Accelerate Your Analysis
with National Instruments Software

Sit in the driver's seat and accelerate your analysis software development with National Instruments software. In your race to get the job done, reduce costs, and improve time to market, you can accelerate application development time for:

- Signal processing
- Mathematics
- Image processing
- Wavelet design
- Fuzzy logic control design
- Joint time-frequency analysis
- Linear Algebra
- Data visualization
- and much more...

From simulation to solutions, develop with LabVIEW, C, ActiveX controls, Visual Basic, and HiQ. Plus, integrate data acquisition and image acquisition hardware into your development.

Sit in the driver's seat and accelerate your analysis software development with National Instruments software.

For More Information Circle No. 513
Accelerate Your Analysis with National Instruments Software

Sit in the driver's seat and accelerate your analysis software development with National Instruments software.

In your race to get the job done, reduce costs, and improve time to market, you can accelerate application development time for:

- Signal processing
- Mathematics
- Image processing
- Wavelet design
- Fuzzy logic control design
- Joint time-frequency analysis
- Linear Algebra
- Data visualization
- and much more...

From simulation to solutions, develop with LabVIEW, C, ActiveX controls, Visual Basic, and HiQ. Plus, integrate data acquisition and image acquisition hardware into your development.

FREE Software Showcase CD.

(Advertisement content continues with product details and contact information.)
Everything else is history.

As engineers, it's hard enough to be constrained by physics, don't be constrained by software. IronCAD brings freedom to design with its revolutionary Design Flow architecture—the first and only non-history bound solid modeling system with the power to capture design intent without design intent capturing you. In the real world, you can't anticipate or "intend" everything required from concept to production. Unlike existing solid modeling systems, IronCAD enforces design intent when it makes sense, and allows design freedom when it doesn't. Need more data? Of course—we're engineers aren't we?

www.ironcad.com

Join the revolution or be left behind.

1-800-339-7304
In science, technology, engineering, finance, medicine, research, education — over a million professionals and students now rely on Mathematica to do their work.

For projects large and small, from initial concept to final report, Mathematica has defined the state of the art in technical computing for nearly a decade.

NUMERICAL COMPUTATION
World's most complete collection of mathematical functions • Unlimited numerical precision • Matrix and tensor operations • Ordinary and partial differential equations • Fourier transforms • Data manipulation, fitting, and statistics • Root finding • Optimization • Number theory

SYMBOLIC COMPUTATION
State-of-the-art computer algebra algorithms • Simplification • Polynomial factoring and manipulation • Symbolic integration • Algebraic and differential equation solving • Symbolic matrix operations • General list and string processing

ADVANCED LANGUAGE
Award-winning intuitive symbolic language • Procedural, functional, list-based, rule-based, and object-oriented programming • Uniform symbolic expression representation of all objects • Fully scalable from small to large programs

GRAPHICS AND SOUND
2D, 3D, contour, and density plots • General 3D object visualization • Animation • Sampled sound • High-level symbolic graphics description language • Resolution-independent PostScript output • Export and import of standard graphics formats

PROGRAMMABLE INTERFACE
Customizable palettes • Free-form 2D input • Complete math notation • 700+ math and other characters • Programmable notation rules

NOTEBOOK DOCUMENTS
Interactive documents with text, graphics, sound, and math • Publication-quality editable typeset formulas and tables • Full range of formatting options • Automatic optimization for screen and print • Export capabilities in TeX, HTML, and more • Fully programmable symbolic representation • Free MathReader™

SYSTEM FEATURES
100% platform independent • Microsoft Windows, Macintosh, Unix/X • Unicode support • General MathLink® API • Distributed computing

APPLICATIONS LIBRARY
Over 30 products now available in data analysis, wavelets, time series, optics, astronomy, control systems, mechanical systems, structural mechanics, electrical engineering, finance, education, and more

FULL SERVICE
3000+ pages of award-winning on-line documentation • Three levels of technical support and consulting • 200+ books available • Volume discounts • Flexible academic site programs • Versions for students and teachers

Information and purchases: http://www.wolfram.com/v3/ntb or call 1-800-416-8069

© 1998 Wolfram Research, Inc. Mathematica and MathReader are registered trademarks of Wolfram Research, Inc. and are not associated with Mathematics Policy Research, Inc. or MathSoft, Inc.
You’re in the Driver’s Seat!

Call, write, fax or visit us on the Internet for your FREE CATALOG today!

Digi-Key Corporation
701 Brooks Ave. South
 Thief River Falls, MN 56701
 Toll-Free: 1-800-344-4539 • Fax: 218-681-3380
 Order Online www.digikey.com

For volume pricing on passive, interconnect and electromechanical product, call and ask for:

NEW! Digi-KEY® Volume Business Division
Twelve years ago, the Chernobyl Unit Four nuclear power plant in the Ukraine suffered a massive reactor explosion. In order to contain deadly radiation, a concrete sarcophagus was built around the reactor. That structure, however, is decaying. The Department of Energy (DOE), NASA, and academic and private-sector scientists are collaborating to build a robot called Pioneer, a four-foot-tall, half-ton cross between a tractor and a tank. Pioneer will inspect the interior of the reactor capturing hundreds of images that will be used to build a "virtual world" of the damaged reactor. Silicon Graphics workstations and supercomputers are being used to create this photorealistic view. See the Application Brief on page 32 for more information on the Chernobyl project.

(Illustration by Bryon Laffitte)
In Linear Static Stress Analysis, the forces must sum to zero. The effect of the second gear is simulated by an assumed force or pressure at a single instant in time.

In Algor's Mechanical Event Simulation, the forces sum to Mass times Acceleration (F=MA). Impact forces are transmitted through actual contact between the teeth during gear acceleration.

Old:

In traditional linear static stress analysis, you begin by building an FEA model. Then you set up boundary conditions to anchor the model in three-dimensional space.

If the boundary conditions fail to stop the model from moving in all six primary directions (three degrees of freedom in translation and three in rotation), the static FEA process cannot work. After setting up the boundary conditions, you then apply the moment (M) or torque, which could be generated by an electric motor, and an assumed force (F) or pressure to simulate the reaction of the second gear. After analysis you will have a stress contour for one point in time.

Because the gear teeth are constantly clashing in a random way, the impact forces cannot be known with any precision.

New:

In Algor's Mechanical Event Simulation, you begin the same way by building an FEA model. However, this time you include the second gear.

You place boundary conditions at the pivots. The big gear is free to rotate when forced by the driving gear. Inertia of the entire gear system resists the force of the motor.

When the analysis runs, you will know it's set up properly when you see the gears accelerating and stresses changing as you view the live on-screen "monitor program."

At the end, you see the stresses on all the gear teeth at every point in time.

And, you can make an analysis replay to see the results in real time or slow motion. In addition, you can run a Fast Fourier Transform on the displacement data to highlight any dangers from resonance.
Contents continued

66 Materials
66 Reducing CTE Mismatch Between Coatings and Si-Based Ceramics
68 Single Crystal Nickel-Base Superalloy

70 Mechanics
70 Automated PreLaunch Loads Estimation (APLLE)
71 The Modified Fully Utilized Design Method

73 Machinery/Automation
73 Pulse-tube Refrigerator Unit
73 Improved Hybrid System Protects Airfoils Against Icing
75 Evaluation of a “Smart” Aircraft Control Actuator

76 Manufacturing/Fabrication
76 Apparatus for Coating and Cold Welding in Vacuum

78 Physical Sciences
78 Carbon/Carbon Shield/ Antenna Structure
78 Software Models Processes in a Gaseous Chemical Reactor
80 Automated Calibration of Temperature Transducers

81 Information Sciences
81 Wavelet Processing for Aerosevoelastic-Stability Analysis

83 Books and Reports
83 Micromachined Tunneling Accelerometer for Use in Outer Space
83 Solar/Infrared Aerobots for Exploring Several Planets
83 Analysis of Stresses and Deflections in RTDs
84 Performance of a Soft Digital-Data-Transition Tracking Loop
84 Muscle Wires for Planetary-Exploration Robots

Special Supplements

1a - 24a Photonics Tech Briefs
Follows page 72 in selected editions only.

1b - 22b Motion Control Tech Briefs
Follows page 80 in selected editions only.

On the cover:
Designed for “lethal zones,” the DuraPACTM fully sealed industrial portable computer from Dolch Computer Systems, Fremont, CA, illustrates one end of the wide spectrum of Computer Hardware and Peripherals highlighted in this month’s Special Coverage. Products range from rugged laptops, to desktop workstations, to specialized keyboards, mouses, and monitors. Rounding out our Special Coverage are NASA innovations in areas such as computer networking and system layout. The section begins on page 36.

(Photo courtesy of Dolch Computer Systems)
More manufacturers are visualizing their alternatives when failure is not an option. Silicon Graphics® computer systems are the most powerful means of doing just that. Industry-leading graphics, innovative applications and enhanced CPU performance give companies the leading edge technology for digital design and manufacturing.

Silicon Graphics O2™ OCTANE™ and Onyx2™ workstations comprise the broadest range of scalable high-performance platforms. Tackle tougher problems including digital prototyping and simulations. Interact with large assemblies, perform more iterations of complex analyses. Focus more clearly on any problem. Turn data into understanding, understanding into insight. Visualize your success in ways only possible with Silicon Graphics.

© 1998 Silicon Graphics, Inc. All rights reserved. Silicon Graphics and Onyx are registered trademarks, and O2, OCTANE, Onyx2 and the Silicon Graphics logo are trademarks of Silicon Graphics, Inc. F/A-18 courtesy of Unigraphics.

* Price quoted is valid for U.S. only.
Both series feature:
- Sunlight-readable color display
- Upgradeable 200 MHz Pentium®
- Upgradeable 3.2 GB hard drive
- Rugged magnesium housing
- -15°C to 50°C

5000 SERIES II
- 4 User configurable bays
- In-vehicle solutions

7000 SERIES
- 6 ISA/PCI Slots
- Worldwide power supply

In US: 1-888-FIELDWORKS • Outside US: 1-612-974-7000 • www.field-works.com
No one understands FieldWorks' capabilities better than Emmy-winning documentary producer, Jim Bruton. For the past two years, we’ve provided Jim with specific computing solutions that have allowed him to go beyond the extreme.

We helped Jim deliver the first real-time video feed from Mount Everest to the Internet. And we provided solutions to support Jim’s broadcasts from places like the sunken Titanic, the Persian Gulf and a Central American rain forest. In fact, Jim calls his FieldWorks systems “TV trucks in a suitcase.”

Despite being our most extreme user, Jim is still a typical FieldWorks customer. He came to us with specific needs, and we worked with him to create a high-performance, user-specific solution. And we can do the same for you.

We tailor each system to meet users’ needs, not to mention provide custom service and support programs. That means increased productivity, smoother operations, more satisfied customers, and more time for you to focus on your business. So, when it comes to choosing a company that will never lose sight of your needs, trust FieldWorks. Just look at what we’ve done so far.
The SynchroMaster® 300 system combines images from two or more computer sources or image generators for real time simulation. RGB and even HDTV signals are accepted and combined at image resolutions up to 1280 x 1024 pixels.

A choice of three techniques are offered to combine images: chroma key, luminance key or weighted sum averaging.

The SynchroMaster 300 can combine asynchronous images, even images of different resolutions, and convert between interlaced and non-interlaced formats.

The SynchroMaster 300 accepts images from virtually all workstations and image generators.

RGB Spectrum – proven technology for simulation and training.
Presentation Perfection
GoBook features S-Video Out as well as Super VGA display and NTSC video ports

Big Active Matrix Display
• 12.1” SVGA active matrix display
• Powered by 128-bit graphics accelerator

Big Room for Expandability
Modular bay that accepts variable 24X CD-ROM drive & a 3.5” floppy (both included), and up to 3-hour bay battery (included)

Modular battery design allows 3, 8 or up to 11 hours of operation

(SOUND FAMILIAR?)

"The GoBook is the notebook by which all others will be measured in 1998!"

You don’t get to recharge your batteries every four hours. You don’t get to rest whenever you feel like it. Why should your notebook? Life on the road is no cake walk and your notebook should be designed to endure the rigors of mobile life as well as you do. Introducing the GoBook notebook. With up to 11 hours of power, lightning fast performance, and an incredibly thin and light package, it’s the ultimate companion for those who stop at nothing to succeed.

