
data points involved final positions farthest from the ideal.  
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solutions.  For this case, all 20 solutions involved 4 variables:  k1, k3, d2, and d3.  Example 
components for these solutions are shown in Figures 9 and 10.  Both Figures 9 and 10 were 
selected from the sensitivity analysis that was looking for relationships explaining the “best” 
data.  The red boxes are regions that the analysis chose as having a high number of “good” points 
and a small number of “bad” points.  In Figure 8, we see that there is an inverse linear 
relationship between k3 and d3, and that the best data lies on a diagonal in the center of the plot.  
The worst data lies in the upper right and lower left corners of the plot.  Figure 9 shows a linear 
correlation between k1 and d2 (similar plots show the relationship between k1 and d3).  The 
sensitivity analysis selecting for behavior farthest from the ideal selected the same plots, but 
highlighted the data in the corners were the majority of the data points are red.  An analyst can 
quickly see from these plots that the important relationships for tolerance control will be the 
spring constants and the distances in the system. 

 
3. Gravity Model 

 
The gravity model was the most complicated system run for this analysis, and was the only 

analysis involving multiple fidelities.  We ran four separate sensitivity analyses for the gravity 
model—one that dispersed the order between 47 and 53 and one each at orders 10, 50, and 75.  
The other dispersed parameters were the gravitational constants for the Moon, Earth, and Sun, 
along with the Moon diameter, for a total of 5 dispersed parameters.  Order 50 is the 
recommended fidelity in the model’s documentation.  The gravitational parameters are in units of 
meters3/(sec2) and are nominally:  Sun=132712440.028*109, Earth=398600.4376*109, 
Moon=4902.801056*109.  Each of the gravitational parameters are dispersed by +/- 2*107.  As 

 
Figure 11: Results from the Margins Analysis showing that the discrete model 
order has a much greater effect than any of the uncertain parameters in the model. 
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an example, the actual uncertainty in the Earth’s gravitational parameter is about 1 in 
500,000,000.  The radius of the moon is nominally 1,736,000 meters and is dispersed by +/- 
2000 meters.  Each trial is penalized by the root mean square of the distances between that trial’s 
gravity vectors and the gravity vectors of a much higher-order run at the nominal gravitational 
parameters and Moon radius. 

We first perform an analysis to see which of the parameters creates the most difference in the 
behavior.  The results from the sensitivity analysis that included dispersed order are shown in 
Figure 11.  The order of the model for this 
analysis ranges discretely from 47 to 53 
(remember that 50 is the recommended 
order for the model). The analysis quickly 
illustrates that the order of the model is the 
largest determinant of the model behavior, 
even though the mean RMS Error of the 
model is relatively flat (as shown in Figure 
6).  The blue points are the points with the 
least error, while the red points are the ones 
with the most error. 

We now attempt to see if we can use a 
lower order model to predict the behavior 
of higher order models.  We choose three 
differing fidelities, at orders 10, 50, and 75 
respectively, and treat each of these three 

fidelities as a different model. Figures 12-14 consistently show that the radius of the moon is the 
next most sensitive parameter.  This trend is clear even though there are fewer trials at order 50 
and many fewer trials at order 75.  In this case we see that the behavior of the models is clearly 
qualitatively the same.  Future work will focus on demonstrating that the models are 
quantitatively the same or different. 

 
Figure 12:  Results from the Margins 
Analysis run at order 10 with 469 individual 
trials. 
 

 
Figure 13:  Results from the Margins 
Analysis run at order 50 with 70 
individual trials. 
 

 
Figure 14:  Results from the Margins 
Analysis run at order 75 with 23 individual 
trials. 
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V. Conclusion 
The results shown here demonstrate the benefits of performing a Margins Analysis type 
sensitivity analysis across models to validate space systems.  At the most basic level, such an 
analysis reveals the most brittle inputs to the model.  In the case of our simple spring-mass-
damper system, we saw that the key set of variables for control was actually the linear 
relationship between the force and the equilibrium distance of the spring.  In the case of the more 
complicated two mass spring-damper system, we saw that the key relationships to monitor were 
the relationships between the linear spring constants and the distances between the springs.  
Finally, for the gravity model, we saw that accurate gravity vectors depend most on the order of 
the model (even near the recommended order), followed by the precision of the moon’s radius.  
The gravitational parameters for the Sun, Moon, and Earth had little to no effect.   
 A significant benefit of performing this type of analysis is that it forces the designers and 
engineers to examine the assumptions and appropriate ranges for the models.  Unless these 
assumptions and ranges are instrumented, the sensitivity analysis will be unlikely to reveal their 
effects.  We need research on design practices that will allow us to automatically collect this key 
information during the design process. 
 Another important area for future research is to be able to estimate how many low-fidelity and 
high-fidelity trials need to be run in order to have statistical confidence that low-fidelity 
experiments predict the behavior of high-fidelity experiments.  Experiments at the highest 
fidelity (for example, hardware-in-the-loop testing) tend to be expensive in terms of time and 
also tend to come late in the design process.  With as few experiments as possible, you’d like to 
be certain that the high-fidelity components behave in the ways predicted by your model.  As an 
example of this sort of analysis, examine Figures 12 through 14.  The trials in Figure 12 ran in 
approximately 11 sec., while the trials in Figure 14 take over 240 sec. to run.  The standard 
statistical test that determines whether two datasets are from the same distribution is the two-
sample Kolmogorov-Smirnov test.  A future research direction should be to build ways of 
estimating the number of tests likely to be needed in order to achieve acceptable confidence 
intervals for a two-sample Kolmogorov-Smirnov test, based only on the data from lower fidelity 
tests. 
 Additionally, it is likely that we will often say with statistical certainty that our higher-fidelity 
systems are not adequately modeled by our lower-fidelity systems.  In that case, we’d like to be 
able to run a sensitivity analysis that tells us which component models within the system are 
most in need of examination.  In order to do this, we will need to a way to (preferentially 
automatically) instrument two different systems to determine in what ways the component 
models differ.  A sensitivity analysis of the Margins Analysis type will have some advantage 
over traditional sensitivity analyses for this exploration because it easily handles both continuous 
and discrete input variables simultaneously.  It is likely that the sensitivity analysis results given 
in this paper will aid the further, proposed analyses by focusing the efforts. 
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