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Abstract 

Sectors may combine or split within areas of specialization in response to changing 
traffic patterns. This method of managing capacity and controller workload could be 
made more flexible by dynamically modifying sector boundaries. Much work has been 
done on methods for dynamically creating new sector boundaries [1-5]. Many 
assessments of dynamic configuration methods assume the current day baseline 
configuration remains fixed [6-7]. A challenging question is how to select a dynamic 
configuration baseline to assess potential benefits of proposed dynamic configuration 
concepts. 

Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is 
that operational reconfiguration data is noisy. Reconfigurations often occur frequently to 
accommodate staff training or breaks, or to complete a more complicated reconfiguration 
through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of 
airspace boundary changes from this data [9]. Most of these metrics are unique to sector 
combining operations and not applicable to more flexible dynamic configuration 
concepts. To better understand what sort of reconfigurations are acceptable or beneficial, 
more configuration change metrics should be developed and their distribution in current 
practice should be computed.  

This paper proposes a method to select a simple sequence of configurations among 
operational configurations to serve as a dynamic configuration baseline for future 
dynamic configuration concept assessments. New configuration change metrics are 
applied to the operational data to establish current day thresholds for these metrics. These 
thresholds are then corroborated, refined, or dismissed based on airspace practitioner 
feedback. 

The dynamic configuration baseline selection method uses a k-means clustering 
algorithm to select the sequence of configurations and trigger times from a given day of 
operational sector combination data. The clustering algorithm selects a simplified 
schedule containing k configurations based on stability score of the sector combinations 
among the raw operational configurations. In addition, the number of the selected 
configurations is determined based on balance between accuracy and assessment 
complexity. 



This method was used to select a dynamic configuration baseline for Kansas City Center 
(ZKC) for a good weather, high volume day. A total of 78 configurations were used at 
some time in Kansas City Center on February 8, 2007. The clustering algorithm was 
applied to the 78 configuration schedule with k ranging from one to six. Preliminary 
results show that the overall stability score improves rapidly until the three-configuration 
schedule. For this day, the three-configuration schedule yields the best accuracy for the 
increased scenario complexity, and the two configuration triggering times are 2007/02/08 
12:19:21 UTC and 2007/02/09 00:58:07 UTC. 

The final version of this paper will include an analysis of reconfiguration metrics applied 
to operational configurations. These metrics include quantities of airspace volume and 
aircraft changing ownership during the change, number of sector pairs affected by the 
change, and resulting change in airspace complexity metrics. 

It is impractical to assume a single sector configuration can balance controller workload 
and accommodate dynamic air traffic demand. By providing the most representative set 
of configurations and allowing multiple configurations to be triggered during a 
simulation, it has the potential to improve benefit assessment accuracy for new dynamic 
airspace designs. 
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Abstract 

Seventy-eight air traffic sector configurations, 

recorded in operational data for Kansas City Air 

Route Traffic Control Center on February 8, 2007, 

were analyzed. A method is used to select a sequence 

of configurations and trigger times from the 

operational sector combination data. The selection 

process considers two key characteristics of sector 

combining and splitting operations: controller 

familiarity and sector continuity. Based on a distance 

score, the method selects three representative 

configurations. Configurations selected from the 

clustering algorithm were compared with the actual 

operational configurations. The main findings of the 

study were: 1) on average 2.8 sectors were changed 

at each reconfiguration event, 2) on average, after a 

reconfiguration about two aircraft were handed-off, 

two aircraft were received, and five aircraft remained 

in the sector, and 3) aircraft density change is the best 

sector change metric to access new dynamic airspace 

designs using a simplified reconfiguration. 

I. Introduction 

Air traffic managers and controllers combine or 

split air traffic sectors in response to changing traffic 

patterns. This method of managing capacity and 

controller workload could be made more flexible by 

dynamically modifying sector boundaries. Prior work 

has developed methods for dynamically creating new 

sector boundaries [1-5].  Many assessments of 

dynamic configuration methods assume the current-

day baseline configuration remains fixed [6-7], even 

though in actual operations it changes. To improve 

benefit assessment accuracy, baseline simulations 

should use multiple configurations triggered at 

realistic reconfiguration times. However, the large 

number of daily operational reconfigurations creates 

a complicated baseline for the current stage of 

dynamic airspace research. A challenging research 

question is how to select a representative, simplified 

set of configurations to assess potential benefits of 

proposed dynamic configuration concepts. 