For More Information Circle No. 520

TO ORDER CALL TOLL-FREE 888-669-0971 OR ONLINE AT www.micronpc.com
Navy's Technology Sources

If you need further information about new technologies presented in NASA Tech Briefs, request the Technical Support Package (TSP) indicated at the end of the brief. If a TSP is not available, the Commercial Technology Office at the NASA field center that sponsored the research can provide you with additional information and, if applicable, refer you to the innovator(s). These centers are the source of all NASA-developed technology.

NASA-Sponsored Commercial Technology Organizations

These organizations were established to provide rapid access to NASA and other federal R&D and foster collaboration between public and private sector organizations. They also can direct you to the Regional Technology Transfer Center nearest you, call (800) 472-6785.

NASA ON-LINE: Go to NASA's Commercial Technology Network (CTN) on the World Wide Web at http://nctn.hq.nasa.gov to search NASA technology resources, find commercialization opportunities, and learn about NASA's national network of programs, organizations, and services dedicated to technology transfer and commercialization.

If you are interested in information, applications, and services relating to satellite and aerial data for Earth resources, contact: Dr. Stan Moran, Earth Analysis Center, (505) 277-9622. For software developed with NASA funding, contact the Computer Software Management and Information Center (COSMJC) at phone: (703) 542-3265; Fax: (703) 542-4807; E-mail: http://www.cosmic.uga.edu or service@cosmic.uga.edu.

NASA Tech Briefs, June 1998
WIDE RANGE OF QUALITY MOTORS

The Maxon product line consists of quality high-efficiency DC motors, which are available with gearheads, encoders, tachometers, and controllers. Our products range from cost-effective ferrite magnet motors to current state-of-the-art rare earth magnet motors. Brushless motors are also offered.

Our patented rhombic wound moving coil motors offer several advantages over conventional DC motors such as much longer brush life and extremely low electrical noise, low mechanical time constant for fast acceleration, low current consumption for extended battery life, no cogging for smooth rotation even at low speeds, and linear speed-torque constants for simple, accurate control.

Typical applications include air samplers, chart recorders, miniature pumps, chopper wheels, laser measuring devices, microscope stages, surgical devices, data storage devices, vision systems, and printers/labelers.

For more information, call or fax Mr. James Talent, Maxon Precision Motors, Inc., Burlingame, CA. Tel: 800-USE-MAXON (800-873-6296), Fax 650-697-2887.

Circle No. 522

16 mm REDUCED COST MOVING COIL MOTOR

Maxon's new A-max 16 mm (0.63 in) diameter motors deliver the performance and lifetime of a moving coil motor, but at a reduced cost due to improved automated manufacturing processes. The patented rhombic moving coil design provides for long life, low electrical noise, fast acceleration and high efficiency. The ironless rotor allows for zero cogging and simple, accurate control. Available with either precious metal brushes or graphite brushes, the power rating ranges from 3.5 watts to 6 watts. The motor is available either with a single shaft or with a passing shaft. Other standard options include ball bearings/sleeve bearings, and terminals/leads. The motor length is 31.9 mm (1 in) and weighs in at 54 g (1.9 oz). Several different windings are available to match desired speed with available voltage. Ambient temperature range is from -30°C to 85°C (-22°F to 185°F), while the maximum efficiency is 83% depending on the winding. The maximum continuous torque from the motor alone is up to 2.53 Nm (1.1 oz-in). Matching gearheads are also available with ratios ranging from 4.4:1 to 16:1 capable of delivering 1Nm (14.6 oz-in) of continuous torque. A matching encoder is also available.

For more information, call or fax Mr. James Talent, Maxon Precision Motors, Inc., Burlingame, CA. Tel: 800-USE-MAXON (800-873-6296), Fax 650-697-2887.

Circle No. 524

22 mm REDUCED COST MOVING COIL MOTOR

Maxon’s new A-max 22 mm (0.87 in) diameter motors deliver the performance and lifetime of a moving coil motor, but at a reduced cost due to improved automated manufacturing processes. The patented rhombic moving coil design provides for long life, low electrical noise, fast acceleration and high efficiency. The ironless rotor allows for zero cogging and simple, accurate control. Available with either precious metal brushes or graphite brushes, the power rating ranges from 3.5 watts to 6 watts. The motor is available either with a single shaft or with a passing shaft. Other standard options include ball bearings/sleeve bearings, and terminals/leads. The motor length is 51.9 mm (2.06 in) and weighs in at 154 g (5.4 oz). Several different windings are available to match desired speed with available voltage. Ambient temperature range is from -30°C to 85°C (-22°F to 185°F), while the maximum efficiency is 83% depending on the winding. The maximum continuous torque from the motor alone is up to 8 Nm (1122 oz-in). Matching gearheads are also available with ratios ranging from 4.4:1 to 16:1 capable of delivering 1Nm (14.6 oz-in) of continuous torque. A matching encoder is also available.

For more information, call or fax Mr. James Talent, Maxon Precision Motors, Inc., Burlingame, CA. Tel: 800-USE-MAXON (800-873-6296), Fax 650-697-2887.

Circle No. 525

maxon motor

HOW CAN THIS NEW DC MOTOR RUN BETTER? LONGER? AND STILL COST LESS?

Cost-cutting hybrid process forms stator by assembling motor housing, magnet and end cap in one step using injection molding of PPA plastic. Choice of sleeve or ball bearings.

Roll-action springs on graphite brushes result in constant pressure over the entire lifetime, allowing a thinner brush cover that reduces space requirements. Optional newly designed 4-, 5-, or 7-pole precision metal brushes provide better contact, longer life, and help minimize power consumption. Contact resistance remains low—even after long periods of inactivity.

AMP-compatible terminals or push-locks are available.

Elimination of a C-Clip grease results in higher torsional stability and greater cross-sectional strength.

Precise maxon winding technique, enhanced by the latest winding technology, provides a high-performance relationship between the coil and magnet system.

New manufacturing process of rolled-steel motor housing delivers high strength at reduced cost.

New U.S.-made glass-fiber-reinforced plastic—Polyphthalamide (PPA)—rivals metal in strength and stability, is impact-resistant, tolerates temperatures to 122°C, and dampens noise.

Check a few of the innovations. You’ll get a few of the answers to why maxon’s A-max DC motor can add more performance, quality and reliability to your product—while costing you less than other moving coil DC motors.

There’s more. Like the coupling of advanced design with a giant leap forward in automated manufacturing.

A unique modularity exemplified by "snap-on" technology for simple, flexible mounting of our planetary and spur gearing, incremental encoders and tachometers. Plus a company-wide, worldwide customer-satisfaction program that means faster product delivery along with even better technical support and service.

You’ll want to know more. So call for details. About the A-max line.

About how you can prove to yourself its breakthrough value.

maxon PRECISION MOTORS

Maxon Precision Motors
838 Mitten Road
Burlingame, CA 94010
TEL: 650/697-9614 800/873-6296
FAX: 650/697-2887
http://www.mp-maxonmotor.com

Circle No. 524

For More Information Circle No. 525
Montana State University's new TechLink Center is off and running since its inception a year ago. The center matches NASA technologies with commercial partners in Montana, Idaho, Wyoming, and North and South Dakota, forming partnerships with the electronics, robotics, sensors, software, remote sensing, biotech, and materials industries.

The first company to partner with NASA through the TechLink Center on a remote sensing technology was Positive Systems of Whitefish, MT. The company will work with NASA's Stennis Space Center to develop solutions to problems in the remote sensing, aerial photography, and satellite imaging areas. Positive Systems' new software is expected to solve the problem of joining images acquired at different times. The program integrates a set of correction factors based on NASA algorithms.

Integrated Geoscience of Helena, MT, is working with NASA's Jet Propulsion Lab to evaluate and improve the company's automated feature recognition software, which can recognize and map selected features in remotely sensed imagery. Better remote sensing will enhance decisions over land use, watershed management, development planning, and environmental monitoring.

For more information, visit the TechLink web site at: www.montana.edu/techlink.

Data management system developed by NASA's Marshall Space Flight Center to handle the flow of information received from experiments aboard the Space Shuttle-based Spacelab was adapted to create an innovative vehicle tracking system for municipalities and private businesses.

The tracking system has its origins in a contract to facilitate accessing specific Advanced X-Ray Astrophysics Facility (AXAF) temperature and vacuum data from a telemetry stream. Scott Johnson of Quality Research in Huntsville, AL, said his company worked with NASA Marshall's Astrionics Lab's

Raytek Corp., Santa Cruz, CA, has introduced the Thermalert GP two-piece infrared temperature monitoring system that combines a 1/8 DIN monitor with a rugged temperature-sensing head. It provides target temperature readings with ±1% accuracy, and displays temperature data on a four-digit LED display. Monitor and sensor functions are configured via the user interface on the front panel. The monitor provides advanced signal processing capabilities such as peak/valley hold, averaging, and adjustable offset. It features a 4-20mA output and two adjustable setpoints/deadbands with alarm outputs that can notify operators of out-of-range conditions. The Thermalert GPR sensor is an 8-14 micron head that combines current loop driven signals for noise-free cable runs with high-resolution 35:1 optics. It features a temperature measurement range of -18 to 538°C.

For More Information Circle No. 755

What's New On-Line

Beginning in July, Technical Support Packages (TSPs) for current-issue and recent (previous six months) tech briefs no longer will be available in printed form through NASA Tech Briefs via mail order. They will be accessible on-line through our web site at www.nasatech.com.

If you'd like to order printed copies of TSPs, including those for briefs published more than six months ago, they may be obtained from the National Technology Transfer Center (NTTC). Call the NTTC at 800-678-6882.

NASA Keeps Vehicles on the Right Track

Ground Computers Team and Design and Implementation Branch to develop software that would allow engineers to extract specific information from the data stream while testing AXAF in a simulated space environment.

In a commercial spinoff of the software, AVL Systems, also of Huntsville, modified the software to form the heart of a system that can monitor specially equipped vehicles in operation within a specific area, using Windows NT workstations with a map of the area being monitored. The map displays the locations of all tracked vehicles, with color codes indicating their status, such as in service, en route, etc.

For municipalities, it can track police and fire vehicles, ambulances, and public works vehicles, which are equipped with a device that relays a signal to a central dispatch site. The system is activated by logging in the vehicle's starting position via a GPS satellite. As the vehicle moves, the system uses the satellite information to update its location.

For more information, contact AVL Systems at 205-882-1995; Fax: 205-882-0464; e-mail: chasmusi@airnet.net
TIME is the LONGEST DISTANCE BETWEEN two PLACES.

The fact is, there are only two things you really want to focus on. Your idea, and the realization of it. In between lies the pain of the process. The time-consuming things that keep you from doing what you'd rather be doing: bringing your idea to life.

You can shorten the distance with the Xerox 8830 DDS, the digital document system designed to improve your process. The combined efficiencies of its superior processing speed, scan and print concurrency, and job interrupt features deliver output 300% faster than other copiers or printers in its class. Fully networked, the time savings are even greater.

With the 8830 DDS, you'll save days, weeks, even months in time and labor over the course of a project. Putting you that much closer to the place you'd rather be. To learn more, call 1-800-XES TALK (937-8255), ext. 1581. Or visit us at www.xerox.com/XES

THE DOCUMENT COMPANY
XEROX
ENGINEERING SYSTEMS
Reader Forum

Reader Forum is devoted to the thoughts, concerns, questions, and comments of our readers. If you have a comment, a question regarding a specific technical problem, or an answer to a question that appeared in a recent issue, send your letter to the address below.

I'm writing in response to an on-line Reader Forum request from Donald Horkheimer regarding a device to move corrosive fluid that would have no moving parts. In the late 1960s, an agricultural engineering student at Colorado State University came up with what might be called a “percolator pump” to transfer insecticides and other fluids—which might be either toxic or corrosive—from a 55-gallon drum. Basically, it consists of a fairly small (perhaps 3/4" ID) plastic tube which is placed vertically in the barrel with a smaller air hose supplying a simple bubbler at the base of the tube. As the air rises through the tube, it carries with it a surprising amount of fluid. The top of the tube has a U-bend through which the fluid exits into a collector leading to a hose (gravity feed to the implement tank) and the air is vented.

I don’t know if such a device will work for Mr. Horkheimer’s application. If venting the air to the atmosphere presents a problem, it would not be difficult to design a closed air recirculating system which would have the additional benefit of being able to work at an elevated system pressure.

Stephen Robert Snook
Chief Engineer
Systems Research Services
Port Hueneme, CA

The lightweight, high-performance thermal insulation developed for the space shuttle and described in NASA Tech Briefs has a direct application as a heat barrier around the hot sections of jet engines. This will translate into fuel savings. Thank you.

