Computer-Aided Corrosion Program Management

Louis MacDowell
Materials Science Division
Kennedy Space Center, FL
Introduction & Overview

- Corrosion at the Kennedy Space Center (KSC)
- Requirements & Objectives
- Program Description, Background & History
- Approach & Implementation
- Challenges
- Lessons Learned
- Successes & Benefits
- Summary & Conclusions
Corrosion at KSC

• KSC Corrosive Environment
 – Launch facilities within 1,000 ft. of Atlantic Ocean
 – Acidic exhaust from launch vehicles
 – Documented highest corrosion rate of any U.S. test site

• Importance of Protective Coatings
 – Primary means of protection for critical assets in atmospheric exposure
 – Key role in safety & reliability of facilities & equipment
 – Major factor (direct and indirect) driving maintenance costs
 – Large economic advantage from maximizing service life and reliability of facilities, launch structures, and ground support equipment
• Interdependent Program Elements
 – Accurate Assessment of Conditions
 – Understanding of Corrosive Environment
 – Knowledge-Based Standards
 – Requirement-Based Specifications
 – Qualified Materials
 – Trained and Qualified Personnel
 – Quality Control and Assurance
 – **Data Management (Information System)**
Coatings Program Without an Information System

- Difficult to predict where corrosion will occur
- Dispersed throughout facility

- Paper Driven
- Voluminous Data
Information System Objectives

- Manage & better utilize large amounts of program data
- Increase visibility into corrosion program
- Store & access critical asset data
- Collect, analyze, report & track condition data
- Enable a more proactive approach to corrosion & coating related maintenance
- Create a centralized knowledge base for improved organizational memory
- Facilitate accurate planning & forecasting
• Computer-aided program initiated in 2000 by United Space Alliance (USA) for Space Shuttle Program assets
• Program utilizes commercially available software (information system) developed specifically for coating program management
• Field inspection, data collection, data entry, software and reporting costs less than 4% of annual coating maintenance budget
• Started as a small pilot program and has grown to more than 3,600 critical components & 7,750,000 square feet of surface area

• Data collection team consists of two full-time NACE CIP inspectors who also enter data

• Program data and reports accessible to USA and NASA employees via computer network.
 – Currently more than 70 registered users
Program Approach

- Asset Model
- Condition Data
- Information System
- Coating Systems
- Work Management
- Reporting
Asset Modeling

- Inventory & Organize Facilities Into Manageable Components
- Hierarchy
 - Level 1: Program
 - Level 2: Facility
 - Level 3: Item
 - Level 4: Component
- Components defined by change in substrate, system, service environment, color, etc.
Component Data

Program: Electrical Sub-Stations
Environment: Facility
Attributes and Multipliers: Component Data
Coating System and Color: Carbon Steel
Surf. Area: 1,129.4 ft²
Strip Length (ft): 0.0
Width (ft): 0.0
Critically: Level 2
View: Visible
Location: Finish

Notes:

For Help, press F1

Reports:
- 135 Level
- 215 Level
- 215 Crossover

Delete Record

File

Clear

Picture

Video

Sound

Delete Record
• Coating Performance Index
• Coating Appearance Index
• Condition Data Points
 – Defects and Cause
• Photos
• Video
- Trending
- Custom Reports
- Export Data
• Three Levels of Work Planning
 - "Hot Spot" Disposition & Tracking
 - Annual Plans
 • Multiple Projects Within Plans
 • Budget Estimate (Present Value & Future Value)
 - Long Range Forecast
Coating Systems

- Manage systems as an asset as opposed to a commodity
- Focus on Life Cycle costs
- Elements
 - Materials
 - Application Method
 - Surface Prep
• Consistent method of rating conditions using multiple inspectors
 – Create and use well defined (ideally visual) rating standards for consistency

• Uniform application of Asset breakdown
 – Determining the “right” amount of detail
 – “Bottom up” hierarchy based on grouping of components
Successes & Benefits

- Increased focus on critical assets and environments
- Improved accuracy of budget requirements needed to maintain required standards of performance
- Optimal use of available funds (prioritization)
- Dramatically increased data collection efficiency
 - Inspection cycle frequency adjusted according to component criticality and corrosive environment
 - Reduced level of data collection (only changes after baseline)
- Reduction of Foreign Object Damage (FOD)
- Performance can be measured & improved
- Overall facility conditions have greatly improved
Summary & Conclusions

- Informed decisions are better decisions
- An "information system" (made possible by software) can be a critical success factor in a large corrosion/coating program
- Added value and cost savings easily justify expense of implementation of a program information system