Bloem used operational sector reconfigurations 

as a baseline for evaluating benefits of combining 

and splitting sectors [8]. However, a difficulty with 

this approach is that operational reconfiguration data 

is noisy. Reconfigurations often occur frequently to 

accommodate staff training or breaks, or to complete 

a more complicated reconfiguration through a rapid 

sequence of simpler reconfigurations. Gupta 

quantified a few features of airspace boundary 

changes from this data [9]. Most of the metrics being 

used in the above literature are unique to sector 

combining operations and not applicable to more 

flexible dynamic configuration concepts. To better 

understand what sort of reconfigurations are 

acceptable or beneficial, configuration metrics more 

suitable for flexible boundaries should be developed, 

and their distribution in current practice should be 

computed. 

This paper applies new configuration change 

metrics to operational data to establish current day 

thresholds for these metrics. A method is developed 

to select a simple sequence of configurations among 

operational configurations to serve as a dynamic 

configuration baseline for future dynamic 

configuration concept assessments. Configuration 

change metrics are compared between the operational 

and simplified configuration sets to determine which 

metrics are relevant to assess proposed dynamic 

configuration concepts.  

Current-day sector combining practices and the 

operational data analysis are presented in Section II. 

Section III describes the clustering algorithm. An 

analysis of clustered vs. operational reconfiguration 

metrics is discussed in Section IV. Finally, 

conclusions are presented in Section V. 

II. Operational Data Analysis 

Today’s operational dynamic airspace 

configurations are accomplished by combining and 

splitting sectors. In Bloem et al [8], feedback from 

subject matter experts indicated that there are 

multiple considerations when making decisions to 

combine or split sectors such as sector workload and 



staff availability. Sectors are split to reduce the 

workload in the resulting sectors, thereby increasing 

safety. Sectors are combined when traffic volumes 

are low.  

The following subsections analyze 

configurations, stored sector combinations, recorded 

in operational data for Kansas City Air Route Traffic 

Control Center (ZKC) on February 8, 2007. 

1. Reconfiguration Patterns 

This subsection analyzes patterns within the 

reconfiguration schedule. This includes analysis of 

reconfiguration frequency and the relationship 

between number of sectors and traffic volume. 

A. Reconfiguration Frequency 

Reconfiguration events occur frequently, with 

few sectors affected in any one reconfiguration. For 

example, there were 78 reconfiguration events 

between 74 unique configurations recorded in 

operational data for ZKC on the test day. 

Operational reconfigurations often occur 

frequently to accommodate staff training or breaks, 

or to complete a more complicated reconfiguration 

through a rapid sequence of simpler reconfigurations. 

The following assumptions are used to filter noisy 

operational data: 

• Do not consider any configuration lasting less 

than two minutes, as it is considered an 

intermediate configuration. 

• After performing the above step, when 

consecutive reconfigurations are the same, retain 

only the last reconfiguration. 

By removing the noisy data described above, the 

test data was reduced to 55 configuration events 

between 53 unique configurations. All remaining 

analysis within this section used this filtered 

configuration schedule. 

Figure 1. Reconfiguration Schedule 

Figure 1 shows the filtered reconfiguration 

schedule throughout the day. The vertical green lines 

are reconfiguration trigger times. Most configurations 

were unique; however, the same configuration may 

be used more than once. For example, configuration 

25 was used in two periods on the test day: (a) from 

12:09 CST to 13:12 CST, and (b) from 14:56 CST to 

18:08 CST. 

Figure 1 also shows that the reconfiguration 

trigger times are not uniformly distributed throughout 

the day. There are four observed periods. 

1. Few reconfigurations happened between 

nighttime (02:00 CST) and the morning (08:00 

CST). 

2. A series of reconfigurations happened rapidly 

from the morning (08:00 CST) to the afternoon 

(13:00 CST). 

3. Few reconfigurations happened from the 

afternoon (13:00 CST) to the evening (19:00 

CST). 

4. A series of reconfigurations happened gradually 

from the evening (19:00 CST) to nighttime 

(02:00 CST). 

An area of specialization (AOS) is a group of 

sectors on which all controllers working those sectors 

must be trained. Reconfiguration may occur only 

within an AOS, ensuring that an AOS controller will 

be familiar with the resulting airspace. There are six 

AOSs, or Areas, in Kansas City Center, namely, Flint 

Hills, Gateway, Ozark, Prairie, Rivers, and Trails. 

Figure 2 shows the reconfiguration schedule of 

individual AOSs. The number of reconfigurations in 

each AOS is between 9 and 16 on that day. 

Reconfigurations are less frequent within AOSs than 
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within the Center as a whole because reconfiguration 

events are not coordinated across AOSs. 