Don Darrow
Boeing Commercial Airplane
Wichita, KS

We own a proprietary inflatable pipe manufacturing machine and process technology. Several formulation improvements have been made as a result of learning of certain chemical characteristics discussed in NASA Tech Briefs. Thanks.

C.E. Nelson
Owner
Centerflex International Corp.
Kinnelon, NJ

Post your letters to Reader Forum on-line at: www.nasa-tech.com or send to: Editor, NASA Tech Briefs, 317 Madison Ave., New York, NY 10017; Fax: 212-986-7864. Please include your name, company (if applicable), address, and phone number or e-mail address.
Style and Purpose

Dolch Rugged Portable Computers span the widest range of performance and expandability available anywhere in the industry. Designed to perform while surviving the harshest of environments, the PAC™, L-PAC™ and MegaPAC™ families offer multiple ISA/PCI expansion slots, configurable peripheral bays and a wide range of power supply and keyboard options. Dolch leads the industry with the only Pentium® II portable, ultra-bright anti-reflective flat-panel TFT screens and handsome functional style. Choose from the industry’s broadest range of configurations to fit any application.

- Add-In Card Expansion from two ISA to five ISA/PCI, full length/full-height expansion slots.
- Hi-Brightness Anti-Reflective VGA, SVGA, XGA display screens in 10.4” and 12.1” sizes with RGB option.
- Certified CPUs from 486-100 to Pentium® 233 MMX to Pentium® Pro/Dual Pentium® Pro 200 to Pentium® II 266.
- Waterproof Keyboard Option, AC/DC and medical power supply options, special configurations and certification programs.

800.995.7580 — www.dolch.com

Dolch Computer Systems, Inc. • 3178 Laurelview Court • Fremont, CA 94538 • Tel: 510 661 2220 • Fax 510.490.2360

For More Information Circle No. 512
Method for Production of Powders
(U.S. Patent No. 5,635,153)
Inventors: Joel M. Stoltzfus and Subhashish Sircar, Johnson Space Center

Metal oxide powders are used in chemical laboratories and in manufacturing processes, but existing methods for producing them involve multistep processes requiring elaborate apparatus that are relatively time-consuming, cumbersome, and expensive. The present invention provides a technique for producing large amounts of oxide powders utilizing combustion with a minimal number of process steps. A material, which may be a metal or metal alloy, is provided in the form of a rod and put in a combustion chamber housing. An igniter is applied to it, and it is then exposed to an oxygen atmosphere, or an atmosphere enriched with oxygen. The igniter causes combustion of the material to produce powdered oxide. In one embodiment of the invention a feeder is provided so that the material can be advanced into the combustion chamber continuously via rollers, moving through a seal so that the chamber's ability to contain the combustion reaction is preserved.

Encyclopedia of Software Components
(U.S. Patent No. 5,632,022)
Inventors: Lloyd V. Warren and Brian C. Beckman, Jet Propulsion Laboratory

The inventors, impressed by the fact that a high proportion of the time spent developing new software systems is used to perform mundane functions that are well known in the art, set out to make it easier to reuse than to reinvent software. The analogy in software to the use of standard parts in hardware is the reuse of previously developed software code, modules, libraries, designs, architectures, documentation, test data, test routines, test strategies, and so on. The inventors assert that the process that a potential consumer of reusable software components must go through consists of these steps: locating, understanding, retrieving, validating, and adapting (LURVA) existing software. In the invention—an encyclopedia of software components—locating is facilitated through a very general classification scheme based on semantic networks, and through tying this scheme closely to a hypermedia browsing-and-searching front end. Understanding is facilitated by describing software with electronically cross-linked text, graphics, animation, audio, video, and typeset mathematics, i.e., hypermedia. Retrieving is facilitated by encapsulating knowledge about network access along with the descriptions of software and by automatically computing closed sets of software items that enable a chosen time to be used as an independent unit or a component.

Security System Responsive to Optical Fiber Having Bragg Grating
(U.S. Patent No. 5,633,975)
Inventors: Charles K. Gary and Meric Ozcan, Ames Research Center

The object of the invention is to provide a key for an optically responsive electronic lock that is convenient to use, not susceptible to being misplaced, with patterns that are not easily duplicated and decode means that are commercially available. The security system consists of a light source, a receptacle, a key, and a decoder. The source provides light along a predetermined path. The receptacle has a passageway with entrance and exit portions located to intercept the light. The key consists of a carrier and a fiber optic, which is located in the carrier to intercept the light at the exit portion of the passageway. This fiber optic has one or more Bragg gratings that reflect the intercepted light into a predetermined spectral pattern. The decoder has means for receiving and decoding the pattern, by comparing it with a preselected pattern and generating an electrical signal when the two match. The signal operates the lock or lights a display of an authentication panel.

For more information on the inventions described here, contact the appropriate NASA Field Center's Commercial Technology Office. See page 14 for a list of office contacts.

For More Information Circle No. 412

www.nasatech.com

NASA Tech Briefs, June 1998
See for yourself why ICEM Surf is recognized as "SIMPLY THE BEST" in Surfacing Technology!

For a FREE video illustrating how leading companies are gaining competitive advantage with ICEM SURF, contact us at 800-799-3932 or www.icem.com
After the heart attack, your doctor recommended a better diet. Who knew it would include french fries and chocolate cake?

Since its discovery a decade ago, high temperature superconductivity (HTS) has ranked as one of the greatest and most mysterious scientific discoveries of the 20th century. The ability to conduct electricity without resistance may someday make practical such marvels as trains that float magnetically in thin air, supercomputers that fit inside a shoe box and frictionless flywheels that populate the highways with electric cars.

At last, one of the promises of superconductivity is here—superconducting electronic circuitry. DuPont scientists have pioneered HTS thin film technology for laying down microscopically thin surfaces on wafers and etching circuit patterns into them. What's more, DuPont is now incorporating these HTS materials into devices and subassemblies for use in PCS and cellular communications, radar, MRI instrumentation and high gradient magnetic separators for kaolin clay processing.

As for the potential of these devices, consider nuclear magnetic resonance (NMR) instrumentation. Because superconducting sensors can produce extremely low noise receivers, NMR probes are being developed that are up to 10 times more sensitive than today's equipment. The ability to identify smaller samples with higher accuracy will allow scientists to embark on projects of much greater scope and depth. Conventional NMR has aided DuPont scientists in developing high oil corn, better tasting canola oil and high oleic acid soybeans. Imagine the radically healthier foods that may be created in the future using superconducting probes.

In communications, the advantage of sensitive receivers is equally important. DuPont offers a full foundry service for PCS and cellular components and devices based on HTS thin films such as low phase noise oscillators, ultra-high Q resonators, high-power filters, inductors and high-speed switches. HTS filters have already been successfully demonstrated in the field.

The benefits of such devices include improved call quality, extended cell site range, greater in-building penetration, lower handset transmit power and increased call-handling capacity. In fact, it may be possible to actually skip every other base station in a rural PCS system.

We can't get there alone. Throughout DuPont history, many of our biggest contributions have come to market through collaboration with other companies. If you are active in the areas of telecommunications equipment, digital electronics, medical instrumentation, scientific instrumentation or satellite components, there may be an opportunity for us to work together and make superconductivity a reality. Fax us with your proposal at 1-302-695-7615. Please limit your correspondence to nonproprietary, public-domain information only.

Better things for better living
This month, in our year-long celebration of NASA's 40th Anniversary, we take a look at successful spinoff products and new applications of NASA technologies in the area of Manufacturing.

1960s

Echoes of Invention

Echo 1, launched in the early 1960s, was NASA's first experiment in satellite communications. The spacecraft was essentially an enormous balloon, its diameter roughly equivalent to the height of a 10-story building. NASA needed a highly reflective material for Echo's skin so that it could bounce back radio signals. And, because Echo inflated only when it reached orbiting altitude, it had to be lightweight and thin enough to travel inside a beach-ball-sized canister.

NASA selected a Mylar polyester coated with a reflective layer of aluminum particles so fine that Echo's skin was half the thickness of the cellophane wrapper on a cigarette pack. This process of metallization — treating materials with a superfine mist of vacuum-vaporized metal to create a foil-like effect — originated in the 19th century. But the technology developed slowly. By the late 1950s, metallized plastics were being produced primarily for decorative purposes, but the demand was small.

NASA's requirements helped build metallization into a flourishing industry, prompting extensive research and development of metallization techniques for applications such as thermal radiation insulation. Metallized film has been used on virtually every U.S. spacecraft since the early 1960s.

The Metallized Products Division of King-Seeley Thermos (KST), Winchester, MA, helped commercialize the NASA-sponsored technology. KST further developed the technology of vacuum-metallizing plastic films, expanding the process to include gold, silver, copper, and zinc. Metallized materials have a variety of commercial applications, including outdoor clothing, food-packaging materials, wall coverings, aircraft covers, and reflective blankets. While the technology existed before NASA's use of it, space use led to greater commercial applicability.

An employee inspects vacuum-metallized plastic film.

Slicker Than Glass

The Orbiting Solar Observatory (OSO), developed by NASA in the early 1960s, was a solar-astronomy spacecraft. NASA's contractor for the satellite — Ball Aerospace Systems Division of Boulder, CO — found that conventional lubricating materials would be unsuitable for long-term exposure to the vacuum of space. To meet NASA's requirements, Ball developed a new family of dry lubricants specifically formulated for long life in space. Researchers also devised processes for applying the lubricants to spacecraft components in microscopically thin coatings.

The dry lubricants worked successfully on seven OSO flights, and Ball scientists began exploring possible non-aerospace applications. The company developed hundreds of variations on the original OSO technology, improving the quality and efficiency of a wide range of commercial products and industrial processes. Applications include solar-energy collection systems, protective coatings for motion-picture film, preservative coating to protect the sound fidelity of phonograph records, lubricants designed to withstand "cold room" conditions in the meat-packing industry, and treating electric motor and generator brushes to reduce brush wear.

1980s

Joining Forces

In 1837, a blacksmith named John Deere perfected the steel plow. The company he founded to manufacture and sell farming equipment has grown into one of the world's largest manufacturing businesses — Deere & Company, based in Moline, IL. Deere now employs 35,500 people worldwide and manufactures hundreds of products, including agricultural tractors, harvesters, industrial and construction equipment, and lawn-and-garden tractors. In the early 1980s, Deere's Technical Center worked with NASA in a multifaceted technical exchange program to explore areas of aerospace research that promised product improvements.

The collaboration between NASA and Deere exemplified a different form of the aerospace spinoff process. Deere did not simply reaply technology already developed for aerospace; the company actively participated in the development of new technology through its own extensive R&D capabilities, complementing NASA's efforts.

One example of NASA/Deere collaboration involved processing materials under near-zero-gravity conditions. Deere researchers used the low-gravity environment to study what happens to iron as it melts and solidifies in an aircraft-borne furnace. Because cast iron accounts for about 25 percent of the weight of Deere products, any improvement in strength and quality of this
We wrote exactly 698,794 lines of C code so that you don’t have to.

More than 400,000 engineers and scientists use MATLAB to accelerate their technical programming. Here’s why.

Faster programming

Today’s most productive technical professionals have one thing in common – they use MATLAB instead of C or C++. Because, unlike a general-purpose language, MATLAB is a complete, integrated analysis, visualization, modeling, and development environment specifically designed for technical computing. So development goes much faster and code is dramatically shorter.

More numerical power built in

At the heart of MATLAB is an easy to learn technical computing language with more than 500 functions built in. The MATLAB language includes flow control, multidimensional arrays, user-defined structures, ASCII and binary external data file access, and much more. And you’ll save even more time with MATLAB Toolboxes, collections of highly optimized, discipline-specific functions written by world-class experts.

You can even link in C, C++, and Fortran routines.

Less time coding means more time to think

Put simply, use MATLAB and it will take you far less time to develop finely tuned applications with revealing graphics, custom GUIs, and compact maintainable code.

Now just imagine what you can do with the time you save.

See how MATLAB 5 can help you work faster. Visit our Web site for demos, examples, and updating information.
material is vital to product development. Deere's experiments were conducted in a furnace developed by Marshall Space Flight Center and flown aboard a NASA aircraft that achieved near-zero gravity for short periods. Other NASA/Deere projects led to advances in composite materials, ceramics, lubrication, plasma coatings, sensors, and electronics.

