Computer-Aided Corrosion Program Management

Louis MacDowell
Materials Science Division
Kennedy Space Center, FL
Introduction & Overview

- Corrosion at the Kennedy Space Center (KSC)
- Requirements & Objectives
- Program Description, Background & History
- Approach & Implementation
- Challenges
- Lessons Learned
- Successes & Benefits
- Summary & Conclusions
Corrosion at KSC

- **KSC Corrosive Environment**
  - Launch facilities within 1,000 ft. of Atlantic Ocean
  - Acidic exhaust from launch vehicles
  - Documented highest corrosion rate of any U.S. test site

- **Importance of Protective Coatings**
  - Primary means of protection for critical assets in atmospheric exposure
  - Key role in safety & reliability of facilities & equipment
  - Major factor (direct and indirect) driving maintenance costs
  - Large economic advantage from maximizing service life and reliability of facilities, launch structures, and ground support equipment
Corrosion Program Overview

- Interdependent Program Elements
  - Accurate Assessment of Conditions
  - Understanding of Corrosive Environment
  - Knowledge-Based Standards
  - Requirement-Based Specifications
  - Qualified Materials
  - Trained and Qualified Personnel
  - Quality Control and Assurance
  - **Data Management (Information System)**
Difficult to predict where corrosion will occur
- Dispersed throughout facility
- Paper Driven
- Voluminous Data
Information System Objectives

- Manage & better utilize large amounts of program data
- Increase visibility into corrosion program
- Store & access critical asset data
- Collect, analyze, report & track condition data
- Enable a more proactive approach to corrosion & coating related maintenance
- Create a centralized knowledge base for improved organizational memory
- Facilitate accurate planning & forecasting
• Computer-aided program initiated in 2000 by United Space Alliance (USA) for Space Shuttle Program assets
• Program utilizes commercially available software (information system) developed specifically for coating program management
• Field inspection, data collection, data entry, software and reporting costs less than 4% of annual coating maintenance budget
• Started as a small pilot program and has grown to more than 3,600 critical components & 7,750,000 square feet of surface area

• Data collection team consists of two full-time NACE CIP inspectors who also enter data

• Program data and reports accessible to USA and NASA employees via computer network.
  – Currently more than 70 registered users
Inventory & Organize Facilities Into Manageable Components

Hierarchy
- Level 1: Program
- Level 2: Facility
- Level 3: Item
- Level 4: Component

Components defined by change in substrate, system, service environment, color, etc.
- Coating Performance Index
- Coating Appearance Index
- Condition Data Points
  - Defects and Cause
- Photos
- Video
- Trending
- Custom Reports
- Export Data
Three Levels of Work Planning
- "Hot Spot" Disposition & Tracking
- Annual Plans
  - Multiple Projects Within Plans
  - Budget Estimate (Present Value & Future Value)
- Long Range Forecast
Coating Systems

- Manage systems as an asset as opposed to a commodity
- Focus on Life Cycle costs
- Elements
  - Materials
  - Application Method
  - Surface Prep
Challenges & Lessons-Learned

• Consistent method of rating conditions using multiple inspectors
  – Create and use well defined (ideally visual) rating standards for consistency

• Uniform application of Asset breakdown
  – Determining the “right” amount of detail
  – “Bottom up” hierarchy based on grouping of components
Successes & Benefits

- Increased focus on critical assets and environments
- Improved accuracy of budget requirements needed to maintain required standards of performance
- Optimal use of available funds (prioritization)
- Dramatically increased data collection efficiency
  - Inspection cycle frequency adjusted according to component criticality and corrosive environment
  - Reduced level of data collection (only changes after baseline)
- Reduction of Foreign Object Damage (FOD)
- Performance can be measured & improved
- Overall facility conditions have greatly improved
Summary & Conclusions

- Informed decisions are better decisions
- An "information system" (made possible by software) can be a critical success factor in a large corrosion/coating program
- Added value and cost savings easily justify expense of implementation of a program information system