Figure 2. Reconfiguration Schedule for Areas of 

Specialization 

B. Traffic Volume and Sector Count 

Airspace configurations are directly related to 

traffic volume and staff availability. The number of 

sectors is increased and decreased to accommodate 

the fluctuating traffic load. Moreover, each controller 

can handle only a certain number of aircraft at the 

same time, and thus the overall traffic volume in a 

center depends on the number of staff available. 

Figure 3 shows aircraft and sector counts in 

Kansas City Center on February 8, 2007. The number 

of sectors on that day was between 7 and 35. The 

correlation between aircraft count and sector count is 

over 0.95, indicating a strong relationship between 

traffic volume and number of sectors, as expected. 

Figure 3. Number of Sectors and Aircraft Count 

The green lines represent, same as in Figure 1, 

the reconfiguration trigger times. Trend changes in 

the curves occurred over the same four periods of 

reconfiguration frequency noted in the previous 

subsection with periods of rapid increase or decrease 

in traffic volume corresponding to periods of high 

reconfiguration frequency. 

2. Familiarity and Continuity 

In Gupta et al [9], feedback from air traffic 

experts indicates that two desirable characteristics of 

sector combining and splitting operations are 1) 

controller familiarity with sector combinations and 2) 

continuity in the sector combinations. The metrics 

analyzed in this subsection were designed to quantify 

these key characteristics. The hours of operation 

metric was used to quantify familiarity and the sector 

change metric was used to quantify continuity.  

A. Hours of Operation 

Figure 4 shows the distribution of operational 

sector hours on the test day. A total of 36 sectors 

were defined in the operational data. These sectors 

were active for some duration throughout the day. 

Seven sectors were active for the entire 24 hours, 9 

(25%) were operating for 16 to 18 hours, and 33 

(91.7%) were active for at least 10 hours. On 

average, sectors were active for 15 hours and 33 

minutes. 

Figure 4. Sector Hours 

B. Sector Change 

Figure 5 depicts a breakdown of the numbers of 

sectors into two categories, sectors that changed and 

stayed the same, after each reconfiguration. A sector 

is changed when part of its associated airspace is 

reassigned during a reconfiguration. As illustrated in 

the figure, most sectors remained the same, while few 

sectors change at each reconfiguration.  
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Figure 5. Sectors Changed in Reconfiguration 

Figure 6 shows the histogram of the number of 

sectors changed in each reconfiguration on the test 

day. The majority (34 of 54, or 63%) of the 

reconfigurations involve two sectors changing. On 

average, 2.8 sectors are changed at each 

reconfiguration event. The few sectors affected at 

each reconfiguration suggest that current operations 

prefer to incrementally combine or split sectors, and 

thus, sector configuration continuity is preserved. 

 

Figure 6. Histogram of Number of Sectors 

Changed in Reconfiguration 

3. Detailed Sector Change Metrics 

The airspace change metrics in the previous 

subsection counted total numbers of sectors that 

changed. Metrics analyzed in this subsection quantify 

the sector change in more detail. In addition to being 

applicable to sector combinations, these metrics may 

be applied to the finer boundary adjustments 

proposed in future airspace concepts. Jung et al [10] 

identified changes in aircraft ownership, sector 

volume, and sector shape to be significant 

contributors to increased controller workload during 

unplanned sector boundary changes. Metrics for these 

types of changes are discussed below. 

A. Aircraft Ownership Change 

For simplicity, this study assumed a controller 

owned all aircraft that were in the sector. This 

assumes that aircraft were transferred at the sector 

boundary during stable configuration periods or when 

the airspace they occupied transferred to another 

sector during a reconfiguration. 

During a reconfiguration, sector controllers 

handle aircraft from one of the three categories – 

aircraft remaining within their current sectors, aircraft 

transferring from adjacent sectors, and aircraft 

transferring to adjacent sectors. Hereafter, these are 

referred to as remaining, inbound, and outbound 

aircraft. A hand-off action is required for inbound 

and outbound aircraft, but not for remaining aircraft. 

Figure 7 shows the average number of aircraft 

ownership changes per sector, which is defined by 

dividing the total number of aircraft ownership 

changes by the number of sectors after a 

reconfiguration. The figure shows that in Kansas City 

Center, on average, 1.8 aircraft were handed-off to a 

sector, as well as 1.8 from a sector. Five aircraft, on 

average, remained in the same sector after a 

reconfiguration. 

Figure 7. Average Aircraft Ownership Change 

The maximum number of remaining, inbound, 

and outbound aircraft ownership changes share 

similar trends as those shown in Figure 7. The largest 

maximum aircraft ownership changes (no more than 

15 inbound and 10 outbound) are found in the early 

morning and late evening hours. Maximum aircraft 

ownership changes remained low (no more than 5 
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inbound or outbound) between 12:00 CST and 19:00 

CST, the peak traffic volume period. 