Another example of the joint effort is the Stirling engine, an external combustion engine developed with NASA's Lewis Research Center and the Department of Energy as an alternative propulsion system for road vehicles that offers lower fuel consumption and the ability to use a wide variety of fuels. Deere has conducted lab tests of the Stirling engine, in an effort to eventually adopt it as an alternative to the diesel engines currently manufactured.

A Tape for All Seasons

Scotch® Brand Tape 364 is a high-temperature tape originally developed for NASA by 3M's Industrial Tape Division, St. Paul, MN. In aerospace applications, this aluminized glass-cloth tape is used to protect electrical and instrumentation cables and fluid lines from rocket-launch blast conditions — it can withstand prolonged exposure to temperatures as high as 500°F and can function in temperatures as low as -65°F. The tape began commercial production in the mid-1980s, and is now produced by Scotch Brand Tape.

No. 364 is a second-generation cable wrapping that combines the best characteristics of aluminum-foil and glass-cloth tapes. Coated with silicone adhesive, it spiral-wraps without cracking and is easily applied to compound surfaces. The tape has high solar-energy reflectance and presents no electrostatic hazard. Non-aerospace uses include the automotive and general transportation industries and heat-reflection applications in high-temperature building construction.

1990s

A Manufacturer's Best Friend

Diamond is the hardest known substance, highly resistant to wear and impervious to most chemicals. It is an excellent thermal conductor and electrical insulator. The mineral is transparent not only to visible light, but also to infrared and ultraviolet. Were it not for their high cost, diamonds would be the ideal material for a wide range of industrial applications. But advances in materials technology offer a lower-cost alternative by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC).

Diamond films have great potential as chemically inert protective coatings that make machine tools and parts last ten times longer. Other applications include optical instruments, medical equipment, watch crystals, and eyeglasses. Among the American companies involved in DLC commercialization is Diamonex, a spinoff company of Air Products and Chemicals of Allentown, PA, which is using, under exclusive license, NASA technology for depositing DLCs on a substrate.

For more than a decade, NASA's Lewis Research Center has investigated the aerospace potential of synthetic diamond coatings. Lewis developed a method called direct ion-beam deposition for applying DLCs to a substrate. An ion generator creates a stream of ions from a hydrocarbon gas source; the carbon ions impinge directly on the target substrate and "grow" into a thin DLC film. This low-pressure, low-temperature process allows use of plastics and other substrates that cannot withstand the high pressures and temperatures normally used to synthesize diamonds.

Diamonex has received assistance from Lewis in developing scratch-resistant coatings for plastic prescription eyeglasses. Other commercial DLC applications include coatings for magnetic data-storage discs, surgical needles, and a diamond-coated ball for an artificial hip joint.

Long-Term Protection

The location of NASA's Kennedy Space Center (KSC) on Florida's Atlantic Coast exposes the launch facility's steel structures to a corrosive onslaught of salt spray and fog. NASA required a protective coating that would reduce maintenance cost for the gantries — steel frameworks that provide multi-level access to launch vehicles and other KSC facilities.

Researchers at NASA's Goddard Space Flight Center improved on existing water-based zinc silicate coatings by boosting the ratio of potassium to silicate. The resulting breakthrough in inorganic chemistry provided KSC with an easy-to-use, zinc-rich coating that provided long-term protection with one application. In 1981, NASA granted a license for the coating process to Shane Associates of Wynnewood, PA. The following year, Inorganic Coatings (IC) of Malvern, PA became sole manufacturer and sales agent under the Shane license.

IC now markets the product under the name IC 531. Over several years of commercial use, IC 531 has shown exceptional performance in single-coat applications and as a primer in multi-coat systems. This water-based coating is non-toxic, non-flammable, and generates no hazardous wastes. IC estimates that the coating will protect steel structures for "well beyond 25 years." It has been used on a variety of outdoor structures, military vehicles, dock equipment, power stations, bridges, and tractor-trailer frames. In 1984, IC 531 was selected by the National Park Service and the Statue of Liberty Foundation as the best coating for protecting Miss Liberty well into the 21st century. More recently, it was applied to the interior framework of Hong Kong's enormous Po Lin Buddha.
INTRODUCING THE HP/ANSYS HARDWARE/SOFTWARE BUNDLE.

A fully optimized engineering solution at an unbeatable price.*

HPC200 Technical Workstation Specifications:
• Base system with 200MHz PA-RISC 8200 CPU
• 512MB High-Density ECC Memory
• 9GB Ultra SCSI Internal Hard Disk Drive
• 12x CD-ROM Internal Disk Drive
• Color Quartz Monitor, 1280 x 1024 resolution
• VISUALIZE-FX2 3D Solid Graphics Accelerator. 24-bit frame buffer with 8 overlay planes.

ANSYS/Mechanical™ Software:
The most widely used design analysis tool in the world, capable of solving diverse analyses, including linear and nonlinear structural, steady-state and transient thermal, and coupled-field analysis. ANSYS/Mechanical™ is packed full of functionality, with the power to solve just about any structural problem.

*The HP/ANSYS Hardware/Software bundle is available at this price for a limited time only. Advertised price is for specifications listed above. Offer valid in North America only.

FINISH FIRST!
IMPROVE PERFORMANCE AND GET YOUR PRODUCT TO MARKET FASTER FOR LESS MONEY WITH HP AND ANSYS.

There's no award for second place.

For more information and a chance to win an HP PhotoSmart™ digital camera, call 1-888-THINK-HP (1-888-844-6547) or visit this website: www.hp.com/go/ansys.
The Connector Connection

In developing its Component Test Facility (CTF), where NASA tests rocket-engine components, Stennis Space Center originally had planned to use conventional clamped connectors on the piping lines that carry rocket propellants and other gases. But Marshall advised against it. Their experience with similar connectors had shown that they were unsuitable for use on lines carrying high-pressure cryogenic fuels. Clamped connectors were prone to leakage when propellant lines were chilled to a pretest temperature of -400°F.

Stennis selected Reflange® of Houston, TX, to develop a new piping connector. They adapted an existing design to include a secondary face seal more tolerant of severe temperature changes. With further testing and refinements, the company produced a connector that met NASA’s requirements. Known as the T-Con®, it was used in all CTF locations where severe thermal shock was anticipated.

Reflange developed two spinoff products from this NASA project: a commercial T-Con with a secondary seal for thermal-shock applications in industrial operations; and a second spinoff that emerged in the course of T-Con development. The E-Con® dual-seal flange design offers all the technical advantages of the T-Con, but at a reduced cost in larger sizes in which the quantity requirement is small.

Surviving the Shakes

Along with 400,000 pounds of thrust, each of the Space Shuttle's three main engines generates enough vibration to shake itself to pieces. In developing the engines, NASA required fasteners that could withstand the shock and vibration without loosening. This was a tall order, but NASA wanted even more: The fastener had to have a 15-cycle reuse capability.

Spiralock Corporation of Madison Heights, MI, exceeded NASA's requirements with the Spiralock® internal-thread fastener. NASA tests indicated that this “super fastener” held tight even when subjected to vibration ten times greater than the shuttle requirement. And Spiralock maintained its clamping power after 50 cycles. Every shuttle engine built incorporates more than 750 Spiralock fasteners.

Spiralock’s key component is a 30-degree wedge ramp. When clamp load is applied during assembly, the Spiralock thread form locks the standard male fastener in place by drawing the crests of the male thread tightly against the wedge ramp. This wedge-locking makes Spiralock exceptionally resistant to transverse vibration — the major cause of thread loosening — and substantially reduces the risk of fatigue failure.

A High Adventure

Mount Spurr — an active volcano in Alaska — erupted three times in 1992. Because the crater was too dangerous for human exploration, a robot was dispatched to explore its depths. Dante II, developed for NASA by Carnegie Mellon Robotic Institute, was equipped with an array of sensors and imaging devices. The eight-legged robot was able to rappel down the inside wall of Mount Spurr’s crater and communicate its findings to scientists, who stayed at a safe distance. An important contribution to this volcano expedition was an innovative strain-gage application from HITEC Corporation of Westford, MA.

HITEC’s assignment was to develop a strain gage-based solution for measuring bending forces on Dante II’s legs. The sensor would warn the robot's human operators if a robotic limb got caught in a crevice and if the kickout load on the leg exceeded design limitations. HITEC’s engineers had only one month in which to research and design a solution. The resulting sensor system consisted of four strain gages: two measured bending in tension at the surface strain on one side; and two on the opposite side measured compression bending.

The Dante project helped HITEC expand the company’s technological capability and led to further developments in strain gage-based sensor applications. HITEC now provides strain-gage services in creating transducers out of such components as Indy racing-car suspension pushrods, NASCAR suspension components, and components used in motion control. HITEC generally supplies sensors to measure strain, stress, and loads on automotive, gas turbine, and structural components. The first U.S.-made bobsled for the U.S. Bobsled Team also has benefited from the company’s technology — HITEC installed sensors on the four skate runner shoes to measure vibration forces.

High-Tech Insulation

Protecting the Space Shuttle and its crew during the fiery reentry through Earth’s atmosphere requires high-tech protection. Advanced Flexible Reusable Surface Insulation (AFRSI) was developed by NASA’s Ames Research Center and integrated into the Shuttle by Rockwell International. In 1974, production of AFRSI was transferred to Hi-Temp Insulation, Camarillo, CA.

For over 20 years, Hi-Temp has provided insulation blankets for the external leeward surfaces of the shuttle. To meet the demands of the shuttle program, the company has created many new technologies. A required combination of low weight and high thermal efficiency prompted examination of new materials and fabrication techniques. Shuttle insulating material must resist temperatures of about 2,000°F for 15 minutes with no burn-through.

For low-temperature areas of the shuttle, Hi-Temp made molded Fiberglas insulation covered with polyester film. Hydraulic lines and system components are wrapped with this material. The payload bay is protected with Hi-Temp’s two-blanket insulation system, and the main engine nozzles use ceramic insulation that withstands up to 2,600°F and extreme vibration.

The E-Con piping connector features a dual-seal flange design.

HITEC sensors were installed on the four skate runner shoes of the U.S. Bobsled Team’s sled.

Hi-Temp insulation is used on Boeing’s 777 — it is assembled on a check fixture and includes a quilted insulation core.

www.nasatech.com
Skeptic that a company such as HP can meet your need for low-cost, high-performance instruments? We understand. Ironically, it's because of our high-end technology that we're able to deliver a lineup of affordable test instruments.

Who needs products within budget, without compromise?

You do. And so do thousands of other engineers and technicians who ask for instruments without all the costly frills. So each of our basic tools offers just what you need to get the job done right.

That doesn't mean we cut corners. We use our traditional engineering and manufacturing strengths to offer a multitude of high-end technologies in our no-compromise basic instruments.

And we make them incredibly easy to buy through HP DIRECT, where one call can put you in touch with engineers who know how to make the measurements you need to make. You can call with a measurement question, for information on specs, or to discuss which product best suits your needs.
With NASA’s assistance, improvements to Hi-Temp insulation material enable it to withstand heating and cooling cycles; rapid and fluctuating temperature changes; continuous vibration and gravitational stress; and aircraft-engine contaminants. Hi-Temp’s shuttle work has led to new production techniques for both aerospace and commercial markets. These include insulation blankets for aircraft-engine exhaust ducts; fire-barrier material to protect aircraft-engine cowlings; molded-Fiberglas blankets for acoustical insulation; and aircraft rescue firefighter suits.

The Smart Bolt

A NASA space solution has yielded a heat-resistant intelligent fastener that may revolutionize manufacturing assembly, especially in the automotive industry. A product of Ultrafast, Malvern, PA, the fastening technology was developed under a Small Business Innovation Research (SBIR) contract managed by NASA’s Marshall Space Flight Center. The partnership resulted from a need for critical-fastening appraisal and validation of spacecraft segments coupled together in space. In-orbit assembly requires both lightweight wrenches for enhanced robot-arm mobility as well as remote fastener-load inspection capability.

Ultrafast’s intelligent bolt utilizes a piezoelectric thin-film deposited directly on one end of the fastener. When electrically excited by an Ultrafast tool, tensile loads can be controlled accurately during the bolt-tightening process. Insufficient bolt preload is usually the root cause of joint failure resulting from joint separation, bolt loosening, or fatigue.

A bolt topped by the low-cost thin-film functions as a transducer for measurement and recording of bolt tensile load. Ultrafast technology uses the relationship between the speed of ultrasonic waves in a material and the stress applied to the material as the basis for computing load measurements. The time of flight of the ultrasonic signal traveling in a fastener increases as the load on the fastener increases. Ultrafast’s technology eliminates having to loosen the fastener and disturb the joint during maintenance and inspection.