B. Airspace Volume Change 

The total airspace volume change metric 

captures the amount of change in sector volume 

during a reconfiguration event. Assume there are w 

sectors changed after a reconfiguration. The total 

airspace volume change is the sum of the absolute 

change in volume of all of the sectors, 

! 

V (i,t) "V (i,t "1)
i=1

w

# , 

where V(i, t) is the volume of sector i at time t. If a 

new sector is created after a reconfiguration, its 

volume is considered zero before the reconfiguration. 

Similarly, when an existing sector is deleted after a 

reconfiguration, its volume is considered zero after 

the reconfiguration. 

Figure 8 shows the total airspace volume change 

and sector count at each reconfiguration. A majority 

(35 of 54, or 64.8%) of the reconfigurations had total 

airspace volume change less than 3!10
5
 nmi

3
. On 

average, 2.9!10
5
 nmi

3
 total airspace volume was 

affected after a reconfiguration. 

The total airspace volume change has an inverse 

relationship to the number of sectors. The more 

sectors in the center, the less airspace volume 

changed after a reconfiguration. This follows from 

the fact that for a fixed airspace volume, increasing 

the number of sectors decreases the volume of each 

sector. Therefore, when the number of sectors is high 

and a sector is combined with another one, or a sector 

is split, the affected airspace volume is limited. 

Additionally, current practice prefers 

incrementally combining and splitting sectors. A 

large sector during a low traffic period results from 

merging small sectors progressively, and small 

sectors during a high traffic period result from 

splitting sectors progressively. 

Figure 8. Total Airspace Volume Change and 

Number of Sectors 

Figure 9 shows the cumulative frequency of 

average airspace volume change per sector as a 

percentage. The average percentage change is defined 

as  

! 

1

w
"

V (i,t) #V (i,t #1)
i=1

w

$
V (i,t #1)

i=1

w

$
"100% , 

where V(i, t) is the volume of sector i at time t. 

The figure shows that the 25
th

 percentile of the 

reconfigurations had 26.5% average airspace volume 

change. The median of the average airspace volume 

change was 38%. The 75
th

 percentile of the 

reconfigurations had 48.9% average airspace volume 

change. 

Figure 9. Cumulative Frequency of Average 

Airspace Volume Change (Percentage) 

Figure 10 shows the average aircraft density 

change over time. The aircraft density change at a 

reconfiguration is computed by dividing the aircraft 
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ownership count by the affected sector volume. The 

figure illustrates that the average density change of 

inbound aircraft matched that of the outbound aircraft 

during reconfigurations. Overall, the average density 

change of remaining aircraft was about two times that 

of inbound and outbound aircraft. 

Figure 10. Average Aircraft Density Change 

C. Hausdorff Distance Metric 

The last metric being analyzed is the Hausdorff 

distance metric [11]. The Hausdorff distance 

measures how much similarity two shapes have, 

considering that each shape can be described by a set 

of vertex points. Because the Hausdorff distance 

between two identical point sets is zero, two identical 

configurations will always have zero metric value. 

Less similar sectorization pairs have larger metric 

value. 

Figure 11 shows the Hausdorff distance metric 

between configurations before and after 

reconfiguration trigger times. The majority (30 of 54, 

or 55.6%) of the reconfigurations had metric values 

between 100 and 200 nmi. On average, the metric 

value was 156.9 nmi. 

Table 1 lists the average and maximum 

measurements, in nautical miles, of changed sectors 

before reconfigurations. This indicates that the 

majority of the reconfigurations had Hausdorff 

distance metric values between the average width and 

the average length of changed sectors. 

Figure 11. Hausdorff Distance Metric 

 

Table 1. Average and Maximum Measurements of 

Changed Sectors (nmi) 

 Length Width Diagonal 

Average 215.8 121.6 191.8 

Maximum 390.1 217.5 440.0 

III. Clustering Configurations 

Future airspace reconfiguration concepts should 

be evaluated against a current-day baseline to assess 

potential benefits. Many assessments assume the 

current-day baseline configuration remains fixed, 

even though in practice, it changes. By providing a 

representative, simplified set of configurations and 

allowing multiple configurations to be triggered 

during a baseline simulation, there is the potential to 

improve benefit assessment accuracy for new 

concepts. 

In this section, a method is proposed using k-

means clustering to select a sequence of 

configurations and trigger times from operational 

sector combination data. The selection process 

considers controller familiarity and sector continuity. 

K-means is a process for partitioning multi-

dimensional observations into k sets such that each 

observation is closest to its assigned cluster [12]. The 

process has four steps: 

(1) Guess initial means of the clusters, 

(2) Calculate distance score between each 

observation and the means of the clusters, 

(3) Assign each observation to the cluster with the 

nearest mean based on the distance score, and 
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(4) Recalculate the means of individual clusters 

based on the assignments in (3). 

After performing step (4), the process repeats 

until all the recalculated means of the clusters remain 

unchanged. 

Configurations are stored assignments of 

different Fix Posting Areas (FPAs) to sectors. An 

FPA is a region containing at least one fix, a three-

dimensional location for guidance. For a single 

configuration, each FPA may be assigned to only one 

sector. In operational data, each FPA is a right prism, 

in which vertical rectangular sides connect the top 

and bottom polygons. This is described by two-

dimensional coordinates of vertices of the base 

polygon, and a pair of minimum and maximum 

altitudes. 

Given a sequence of configurations in a center, 

the goal is to cluster all configurations into k clusters 

such that the sectors have the most stability with 

respect to duration of combination. 

A matrix representation to detect FPA-pairwise 

combinations in a single configuration is presented in 

Subsection 1. Subsection 2 presents a matrix 

representation that describes FPA-pairwise stability 

in a sequence of configurations.  Subsection 3 

explains how to guess initial means of the clusters. 

Similarity scores between each observation and the 

means of the clusters are explained in Subsection 4. 

Cluster assignment and the final configuration 

selection process are detailed in Subsection 5. 

Finally, Subsection 6 presents the clustering results. 

1. FPA-Pairwise Combination 

In a given configuration, two distinct FPAs are 

pairwise combined when they are assigned to the 

same sector. It is not necessary that the two FPAs are 

adjacent. For example, when three FPAs are 

combined from left to right horizontally, the leftmost 

and rightmost FPAs are considered pairwise 

combined. 

Assume a total of n FPAs are available for the 

sector assignment in a configuration. An FPA-

pairwise combination matrix F, an n-by-n binary 

square matrix, is constructed such that 

! 

Fi, j =
1 if FPAs i and j (i " j) are combined,

0 otherwise,                                          

# 
$ 
% 

 

where subscripts i and j denote the i-th row and j-th 

column, respectively, of the matrix. The matrix F has 

two properties: 

i. Its elements on the main diagonal are zeros, as an 

FPA may not combine with itself. It follows that 

F1,1=F2,2=…=Fn,n=0. 

ii. It is symmetric. That means F equals its 

transpose (F=F
T
). When FPAs i and j are 

combined, so are the FPAs j and i; when FPAs i 

and j are not combined, neither are the FPAs j 

and i. Thus, Fi,j=Fj,i. 

2. FPA-Pairwise Stability 

Operational sector combination data consists of 

a sequence of triggered configurations of varying 

duration. Configuration duration relates directly to 

controller familiarity with sector combinations. The 

longer the configuration duration, the greater 

familiarity a controller has with it. The duration of a 

configuration can be calculated by subtracting the 

trigger time of the configuration from the trigger time 

of the next configuration. 

The stability of a pair of FPAs relates directly to 

its combination duration. To measure stability of a 

pair of FPAs in the sequence of configurations, an 

FPA-pairwise stability matrix M, an n-by-n square 

matrix, is defined such that the (i, j)-th element is a 

time-weighted sum of all (i, j)-th elements of 

individual FPA-pairwise combination matrices. Thus, 

! 

M i, j =
tc " Fc[ ]

i, jc=1

m

#
tc

c=1

m

#
, 

where subscript c represents the m configurations in 

the sequence, tc is the duration of configuration c, and 

Fc is the FPA-pairwise combination matrix for 

configuration c. The time-weighted function scales 

the total duration of an FPA-pairwise combination in 

the sequence of configurations to a value between 

zero and one. A value of zero in M indicates that the 

two corresponding FPAs are never combined among 

all the configurations. A value of one in M indicates 

that the two FPAs are always combined. Note that the 

matrix M has the same properties mentioned above 

for F: all its elements on the main diagonal are zeros, 

and it is symmetric. 

Elements in the FPA-pairwise stability matrix 

determine the fraction of time that two FPAs are 



combined in a sequence of configurations. For 

example, an (i, j)-th element with a value of 0.8 

means the FPAs at the i-th row and j-th column are 

combined 80% of the time in the sequence of 

configurations. This matrix can be used to represent 

the controller familiarity with sector combinations.  