The Ultrafast system holds distinct advantages for the automotive industry. Components such as powertrains, steering systems, and brakes can achieve higher safety and reliability while minimizing service costs. Use of high-speed impact or impulse wrenches to improve joint integrity and inspection can lower manufacturing costs by reducing joint-assembly time.

Since 1976, NASA Spinoff has featured many down-to-earth applications of NASA technology. To learn more about how NASA technologies affect our everyday lives, visit the Spinoff web site at: www.sti.nasa.gov/tto/spinoff.html

To Contact Profiled Companies, Call:

- Diamonex .. 215-366-7130
- Hi-Temp Insulation 805-484-2774
- HiTEC Corp. 508-692-4793
- Inorganic Coatings 800-345-0531
- Reflange ... 713-682-5105
- Spiralock Corp................................ 248-543-7800
- 3M ... 612-733-1110
- UE Systems 914-592-1220
- Ultrafast .. 610-889-1348

Next Month:

NASA Technologies Used in Electronics, Sensors & Robotics

- UE Systems, Elmsford, NY, recently was awarded an exclusive license from NASA’s Kennedy Space Center (KSC) to commercialize a new portable ultrasonic device that can detect leaks at greater distances. The Long Range Ultrasonic Detection Module was developed jointly by KSC engineers and UE Systems after fuel leaks grounded some shuttle launches. NASA and UE Systems incorporated innovative circuitry, improved transducers, collecting horns and contact sensors for increased reliability, sensitivity, and versatility.

The new handheld system uses a parabolic collecting horn to double the unit’s detection range. The double amplification effect works acoustically to provide a telescopic depiction of leaks. Applications range from leak detection to mechanical and electrical system inspections.

- NASA’s Marshall Space Flight Center’s Productivity Enhancement Complex (PEC), operated by the Materials and Processes Laboratory at Marshall, works with industry to develop new materials, processes, and assembly techniques. The focal point for cooperative research activities between Marshall and its contractors, the PEC’s efforts provide benefits such as reduction of program costs, promotion and exchange of new ideas, and validation of new manufacturing materials and processes. Research cells for welding, rapid prototyping, insulation, robotics, thermal analysis, composites, coatings, cleaning techniques, and other technologies are available. NASA encourages collaboration efforts between NASA and industry to develop advanced manufacturing techniques. Manufacturing process improvements can be designed and tested using the unique capabilities of the PEC. For additional information on the PEC, contact NASA Marshall’s Technology Transfer Office or visit the web site at http://techtran.msfc.nasa.gov
After 90 Days,
You Start to
Wish They Would.

It's been over ninety days since the launch of the Lunar Prospector spacecraft and we still haven't heard from NASA. Which is our way of saying no news is good news. It means that Spectrum Astro's Command and Data Handling Subsystem continues to perform flawlessly in orbit around the moon, gathering and transmitting the data that will help scientists to determine the amount of water on the moon and map the composition of the lunar surface. And, like all Spectrum products, our C&DH is designed to operate with maximum efficiency. This 80C86 based system, developed under contract to Lockheed Martin, integrates CCSDS, telemetry, payload interfaces, attitude interfaces and battery charge control into one lightweight unit. Of course, perfect flight performance is not new to Spectrum Astro, but it does present our engineers with the added risk of the unknown: free time.

From all of us here at Spectrum Astro, congratulations Lunar Prospector Team!
Advanced Computers Help Assess Chernobyl Damage

According to the U.S. Department of Energy (DOE) experts at Lawrence Livermore National Laboratory, the concrete sarcophagus built over the Chernobyl Unit Four nuclear reactor after the explosion 12 years ago is deteriorating. The DOE, NASA, academic, and private-sector scientists, along with the Ukrainians, are building a high-tech robotics and vision system to analyze and repair the decaying structure. NASA's $2.7 million funding was provided because Pioneer will be testing technology that may be used for future space missions.

Experts at Lawrence Livermore have found that radiation levels inside many reactor rooms at the plant are still so high that people can't work in them without facing serious health risks. Rain is seeping into the facility and draining through radioactive material into ground water. If the sarcophagus collapses or walls inside the reactor area fracture, radioactive dust could be released into the atmosphere and travel hundreds of miles over the Eurasian continent.

The radiation-tolerant, 1000-pound Pioneer robot, being built by Red Zone Robotics of Pittsburgh, PA, runs on tank tracks and is armed with a multi-camera mast, sensors, a bulldozer plow, and a drill strong enough to penetrate concrete. Operators, in a lead-lined room near the reactor core, will drive Pioneer into the contaminated areas to capture images, structural samples, and other measurements.

Silicon Graphics has supplied an OCTANE® workstation, connected to the robot by a cable, to build virtual reality maps of the rooms. It will help the operator know the exact position of the robot within the radioactive area; convert the images from the camera head into a computerized surface mesh; color the mesh with the camera images; display the final mesh within the context of the rest of the building; and analyze core samples for structural stability. The workstation will be disposed of after the mission because of its exposure to radiation. A second OCTANE workstation will be housed in Chernobyl's administrative building, and a third, residing at the University of Iowa, will be connected to the other workstations via a NASA satellite link.

NASA Pioneer team members are creating a more advanced version of the virtual reality software developed by NASA Ames Research Center for the Mars Pathfinder mission.
If you need SMT resins that can handle practically anything, this combination is a knockout. DuPont Zytel® HTN and Zenite™ LCP.

Whatever your SMT needs, DuPont has the best one-two punch around. Zytel® HTN (high-temperature nylon) for typical applications, and Zenite™ LCP (liquid crystal polymer) for the most demanding ones. Both reduce the risk of blistering over competitive alternatives, and are easy to process, with exceptional flow and very fast molding cycles. Zenite™ LCP flows better than other LCPs, making it the best choice for components with very thin walls. What's more, with HDTs up to 295°C, it's ideal for elevated SMT assembly temperatures. Zytel® HTN is a very cost-effective alternative for new designs with more typical wall thickness, as well as upgrades for through-hole designs. For more information, call 1-800-533-1313 or visit us at www.dupont.com/enggpolymers/americas. Whatever your surface mount problem, we've got a solution that's right on the nose.

DuPont Engineering Polymers

For More Information Circle No. 547
Hardware-Command-Decoding ASIC
This integrated circuit, designed to decode digital command signals transmitted from ground to a spacecraft, performs functions that previously required several different circuits. It takes less space and consumes less power. A terrestrial version of this circuit could possibly be used to decode digital commands for a mobile robot. (See page 42.)

Column-Loading Input Chip for Neural-Network Module
A conceptual integrated circuit would serve as an interface between various sources of image data and a three-dimensional analog neural network. All functions would be performed within a cycle time of 250 ns. (See page 46.)

Lightweight, Radiation-Resistant EMI Shields
Graphite-fiber polymer composites intercalated with select molecules or atoms can serve as effective EMI shields and at a fraction of the weight of aluminum boxes. (See page 54.)

Instrument Records Electric Fields Generated by Lightning
A portable self-contained compact instrument measures and records transient electric fields generated by nearby lightning strikes. This instrument and a companion instrument measuring magnetic fields can be used to detect damage or disruption of sensitive electronic equipment in thunderstorms. (See page 56.)

Optoelectronic System Measures Tile Cavities
A hand-held system produces a three-dimensional measurement of a tile cavity in less than one second. An earlier procedure took more than 30 hours. (See page 58.)

Reducing CTE Mismatch Between Coatings and Si-Based Ceramics
Two techniques are proposed to reduce thermal-expansion mismatches between substrates made of silicon or silicon-based materials and surface coats that protect these substrates from chemical attack in oxidizing and/or corrosive environments. (See page 66.)

Single Crystal Nickel-Base Superalloy
This is a modified composition designed for use as a turbine blade and vane alloy for the space shuttle main engine. The superalloy exhibits significantly better fatigue and crack-growth resistance than previous alloys, particularly under severe hydrogen-embrittling conditions. (See page 68.)
The World Standard in Real-Time Data Recorders.

In the world of real time data recording, there is no room for compromise because the incoming data is priceless. Decisions need to be made instantaneously as the recording takes place - in real time. Engineers doing aerospace telemetry, automotive testing, electrical power transmission or telecommunications analysis, have made the Astro-Med MT95K2 the world standard because of its recording power and reliability. For detailed information and engineering specifications call, fax, or E-mail Astro-Med today.

- No Delay... see full traces on monitor while recording
- On-Board Data Analysis as well as by host program
- Patented Twin Printhead Design... 300 dpi laser printer resolution for clear, crisp traces
- On-Board Signal Conditioning for voltage, temperature, pressure and strain recording
- Front Panel Floppy Drive for personal chart and system setups
- Data Capture...store up to 32 megabytes in RAM; 1 gigabyte to internal hard drive; stream to external 2 gigabyte drive via SCSI; archive to DAT or floppy drive
- 8 to 32 Waveform Channels... plus 32 events; DC to 20 kHz; chart speeds to 500 mm/sec
- Record digital data via ethernet, SCSI, GPIB, or parallel interfaces

Astro-Med, Inc.

Astro-Med Industrial Park, West Warwick, Rhode Island 02893 • Telephone: (401) 828-4000
Toll Free: 800-343-4039 • Fax: (401) 822-2430
E-mail: astro-med@astro-med.com
Web Site: http://www.astro-med.com

Astro-Med is System Certified to ISO 9001

Sales and Service Centers throughout the U.S., Canada and Europe. Dealers located throughout the world.
Automated System for Acting on Findings From Inspections

Real-time access by all concerned parties fosters understanding of the condition of hardware.

Stennis Space Center, Mississippi

The Automated Nonconformance System, based at Stennis Space Center, is a computer network dedicated to administration of inspections and repairs of rocket engines. This automated system was developed to replace a manual system in which paper documents were used to document the steps of inspection and repair processes, and not yet been completed, and to perform numerous other functions essential to documenting inspection and repair processes. Passwords are used to control access to the system, and as evidence of authority to apply and void stamps. The automated system also performs audits to prevent both (1) duplication of work and (2) shipping out a piece of hard-

in which the documents had to be handled and transferred repeatedly according to complex procedures designed to ensure the completion of interdependent process steps in the correct sequences.

The basic paper document in the manual system — called the “Inspection Discrepancy and Correction Record” (IDCR) — has been converted into a collection of menu-driven interactive alphanumerical and graphical computer displays (see figure) in the automated system. It is still necessary to follow the complex procedures, but the automated system eliminates the paperwork delays and the potential for paperwork error, and enables all interested parties at diverse locations to gain access to inspection and repair data in real time. In so doing, the automated system fosters a high degree of awareness of the condition of the inspected and repaired hardware and helps to ensure that all technical and organizational requirements are satisfied.

The automated system affords capabilities to generate IDCRs, to import photographs and drawings from previous inspection and repair processes, to apply and void the electronic equivalent of stamps that were previously applied to paper to document authority to perform or authorize various process steps, to identify required process steps that have not yet been completed, and all necessary stamps applied, and all documentation completed.

This work was done by Victor O. Alfaro, Sr., and Robert M. Robb of Boeing Rocketdyne Propulsion & Power for Stennis Space Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Information Sciences category, or circle no. 121 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). SSC-00054
You've got ideas. But do you have the tools to visualize them? You do with HP Technical Computing Systems. The leading price-performance HP UNIX® and Windows® NT-based workstations and scalable super-computers give you powerful graphics capabilities and real-time data analysis. So in addition to running world-class applications quickly and collaborating instantly with colleagues, you can make your vision a reality. A free video showing how HP is helping world-class engineering companies facilitate the design process and speed time-to-market is now available. For details, visit www.hp.com/go/mdatools.
Computer System for Managing Construction Projects

Stennis Space Center, Mississippi

An automated system of computer hardware and software has been developed for managing construction projects at Stennis Space Center. This system replaces an older collection of paper-based subsystems, wherein documents were copied, filed, and distributed in labor-intensive processes. Data collected in the older system were not readily accessible, cross-referencing of information in conjunction with changes was difficult, and there was no way of evaluating effects of changes on schedules. The present system includes a commercially available server and workstations running software constructed largely from commercially available office, data-base, graphical, and spreadsheet software. The system features several data bases with a user-friendly interface, which provides on-line help, plus "intelligent" forms for electronic reporting in standard formats. Drawings and specifications can be retrieved, and "redline" comments can be added. Change packages can be reviewed on-line from remote locations. The system provides security through control of access according to the user's authority to initiate, review, or determine the statuses of change packages and schedules.