3. Initial Means of Clusters 

A cluster contains a sequence of configurations, 

and its mean can be determined by selecting a 

configuration that has the most FPA-pairwise 

stability. The stability is computed as follows: 

(1) For each configuration c in the sequence, 

construct the FPA-pairwise combination matrix, 

Fc. 

(2) Given a sequence of configurations, construct the 

FPA-pairwise stability matrix, M, which defines 

the time-weighted stability among all the 

pairwise FPAs. 

(3) Compute the matrix difference between Fc and 

M. The difference score is obtained by summing 

absolute values of all the elements in the 

difference matrix. The absolute values are used 

because stability comparison is considered a 

symmetric operation, which means two 

configurations have the same level of stability 

regardless of their comparison order. 

(4) Select the configuration that has the least 

difference score. 

Step (4) repeats until k configurations are 

selected. Thus, the initial cluster means are the 

configurations that minimize the scoring function 

! 

F
c
"M[ ]

i, j

j=1

n

#
i=1

n

# , 

where subscript c represents the sequence of  

configurations. Recall that the elements of Fc are 

either zero or one, and the elements of M are between 

zero and one. Therefore, the mean of the cluster is 

selected based on the FPA-pairwise duration. 

4. Similarity Score 

After defining the initial means of the clusters, 

the next step is to calculate a similarity score between 

each configuration and the means of the clusters. The 

scoring function in the previous subsection is applied 

to compute the similarity score between a 

configuration and the means of the clusters. Let r and 

c be the mean of a cluster and a configuration in the 

cluster, respectively. The similarity score between r 

and c is defined as  

! 

dist(r,c) = M
r
"F

c[ ]
i, j

j=1

n

#
i=1

n

# , 

where Mr is the FPA-pairwise stability matrix of the 

configurations in the cluster, and Fc is the FPA-

pairwise combination matrix for configuration c. 

Configuration c will be assigned to the cluster that 

has the minimum similarity score. 

The above similarity score is a distance metric 

between a mean of the cluster and a configuration. 

The distance metric measures the similarity and 

stability. The lower the score, the more similarity the 

two configurations have. 

5. Configuration Selection 

Given a sequence of configurations, the 

objective is to produce k clusters and a representative 

configuration for each cluster such that the total 

similarity score between this configuration and the 

others is minimal. The combination of the FPAs in 

the representative configuration will have both 

stability and similarity to the other configurations in 

the same cluster. 

Mathematically, for m configurations, the k-

means algorithm divides them into k clusters (k < m) 

such that the sum of the clusters’ similarity scores is 

minimal, thus, 

! 

arg min
S

dist(rx,cy )
cy "Sx

#
x=1

k

#  

where “arg min” stands for the argument of the 

minimum operator, S is the set of k clusters, rx is the 

representative configurations in Sx, cy is the 

configuration in Sx, and dist(rx, cy) is a function of 

similarity score between two specified configurations 

rx and cy. When the k-means algorithm halts, the 

means of the clusters indicate the most similar and 

stable configuration among other configurations in 

the same cluster. Thus, the means are the 

representative configurations in the dynamic 

configuration baseline. The cluster boundaries define 

the trigger times for configuration change. 



6. Clustering Results 

The k-means algorithm is applied to both the 

raw and processed data sets of operational sector 

combinations in Kansas City Center on February 8, 

2007. The raw set contains all the 78 operational 

configurations; the processed set contains the 55 

operational configurations without noise. Figure 12 

shows the total similarity scores for k equals one 

through seven applied to the 55 operational 

configurations. The score improves (decreases) 

rapidly until the three-configuration schedule. For 

this day, the three-configuration schedule yields the 

best accuracy for the increased scenario complexity. 

This is consistent with Chatterji’s conclusion that two 

to three sector configurations are adequate for a good 

weather day from safety and resource utilization 

perspectives [13]. 

Figure 12. Total Similarity Scores 

The three-configuration clustering results 

(selected configurations and reconfiguration trigger 

times) were identical between raw and processed data 

sets. The clustering results indicate that by using the 

similarity score, the algorithm is capable of filtering 

out operational noise. 

Figure 13. Three Representative Reconfigurations 

Figure 13 shows the three-configuration 

clustering results. The blue line is the operational 

reconfigurations from Figure 1, the horizontal red 

lines are the three representative configurations, and 

the vertical dashed purple lines are the 

reconfiguration trigger times. 

IV. Clustered Reconfiguration Analysis 

In this section, the metrics used to analyze the 

operational data are modified to analyze the three-

configuration cluster result presented in the previous 

section. Metrics that are directly related to frequency 

or expressed as a total or sum per reconfiguration 

would be significantly affected by representing 

multiple instances with a single reconfiguration. 

Instead, metrics were modified to be sector-centric 

rather than reconfiguration-centric so that metrics 

could be expressed as averages per sector for each 

reconfiguration. 

1. Reconfiguration Patterns 

A. Reconfiguration Frequency 

The three representative reconfigurations had 

only two reconfiguration trigger times indicated by 

the vertical dashed purple lines in Figure 13. The first 

reconfiguration event occurred in the morning (8:19 

CST), at the beginning of a rapid series of operational 

sector splitting. The second reconfiguration event 

occurred in the evening (20:58 CST), about two 

hours after a gradual series of operational sector 

combining. The two trigger times divided the day 

into two periods, daytime and nighttime. One 

configuration was assigned to the daytime, while two 

configurations were assigned to the nighttime. 
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B. Traffic Volume and Sector Count 

Figure 14 shows the numbers of sectors in the 

actual and clustered reconfigurations, as well as the 

aircraft count in Kansas City Center. The numbers of 

sectors among the three representative 

reconfigurations are 7, 34, and 26, respectively. The 

correlation between traffic volume and the number of 

sectors in the clustered reconfigurations is over 0.86. 

The high correlation indicates that the sector count 

correlates with the trend of the traffic volume almost 

as well as the operational reconfigurations. 

Figure 14. Number of Sectors and Aircraft Count 

2. Familiarity and Continuity 

A. Hours of Operation 

The durations of the three representative 

reconfigurations are approximately 7, 13, and 4 

hours. Figure 15 shows the distribution of sector 

hours of operation based on the actual and clustered 

reconfigurations. 

Of the 36 sectors defined in the operational data, 

the same seven sectors were active for the entire 24 

hours in both data sets. Two sectors having less than 

four sector hours in the actual operation were inactive 

in the clustered data. 

Of the 34 sectors in the clustered data, all were 

operating for over 12 hours and the majority (19, or 

55.9%) of them were operating for 16 to 18 hours. 

On average, the sectors were active for 17 hours and 

43 minutes. This is roughly two hours longer than the 

actual operational average. 

Figure 15. Sector Hours 

B. Sector Change 

Table 2 lists the number of sector changes based 

on the actual and clustered reconfigurations. The 

average and cumulative number of sector changes in 

the actual operation is calculated between two 

adjacent cluster means in the clustered operation. The 

cumulative number of sector changes in the actual 

operation was 74+36=110, while the number of 

sector changes in the clustered operation was 

34+23=57, about half of the cumulative number of 

sector changes in actual operation. The number of 

sector changes in the clustered operation was about 

ten times the average number of sector changes in 

actual operation. This comparison indicates that the 

number of sector changes is not a good metric to 

access new dynamic airspace designs using a 

simplified reconfiguration. 

Table 2. Number of Sectors Changed in 

Reconfiguration 

Trigger Actual 

Average 

Actual 

Cumulative 

Clustered 

08:19 CST 3.01 74 34 

20:58 CST 2.40 36 23 

3. Detailed Sector Change Metrics 

A. Aircraft Ownership Change 

Figure 16 shows the average numbers (dark 

colors) and maximum numbers (light colors) of 

remaining, inbound, and outbound aircraft in Kansas 

City Center at the two clustered trigger times, 8:19 

CST and 20:58 CST on February 8, 2007. The 

numbers of ownership change in the actual operation 

were computed based on data between two adjacent 

cluster means in the clustered operation. 
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In the actual operation between two adjacent 

cluster means, on average, most (54.4% and 64.6%) 

of the aircraft remained in the same sector after 

reconfiguration. In addition, the number of inbound 

aircraft matched the number of outbound aircraft. 

More aircraft remained in the same sector, while the 

hand-off actions were distributed equally among the 

inbound and outbound aircraft.  

On the other hand, in the clustered operation, the 

average number of outbound aircraft was about triple 

of that of remaining and inbound aircraft during the 

first reconfiguration at 8:19 CST, while the numbers 

of remaining, inbound, and outbound aircraft were 

distributed fairly evenly during the second 

reconfiguration at 20:58 CST. 

Regarding the maximum aircraft ownership 

change, most aircraft remained in the same sector 

after reconfiguration in the actual operation, while 

most aircraft were transferring to adjacent sectors in 

the clustered operation. 

Figure 16. Aircraft Ownership Change 

B. Airspace Volume Change 

Table 3 lists total airspace volume change based 

on actual and clustered operations. During the first 

reconfiguration at 8:19 CST, the airspace volume 

change in the clustered operation was about half of 

the cumulative total airspace volume change in the 

actual operation between the first and second cluster 

means. 