This work was done by Catherine L. Farn of Lockheed Martin for Stennis Space Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasa.gov under the Electronic Systems category, or circle no. 122 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). SSC-00061

Computer Network for Management of Inspection Data

Stennis Space Center, Mississippi

The Nondestructive Inspection and Evaluation Management System (NIMS), based at Stennis Space Center, is a computer network dedicated to administration of a large data base pertaining to nondestructive inspections of rocket-engine components. The NIMS serves as both an electronic archive of inspection records and as a communication medium. Inspection records can be in a variety of forms, include ordinary photographs, fluorescent-penetrant images of cracks, eddy-current traces, images from ultrasonic scans, and sketches.

One important benefit afforded by the NIMS is providing rapid, easy access to records of previous inspections. Inspectors and engineers often need to view such records to obtain guidance in the interpretation of records of new inspections and in the development of new inspection techniques. Before the development of the NIMS, it was necessary to engage in a labor-intensive and time-consuming procedure of retrieving original inspection records from archives, photocopying them, and sending the photocopies to the requesting engineers and inspectors.

Another important benefit afforded by NIMS is enabling a person at one location to view, in real time, the record of an inspection performed by another person.
at a different location, in order to discuss or confirm the interpretation of the record. Before the development of the NIMS, it was common practice to transmit copies of the inspection records by facsimile ("fax") for this purpose, but the degradation of image quality by facsimile transmission often rendered the copies useless, making it necessary for the assisting engineer and inspectors to travel to the inspection sites. With the NIMS, one can view a photographic-quality copy of an inspection record from any location in the network.

The NIMS is compatible with IBM and Macintosh, or compatible, computers. It accommodates new inspection records and new types of inspections as needed, without extensive programming changes. Security is maintained by requiring passwords for access by users and guests.

This work was done by Victor O. Alfaire, Sr., Robert M. Robb, and Michael F. Reynolds of Boeing, Rocketdyne Propulsion & Power for Stennis Space Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Information Sciences category, or circle no. 113 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). SSC-00053
The RSDL ASIC (see figure) contains six distinct functional hardware/software blocks: an intersubassembly bus interface (ISB 1/F), a timing-and-control block, a timing unit (not to be confused with the timing-and-control block), a bus arbiter, a Reed-Solomon (RS) encoder, and a synchronization-pattern block. All of these functional blocks are integrated in a highly efficient manner to fit on one chip. This in the multiple functions involved in downlinking of telemetry transfer frames previously required interfaces with many discrete circuits and components. The RSDL ASIC may also be adaptable to terrestrial applications (e.g., recording in the entertainment industry) that involve Reed-Solomon encoding.

The RSDL ASIC (see figure) contains six distinct functional hardware/software blocks: an intersubassembly bus interface (ISB 1/F), a timing-and-control block, a timing unit (not to be confused with the timing-and-control block), a bus arbiter, a Reed-Solomon (RS) encoder, and a synchronization-pattern block. All of these functional blocks are integrated in a highly efficient manner to fit on one chip. This in the multiple functions involved in downlinking of telemetry transfer frames previously required interfaces with many discrete circuits and components. The RSDL ASIC may also be adaptable to terrestrial applications (e.g., recording in the entertainment industry) that involve Reed-Solomon encoding.

The RSDL ASIC operates in conjunction with a solid-state recorder interface unit (SSRIU), a static random-access memory (SRAM) that serves as an RS memory buffer, and a flight computer to forward telemetry transfer frames to the radio transmitter.

The timing-and-control block generates timing and control signals for the rest of the RSDL ASIC (including the timing unit) and keeps track of operational modes. Commands are carried out in the timing-and-control block, which then generates control signals for the synchronization-pattern block and the RS encoder to either shift the synchronization pattern, encode the message, or shift out the RS check bytes. The timing-and-control block also causes the timing unit to set or reset the spacecraft time and to generate the downlink rate used in the RS encoder. It swaps buffers and provides logic to force transfer frames to synchronize with a real-time-interrupt and use a specified downlink buffer thereafter. It captures the time when the first frame of the downlink buffer is sent out. It provides internal status and interrupt signals for software.

The synchronization-pattern block contains hard-wired logic circuitry that
KINGSTON'S DATA STACKER IS JUST AS ADAPTABLE TO CHANGE.

Kingston's new cost effective Data Stacker™ can adapt to your changing storage needs just as smoothly and easily as the chameleon adapts to its changing environment. With Data Stacker's Snap-n-Stack design, it's simple to pop-on or off units effortlessly as your storage requirements change.

- Small footprint
- Platform-independent
- Poly/steel construction
- Supports 3.5" drives (including 10K RPM)
- Compatible with SCSI 2, 3 & ULTRA
- Enhanced, auto ranging power supply(ies)
- Adjustable high speed fans
- Stacked units can support multiple hosts
- 100% tested in collaboration with major device mfrs.
- 7-year warranty

Call a Kingston® representative at (800) 259-9370 to find out how Data Stacker can make adapting to change easier.
A hardware-command-decoding application-specific integrated circuit (HCD ASIC) is designed to decode digital command signals transmitted from a ground station to a spacecraft (uplink commands). Implemented in the ASIC is a portion of the spacecraft uplink protocol specified in the widely used Consultative Committee for Space Data Systems (CCSDS) international standard. A terrestrial version might be useful, for example, in decoding digital command signals for a mobile robot.

The HCD ASIC performs functions that previously required several different circuits, while taking up less room and consuming less power. The HCD ASIC includes a multiplexer to select input from either the synchronization-pattern block or the SSRIU. The RS encoder block is connected directly to the RS memory buffer.

The timing unit generates clock frequencies used throughout a command-and-data subsystem of the spacecraft. The timing unit includes a timing-chain section that converts the master clock signal into clock signals at most of the frequencies needed for that subsystem. From an oscillator with a frequency of 11,944,800 Hz, the timing chain generates a 64,005-Hz signal for the engineering flight computer, a 2,048,148 Hz signal used by a hardware command decoder, a pseudo-16385,185-Hz signal used within the timing unit, and a 32-Hz spacecraft clock signal. The pseudo-16385,185-Hz signal is used in conjunction with counters to generate the 32-Hz signal high resolution in the following way: A 57-bit counter toggles the upper 32 bits of spacecraft time, giving resolution of 1/32 s. Another counter of 9 bits toggles a 14-bit subsecond time word.

The bus arbiter is the only unrelated block inside the RSDL ASIC. It contains circuitry to arbitrate the ISB between four possible bus masters.

The ISB I/F contains the logic circuitry that serves as an interface between the RSDL ASIC and an external bus arbiter or an engineering flight computer via the ISB. Software that resides in an external computer reads from and writes to internal registers in the ASIC via the ISB I/F. This block indicates whether data are stable and whether data written by the ASIC are captured correctly.

Notable features of the RSDL ASIC (in addition to those mentioned above) include the following:

- It provides a spacecraft clock to keep track of time from 0 to 136 years in 61.03-ms intervals;
- There is a correlation between spacecraft time and the first bit of a defined transfer frame;
- It is easy to reconfigure the RSDL ASIC to other applications: The length of the transfer frame is programmable, software defines the time of the resynchronization of the transfer frames, and the RS encoder can be turned on and off; and
- Software that resides in the flight computer can read and write status and interrupt signals generated by the RSDL ASIC.

This work was done by James A. Donaldson, Huy H. Luong, and Steven H. Wood of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronics Systems category, or circle no. 180 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office, Mail Stop 122-116, 4800 Oak Grove Drive, Pasadena, CA 91109, (818) 354-2240. Refer to NPO-19614, volume and number of this NASA Tech Briefs issue, and the page number.

Hardware-Command-Decoding ASIC

Advantages include compactness and low power consumption.

NASA's Jet Propulsion Laboratory, Pasadena, California

A hardware-command-decoding application-specific integrated circuit (HCD ASIC) is designed to decode digital command signals transmitted from a ground station to a spacecraft (uplink commands). Implemented in the ASIC is a portion of the spacecraft uplink protocol specified in the widely used Consultative Committee for Space Data Systems (CCSDS) international standard. A terrestrial version might be useful, for example, in decoding digital command signals for a mobile robot. The HCD ASIC performs functions that previously required several different circuits, while taking up less room and consuming less power. Implemented on a single silicon-based chip in a 256-pin.
Still puzzled about how to cut or mark your product?

Steel, labels, acrylic, foam, cork, leather, fabric, lace, gaskets, sail cloth, nylon, sandpaper, vinyl, specialty paper, wood, and plastic. Every day over 15,000 Synrad CO₂ lasers cut, drill and mark these and many other materials. Applications are practically boundless—the more you learn about our lasers, the more uses you will find for them.

Simple to use with the reliability demanded by the toughest industrial applications. No gas bottles to replace, tools to resharpen or nozzles to clean—our lasers offer maintenance-free operation 24 hours a day for over four years. That's why Synrad lasers cost less to buy and run than other technologies.

Integrating our lasers into your existing application is easy. We design our CO₂ lasers to be components—think of them as light bulbs—to mate with XY tables, gantry systems, or robot arms. No major redesigns are necessary to obtain the benefits of laser processing.

Our all-sealed technology means no adjustments or alignment problems—ever.

Eliminate die cutters, blades, scribers or ink. The small focused laser beam produces sharp, clean edges and, as the process is non-contact, intricate patterns can be cut in thin, delicate materials with no drag—even at high speeds. CO₂ lasers can offer increased precision, higher processing speeds and less waste.

Never used a laser before? Neither had most of our customers before talking to us. To learn how sealed CO₂ lasers can help improve your process quality and reduce your manufacturing time and costs, call 1.800.SYNRAD today.

www.synrad.com

Send us your samples for a FREE Process Evaluation

Can you benefit from laser technology? Find out by sending us samples (remember to include a description of your current process and, if possible, an example of a “finished” product). Within 3–5 days you’ll receive a Synrad SamplePak™ containing your samples (suitably marked, drilled or cut by our Applications Facility), a written Materials Evaluation and more information on implementing laser technology.
The HCD ASIC performs functions that previously required several different circuits, while taking up less room and consuming less power.

This ASIC is designed to operate in conjunction with (1) an engineering flight computer (EFC) connected via an intersubassembly bus (ISB), (2) critical relay controllers (CRCs), and (3) a start-up programmable read-only memory (PROM). The figure shows the hardware and software functional blocks of the HCD ASIC. In addition to the HCD block, this ASIC contains a block that performs error detection and correction (EDAC) on data that comes from the PROM, a CRC block, an ISB interface block, and a fault-detection unit (FDU). The blocks are integrated in a highly efficient manner to make them fit together on the single chip. A key feature of this ASIC is the ability to accelerate processing in the detection of "start" data sequences and in EDAC, using parallel processing. Another key feature of this chip is the use of the double-buffer method for read/write/status and for resolving overruns of data.

The data from the PROM are in the form of 16-bit words with 6 parity bits. The PROMEDAC corrects any single-bit error and signals to the ISB bus mas-

RUGGEDTRONICS

Ruggedized Peripherals
RUGGED MEMORIES
FOR SEVERE ENVIRONMENTS

- Sealed Units - For moisture, dust, corrosive atmosphere
- Pressurized designs for operation over 10,000 feet
- Removable Units
- Rack mount design
- High levels of vibration and shock isolation
- Tempest designs
- Designs for Hard drives, Optical drive, Tape and Floppies
- Optional interfaces and input power

24711 Redlands Blvd. No. G
San Bernardino, CA 92408
(909) 796-5374 FAX (909) 796-7704

For More Information Circle No. 418
PROMEDAC finds an uncorrectable error, it gives notice to that effect by sending out a "bad" parity signal on the data-bus portion of the ISB.

The FDU includes a watchdog timer and provides interrupt-control support, reset control, and eight discrete outputs that facilitate the exchange of information on the integrity and operational condition of the system.

The ASIC receives a serial, digital data stream as well as a clock signal and a "lock" signal from the uplink data receiver. Two parallel-processing algorithms are used in the HCD block, where traditionally a serial process has been used. "Start" detection is performed by checking the 32 most recent bits of data with the acquisition sequence followed by the "start" sequence. EDAC is also performed by using Perlman's (1980) serial algorithm in a parallel process. A search of uplink data is performed, depending on the "active" or "inactive" state of the HCD. Whenever the "lock" signal is not present, the ASIC goes into the "inactive" state and ignores the uplink. When the "lock" signal appears, the ASIC goes into the "search" state and starts searching uplink data for the "start" sequence. It then goes into the "decode" state and starts decoding code blocks.