During the second reconfiguration at 20:58 CST, 

the airspace volume change in the clustered operation 

matched the cumulative total airspace volume change 

in the actual operation between the second and third 

cluster means. 

The total airspace volume change in the 

clustered operation is more than ten times the average 

total airspace volume change in the actual operation. 

This comparison indicates that the aircraft 

ownership change is not a good metric to access new 

dynamic airspace designs using a simplified 

reconfiguration. 

Table 3. Total Airspace Volume Change (!10
5
 

nmi
3
) 

Trigger Actual 

Average 

Actual 

Cumulative 

Clustered 

08:19 CST 3.25 78.12 38.03 

20:58 CST 1.75 26.30 24.67 

 

Figure 17 shows the aircraft density change 

based on the actual and clustered operational data. 

The actual operational data values were the average 

of the data between two adjacent cluster means. The 

figure indicates that the average remaining, inbound, 

and outbound aircraft density change in the actual 

operation matched the density change of the 

remaining, inbound, and outbound aircraft in the 

clustered operation. 

Figure 17. Aircraft Density Change 

C. Hausdorff Distance Metric 

Table 4 lists the Hausdorff distance metric 

values based on the actual and clustered operational 

data. When reconfiguration occurred progressively in 

the actual operation, the average metric values were 

154.3 nmi and 128 nmi at the two trigger times 

respectively. However, in the clustered operation, the 

metric values increased to 4,328.55 nmi and 994.73 

nmi respectively.  
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The large difference of the Hausdorff distance 

metric values is due to progressively evolved 

sectorizations in the actual operation. Actual 

reconfiguration events changed few pairs of sectors, 

and thus, many sectors remained the same. Recall 

that the metric is a sum of Hausdorff distances of 

sectors between two sectorizations, since the 

Hausdorff distance of unchanged sectors is zero, the 

metric value is relatively small for progressively 

evolved sectors. On the other hand, when sectors are 

completely changed from one sectorization to another 

sectorization, as in the clustered operation, the metric 

value becomes large because the Hausdorff distance 

of changed sectors is great than zero. 

Table 4. Hausdorff Distance Metric Value (nmi) 

Trigger Actual 

Average 

Actual 

Cumulative 

Clustered 

08:19 CST 154.30 3,982.89 4,328.55 

20:58 CST 128.00 1,622.29 0,994.73 

 

The metric value during the first reconfiguration 

in the clustered operation was within 8.7% of the 

cumulative metric value between the first and second 

means of the clusters in the actual operation. On the 

other hand, the metric value during the second 

reconfiguration in the clustered operation was about 

61% of the cumulative metric value between the 

second and third means of the clusters in the actual 

operation. 

V. Conclusions 

Data from 78 sector configurations recorded 

from Kansas City Air Route Traffic Control Center 

operational data on February 8, 2007 were analyzed 

using seven metrics in three categories: (1) pattern 

within reconfiguration schedule, (2) metrics specific 

to controller familiarity and sector combination 

continuity, and (3) detailed sector change metrics.  

Operational reconfigurations happened rapidly 

in the morning and happened gradually in the 

evening. Current practice prefers incrementally 

combining and splitting sectors, and there were 9 to 

16 reconfigurations in each of six areas of 

specialization. Center-wide reconfigurations were 

uncoordinated. There is a strong relationship between 

traffic volume and number of sectors. On average, 

sectors were active for 15 hours and 33 minutes and 

2.8 sectors were changed at each reconfiguration 

event. During reconfiguration, the number of aircraft 

transferred from adjacent sectors matched the number 

of aircraft transferred to adjacent sectors. On average, 

after a reconfiguration about five aircraft remained in 

the same sector, and two aircraft were handed-off to a 

sector, and two were received from a sector. 

A method using k-means clustering was 

proposed to select a simplified sequence of 

configurations and trigger times from operational 

sector combination data. The selection process 

considered the two key characteristics of sector 

combining and splitting operations: controller 

familiarity with sector combination and continuity in 

sector combination. Based on the similarity score, the 

method selected three representative configurations. 

The clustered configurations were compared with the 

actual operational configurations. On average, 

clustered sectors were active for about two hours 

longer than actual operations. There were significant 

differences in most detailed sector change metrics 

between actual and clustered operations. However, 

the average remaining, inbound, and outbound 

aircraft density change from the actual operation 

matched that of the clustered operation. Therefore, of 

the sector change metrics presented in this paper, 

aircraft density change is the best sector change 

metric to assess new dynamic airspace designs using 

a simplified reconfiguration schedule.  
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