EDAC is performed on each code block, and the code block is placed in a data buffer accessible via software. A "tail" sequence forces the ASIC back into the "search" state. Software must fetch a code block from the data buffers (described below) and perform the format checks and interpretation of data. The ASIC presents code blocks to software that pieces them together to form larger frames.

The ASIC contains two data buffers that are used to pass each uplink code block to the software. Each buffer consists of four 16-bit registers and can hold one 64-bit code block. These two data buffers enable the software to read one buffer while the hardware loads the other buffer.

The CRC block communicates directly with the HCD block. It contains data on the state of the command-and-data subsystem of the spacecraft and on the configurations of other parts of the spacecraft. The CRC block includes CRC and EFC mask registers, into which data are written from the ground by use of a specific transfer-frame format. The CRC block includes an EFC/CRC interface that comprises three registers that store 24 volatile CRC bits. These bits are readable and writable through the ISB. An HCD/CRC interface also provides 24 nonvolatile control of relays. Relay state may be changed ahead through the ISB.

The ISB interface connects the ASIC to the outside world through the ISB bus. It also serves as the main interface between the EFC and the command-and-data subsystem. It generates all necessary ISB bus timing signals.

This work was done by Gary S. Bolotin, James A. Donaldson, Huy H. Luong, and Steven H. Wood of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Systems category, or circle no. 152 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office, JPL, Mail Stop 122-116, 4800 Oak Grove Drive, Pasadena, CA 91109. (818) 354-2240. Refer to NPO-19615, volume and number of this NASA Tech Briefs issue, and the page number.
To us, good vibration is an oxymoron.

We don't like to see equipment shaking and shimmying, either. At Hardigg, every case is engineered to protect its cargo from punishing drops, temperature fluctuation and vibration. Even delicate instrumentation is safe inside a waterproof, dust-proof, airtight and corrosion-proof Hardigg case, fitted with custom foam inserts or the most rugged shock-mounted racks in the industry. Performance tested to meet military specifications, they are available in over 275 standard sizes and unlimited custom configurations. With a Hardigg case, you can count on your equipment to perform, wherever you ship it. And you won't have to face the music.

See us at AFCEA TechNet, Booth 1850

ASIC Physical Layout for the HCD ASIC

HCD ASIC performs a number of functions at unprecedented speed.

NASA's Jet Propulsion Laboratory, Pasadena, California

An integrated circuit (IC) physical layout has been developed for the HCD ASIC — an application-specific integrated circuit that decodes digital command signals transmitted from a ground station to a spacecraft (uplink commands). The HCD ASIC is described in "Hardware-Command-Decoding ASIC" (NPO-19615), which appears elsewhere in this issue of NASA Tech Briefs. The present physical layout will be converted to a mask for IC fabrication of the HCD ASIC.

The physical layout has been extensively simulated for its functions of receiving and decoding the uplink commands through a programmable read-only memory (PROM) interface, including conversion of the command data from the serial uplink format to parallel format. At the same time, the HCD ASIC provides detection of some triple bit errors, detection of all double bit errors, and correction of all single-bit errors in the uplink commands, plus detection of hardware faults, all at unprecedented speed. Another unique feature is the use of the double-buffer method for read/write and status for resolving overruns.

This work was done by Gary S. Boloin, James A. Donaldson, Huy H. Luong, and Steven H. Wood of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Systems category, or circle no. 127 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office JPL, Mail Stop 122-116, 4800 Oak Grove Drive, Pasadena, CA 91109 (818) 354-2240. Refer to NPO-19628, volume and number of this NASA Tech Briefs issue, and the page number.

Column-Loading Input Chip for Neural-Network Module

All functions would be performed within a cycle time of 250 ns.

NASA's Jet Propulsion Laboratory, Pasadena, California

The column-loading input chip (CLIC) is a conceptual integrated-circuit chip that would serve as an interface between (1) any of various sources of image data and (2) a three-dimensional analog neural network (3DANN) of the type described in "Neural-Network Modules for High-Speed Image Processing" (NPO-19881), NASA Tech Briefs, Vol. 21, No. 10 (October 1997), page 26. The overall functions of the CLIC (see Figure 1) would be to load 8-bit digital image-intensity signals from a 64 x 64 array of pixels, convert these digital signals to an array of 64 x 64 analog voltages, and couple these voltages simultaneously to all of the corresponding 64 x 64 input terminals of the 3DANN. To prevent a data-input bottleneck, the CLIC is designed to perform these functions within a 3DANN-cycle time of 250 ns. The digital-to-analog conversion feature is the use of the double-buffer method for read/write and status for resolving overruns.

This work was done by Gary S. Boloin, James A. Donaldson, Huy H. Luong, and Steven H. Wood of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Systems category, or circle no. 127 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office JPL, Mail Stop 122-116, 4800 Oak Grove Drive, Pasadena, CA 91109 (818) 354-2240. Refer to NPO-19628, volume and number of this NASA Tech Briefs issue, and the page number.

Figure 1. The CLIC Would Serve as an Input Interface, for example, to perform rastering on a sequence of digitized 64 x 64-pixel subimages from 256 x 256-pixel image source and digital-to-analog conversion for input to a 64 x 64-pixel 3DANN.
If you know AutoCAD L797 software, you know it's the easier to learn & use sibling of full-blown AutoCAD® software. AutoCAD LT is the low-cost professional CAD package for production drawings or less complex CAD needs like viewing and light editing. There's less to learn, but AutoCAD LT is easier to use too, with our Content Explorer™ that lets you drag & drop symbols and blocks directly into your drawings. It's 100% DWG compatible for full data integrity and visual fidelity. In fact, it's more like AutoCAD than any other low-cost CAD package because it is AutoCAD, only lighter.

We're so sure you'll like it, AutoCAD LT is guaranteed, money back. $489 suggested retail price. See your local software retailer or authorized Autodesk reseller. For more information, visit www.autodesk.com/autocadlt or call 1-800-225-1076.
As the data for each successive column or row of new data was shifted in, the data in the registers in the rightmost or up or down (for input by rows), and the data in the registers in the rightmost column (in the case of column input) or in the bottom or top row (in the case of row input) would be destroyed and replaced by new data.

While the data were being shifted into the CLIC, the MDACs would continue to operate on the data from the preceding 3DANN cycle. When all the data for a 64 x 64 array of pixels had been shifted in, all MDACs would simultaneously perform analog-to-digital conversions on the current contents of their local shift registers. After a settling time of about 140 ns, the analog output voltages of the MDACs would be ready for processing by the 3DANN. During the remaining 110 ns of the cycle, these voltages would continue to be available to the 3DANN for processing, and image data for the next cycle would be shifted in.

This work was done by Tuan A. Duong of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Components & Circuits category, or circle no. 189 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office, JPL, Mail Stop 122-116, 4800 Oak Grove Drive, Pasadena, CA 91109 (818) 354-2240.

Refer to NPO-20033, volume and number of this NASA Tech Briefs issue, and the page number.
Compaq Computer Corp., Houston, TX, has introduced enhanced models of two of its workstation: the Professional Workstation 5100 and 6000. The 5100 features one or two 266-, 333-, or 333-MHz Pentium II processors; maximum memory of 512 MB, five slots; five bays; and a 4-GB Wide-Ultra SCSI drive. The new version of the 6000 workstation features one or two 333-MHz Pentium II processors; maximum memory of 3 GB; six slots; 10 bays; and 10K drives. The 3-GB maximum memory capacity is the highest in an NT workstation, enabling the system to hold large, complex models, and reduce disk swapping. New graphics accelerator options include ELSA's new GLoria Synergy with 8 MB of SGRAM for resolutions to 1920 x 1200. The Diamond Multimedia Fire GL 4000 3D graphics accelerator has been optimized for faster transfer rates and better texture mapping.

For More Information Circle No. 746

Cross Pen Computing Group, a division of A.T. Cross, Lincoln, RI, has introduced the CrossPad™ portable digital notepad that enables users to write by hand in ink on a standard pad, and transfer their handwriting directly to their PC with the press of a button. Once in the PC, the writing or drawings can be filed, reorganized, faxed, e-mailed, or printed in handwritten form or ASCII text. Designed for use in Windows 95/NT applications, the system features an electronic pen and pad. Users take notes in ink on a standard pad of paper, while the pen transmits a signal through the paper, where the handwriting is recorded onto a digital page in the digital notepad. To access the handwriting, the user plugs the CrossPad into their PC via a cable that attaches to any standard COM port. The notepad operates on four AAA batteries.

For More Information Circle No. 741

Cherry Electrical Products, Waukegan, IL, has announced the G81-8000 (full-size) and G81-7000 (16" compact) Series multifunctional modular keyboards capable of reading smart cards, magnetic stripe cards, and bar codes on a single keyboard. Both models have 104 keys and are equipped with a smart card reader capable of reading/writing to any microprocessor-based and/or data storage memory card that uses protocols complying with ISO 7816. Data is exchanged between the keyboard and computer via an AT or PS/2 interface. Also available is a magnetic card reader capable of reading any magnetic card complying with ISO 7811. Up to four tracks can be read simultaneously. The keyboards can be ordered with an integrated bar code decoder that automatically recognizes and decodes popular bar codes. GUI-based keyboard configuration software is provided to reprogram keys.

For More Information Circle No. 745

The FieldPAC™ all-metal, three-inch-thick attaché-style portable computer from Dolch Computer Systems, Fremont, CA, features a 15.1" TFT display, ISA/PICI expansion, and Pentium® MMX performance. The display section of the computer is designed to accommodate up to an 18.1" screen size, and can be grown in depth, independent of the main system chassis. PanelLink™ and LVDS flat-panel video communications interfaces are implemented, providing compatibility with new display technology. The unit is housed in an aluminum-alloy enclosure that protects against shock and vibration; dust, dirt, and moisture; and electromagnetic fields. The hard drive is cushioned in a Sorbothane™ cocoon that isolates it from shock and vibration. The computer can hold a full-length ISA or PCI expansion card, plus two Type II or one Type III PC cards. It accepts power from any 90 to 265 VAC 50-60 Hz source or from a 12 VDC cigarette lighter outlet.

For More Information Circle No. 738

Hewlett Packard, Palo Alto, CA, has introduced five HP Kayak PC workstations that feature Intel's 333-MHz Pentium® II processor. Included are three Kayak XA PC workstations for the entry-level category of Windows NT-based PC workstations, for users running 2D and business 3D graphics; a Kayak XU PC workstation that supports single- and dual-processor configurations; and a Kayak XW PC workstation that also supports single- and dual-processor configurations, and features the HP VISUALIZE fx4 OpenGL graphics subsystem. The systems feature 64 MB of synchronous DRAM expandable to 384 MB; a 6.4 GB Ultra ATA hard disk or a 4.5 Ultra Wide SCSI hard disk; and on-board AGP graphics. They also feature HP TopTools desktop management interface PC-management software; HP LAN Remote Power for 10Base-T and 100Base-T networks; and PC hardware-monitoring features with preventative alerting.

For More Information Circle No. 736

Kontron Elektronik Corp., Newport Beach, CA, offers the IN Rave industrial notebook computer that features a magnesium case, configurable portable IPC, a ZV port for camera connection, and the ability to add PCI frame-grabber cards. It is designed for high-impact and vibration applications in field service, industrial automation, and metrology. It is configured with Pentium® 290-MHz MMX™ processors or can be upgraded to 233 or 266 MHz. Weighing less than 11 pounds, the notebook features an 11.3" SVGA display or an optional 15.3" XGA display. The computer's battery pack has full-operation run time of two hours, and can be extended to six hours. Two expansion bays can be configured with batteries, CD-ROM, or floppy disk drives, or combination modules. It can accept long PCI cards for frame grabbers or measurement cards.

For More Information Circle No. 735
Panel Components Corp., Oskaaloosa, IA, offers a new line of miniature Class I ground cordsets rated at 2.5 amps for use with laptop computers. One end of the cordset is terminated with an IEC 329 C5 connector and the other end is terminated with an appropriate country-specific plug. Versions are available for North America, Japan, Australia, continental Europe, Britain, India/South Africa, Denmark, Sweden, Italy, and Israel. Current rating is 2.5 amps, with service at 125-250 VAC. Foreign versions are constructed with black PVC molded terminations on 3 x 0.752 mm conductor, and are available in six-foot lengths. Mating inlets and power entry modules are available.

For More Information Circle No. 742

FieldWorks, Eden Prairie, MN, offers the FW7000 Series laptop workstations that feature an 810-MB, 100G operating hard drive; 1-MB video DRAM; sealed mousepad pointing device; two serial ports; and external PS/2-type keyboard and mouse ports. The backplane design allows for up to six ISA/PCI full-sized cards or six half-size cards, or a combination of both.

Options include batteries made up of 20 NiCd or NiMH cells; dual removable hard drives; removable hard drive under the keyboard; a backplane bracket that holds two PCEMAICIA cards; a 1/2-card filtered cooling fan; a ruggedized CD-ROM drive under the keyboard; and an aluminum travel case. Windows 95 on CD-ROM or 3.5" disks can be pre-installed.

For More Information Circle No. 737

The 96 Series sealed keyboard/trackball from Computer Keyboard Systems, Santa Monica, CA, is compatible with IBM AT/PS/2, DEC, RS-232, and other standard computers. The low-profile keyboard/trackball unit, in cased or uncased configurations, meets NEMA 4/4X standards, and is available in the standard 96-key version.

The mechanical keyswitches, rated at more than 20 million cycles, are protected by a 2-mm-thick steel plate with a wear- and chemical-resistant polyester front sheet and overall moisture-protection sealing. Faraday Cage construction ensures compliance with EMC/EMI requirements. The unit is adaptable to vertical panel mounting, and can be fitted into an 18" rack system. Versions with 42, 128, and 168 keys are available.

For More Information Circle No. 740

The COMPstation U10-300 Sun Ultra 10-compatible desktop workstations from Tatung Science & Technology, Milpitas, CA, feature the PCI I/O bus and the 300-MHz UltraSPARCIII PCI processor from Sun Microelectronics. The 64-bit processor supports five 32-bit PCI devices at 33 MHz; an additional 64-bit UPA slot is designed for vertical add-ons such as Creator graphics cards.

Configurations include 512 KB of external cache; 64 MB of memory, one 4.3-GB hard drive, one 1.44-MB floppy drive, and a PCI graphics card. The workstation is designed for engineering, medical research, geophysics, and other high-end applications. An add-on disk array storage subsystem boosts hard disk capacity to 80 GB and allows support of Internet or Intranet applications.

For More Information Circle No. 739

Greco Systems, El Cajon, CA, has introduced the TSS-12 color touchscreen computer with a 12.1" x 800 x 600 SVGA display. The fully integratable PC is designed to accommodate shop floor environments, and features a 300 NIT monitor. The unit also features a Media GaXt 290-MHz processor. It comes with external keyboard and printer ports, but is designed for keyboard- and mouse-free operation of Windows-based programs.

The screen responds to fingertip input and is resistant to most chemicals and solvents. It is equipped with a fan and filtration system designed to cool the system and protect it from harmful debris. The swivel base can accommodate tabletop or machine-side placement. The unit utilizes PC-104 technology and can be integrated into Token Ring or Ethernet local area networks.

For More Information Circle No. 744
DC-Excited Thermostrain-Gauge Signal-Conditioning Circuit

Gauge-resistance and temperature signals are separated.

Dryden Flight Research Center, Edwards, California

The figure illustrates a dc-excited Anderson-loop circuit that includes (1) thermocouples for measuring the temperature of the strain gauge and (2) a signal-conditioning circuit that separates the temperature and strain-gauge signals in the sense that one output voltage is proportional to the change in the strain-gauge resistance and another voltage is proportional to the thermoelectric voltage indicative of the temperature of the strain gauge.

The concept of the Anderson loop was discussed previously in three articles in NASA Tech Briefs; namely, "Constant-Current Loops for Resistance-Change Measurements" (ARC-11988), which appears elsewhere in this issue; "The Anderson Current Loop" (DRC-00001), Vol. 18, No. 12, (December 1994), page 30; and "Patent Statement on the Anderson Current Loop" (ARC-13376), Vol. 20, No. 11 (November 1996), p. 12a. To recapitulate: In the basic Anderson current loop, voltage drops in lead wires are excluded from measurement by use of the well-known Kelvin technique, in which a known current is supplied via two lead wires to a resistance to be determined, the voltage across this resistance is coupled to a high-input-resistance voltmeter via two other lead wires, and the voltage drops in these voltage-measurement lead wires can be neglected because they carry negligible current by virtue of the high input resistance of the voltmeter.

Here, a known constant current I is supplied to a strain gauge of resistance $R + \Delta R$, (where R is an initial value and ΔR is a change caused by the combined effects of strain and temperature). The strain-gauge resistance is connected in series with two thermocouple wires of resistance R_1 and R_2, respectively. These wires are both made of the same one of two thermocouple alloys and are of the same length, so that $R_{w1} = R_{w2}$. Two other wires (R_3 and R_4) made of the other thermocouple alloy, are connected to the terminals for measuring the voltage drop in the strain-gauge resistance. A reference resistor ($R_{ref} = R$) at a reference or ambient temperature is also connected in series with the strain-gauge resistance.

The thermoelectric voltage of thermocouple (R_{w1},R_{w2}) is given by

$$v_{TC1} = v_1 - v_2,$$

the thermoelectric voltage of thermocouple (R_{w3},R_{w4}) is given by

$$v_{TC2} = v_3 - v_4.$$

The thermoelectric-output-voltage level of each thermocouple represents the temperature of its connection to the strain gauge. Straightforward algebraic manipulation of the equations that relate the terminal voltages v_1 through v_4 with the voltage drops in the various resistances and with the thermoelectric voltages yields the following equations for the desired output voltages:

$$v_{TC} = (v_1 - v_3)/2$$

and

$$\Delta R = (v_2 - v_4).$$

As indicated in the figure, the terminal voltages v_1 through v_4 are coupled to Anderson subtractors comprised of buffered differential level shifting amplifiers wired to implement these equations. The subtractor outputs are then the out-
Partnering with GMR helps you stay out in front with your IT needs.

Information technology is a fast-paced race.
Keeping up with the rate of change is an enormous challenge for most organizations. Services and solutions are improved and upgraded. Options to expand or streamline are constantly introduced. Business requirements change.

Newer... faster...better...how do you keep up with it?

GMR is in the business of keeping its clients out in front! From concept to implementation, GMR's resources are prepared to provide the specific information technology services and products to meet your on-going needs. Our mission is to provide the right services and solutions at the right value and to consistently exceed your expectations.

Advanced Capabilities
- Database Design and Engineering
- Groupware/Workflow Development
- Internet/Intranet Application Development
- LAN/WAN Management & Services
- Systems Engineering and Support
- Computer Telephony Integration
- Calendar Year 2000 Solutions
- Contract Manufacturing

Advanced Advantages
Our experienced staff, unique technological focus and quality customer relationships are backed-up by over sixteen years of solid performance. These advantages can help your business move to the front. If you are forward thinking, call us today for more information on how GMR can help your enterprise advance to the finish line in first place!

For More Information Circle No. 515
The 80-channel Model 7001 High Density Switch System from Keithley helps you automate multipoint testing with minimum signal degradation and maximum reliability. You can also choose from over 40 switching cards to meet your production test needs.

The Model 7001 is only one way Keithley can help you achieve higher efficiencies and greater yields while ensuring your system's integrity. With more specialized switching products than any other manufacturer, Keithley has the right system for you. Whether you are measuring femtoamps to amps, nanovolts to kilovolts, or DC to 18GHz, Keithley switches offer you solutions to meet any production test system situation.

For complete product specifications, a free copy of our Switching Handbook, or to talk with an Application Engineer, contact Keithley today at 1-800-552-1115.
Lewis Research Center, Cleveland, Ohio

Due to their low density and exceptionally high strength and modulus, graphite fiber composites are being used increasingly for the fabrication of aircraft and spacecraft. Because of their superior mechanical properties, these composites have been replacing metals, such as aluminum alloys, in many applications. The replacement of metals has been slow, however, when high electrical conductivity is needed because of the relatively poor electrical conductivity (<0.1 percent of metals) of composite materials. Designers have also shied away from graphite-polymer composites in applications where shielding from ionizing radiation is important, because of the poor performance of these composites.

These shortcomings of graphite-fiber polymer composites can be addressed by intercalating the fibers before fabricating the composites. Intercalation is the insertion of guest atoms or molecules (intercalates) in between the carbon layers of the fibers. If the intercalate is chosen carefully, the electrical conductivity of the composite can be increased nearly an order of magnitude, and the specific radiation shielding can surpass low density metals.

Two intercalates, bromine and iodine monobromide, have been shown to have the right combination of properties to make them commercially viable options. They combine the virtues of high electrical conductivity, high thermal conductivity, and good radiation shielding with excellent stability and easy processibility.

Bromine has been shown to intercalate a wide variety of pitch-based and vapor-grown graphite fibers. Most of the research has centered around Amoco's Thornal fibers. Bromine has been shown to enhance the conductivity of P-55, P-75, PO-100, P-120, and K-1100 fibers by a factor of three to six. The resulting material has an electrical conductivity surpassing that of stainless steel. Furthermore, these intercalation compounds are stable to temperature well above the processing temperature for most resins, and are impervious to moisture and ultra-high vacuum. Fabrication of composites from intercalated fibers does not degrade their

SPS6000 is the ideal analog front end for your PC-based data acquisition. It offers up to 32 analog inputs, premium signal conditioning with powerful programmable filtering, signal processing functions like sum/difference, speech capture, sample/hold and signal comparison—all up front, all in real time! Your PC can gather simultaneous data points with virtually zero time skew.

SPS6000 delivers continuous ±10V analog outputs, fully scaled and with up to 10KHz per-channel bandwidth. You don't need expensive I/O boards. You'll have more room for expansion, and much more computing power available for data manipulation, storage, communication and display tasks.

- Plug-in cards for a wide range of real-world inputs—including RTDs, LVDTs, dc/ac strain gages, voltage, current and pulse/frequency
- Exceptional measurement stability and accuracy, even in the face of substantial dynamic content
- Analog function modules for event- and time-coordinated measurement and control
- Front-end functions at true analog speed, independent of your PC

Call us today or visit our web site to learn more about how to boost the power of your PC system with an SPS6000 front end from Daytronic—the world leader in analog signal conditioning technology.

Call: 1-800-668-4745
Daytronic Corporation www.daytronic.com
properties, and composite properties can be predicted by using a simple rule-of-mixture. Although intercalation does not enhance either the mechanical properties or the thermal conductivity of graphite fiber composites, neither does it degrade them. The mechanical properties are virtually identical with those of pristine fibers, except that there is an enhancement in the interlaminar shear properties. The thermal conductivities of these fibers are among the highest of all materials, exceeding such metals as aluminum and copper. Also, because of the high thermal absorption and emissivity of graphite fibers, radiant heat is rejected much more efficiently from electrical components than when they are encased in highly reflective metals. The mass absorption coefficient for ionizing radiation by composites made from intercalated fibers is enhanced by a factor of four, to a value exceeding that of aluminum.

Iodine monobromide has not been studied as extensively as bromine has as an intercalate for graphite fibers. Those studies that have been done reveal intercalation compounds nearly identical with those utilizing bromine. The exception is in the mass absorption coefficient for ionizing radiation, which is nearly twice that of bromine intercalation compounds, and three times that of aluminum. The implication is that iodine monobromide intercalated fiber composites can provide radiation shielding equal to that of aluminum with one-third the mass.

The primary application envisioned for this technology is electromagnetic interference (EMI) shielding of electronics. Calculations indicate that the shielding effectiveness of these composites, while not as high as that of aluminum, is higher than the requirements for many applications, and higher than that of joints and penetrations through metallic boxes. Experimental studies confirm the high shielding effectiveness calculations. The surface conductivity, while not as high as that of metals, is high enough that no special surface treatments (sanding off the surface polymer layer, etc.) are required. These materials can be used effectively with conventional EMI shielding gasketing strategies.

The total achievable mass savings depends on the particular requirements of the shield. If the limiting factor is shielding from high-energy radiation, a mass savings of 66 percent is achievable. If the limit is strength, 86 percent of the mass can be saved. Finally, if the limit is stiffness (modu-
Mold Part

INTERCALATED GRAPHITE POLYMER COMPOSITES BUILT USING STANDARD LAMINAR TECHNIQUES

Intercalated Graphite Polymer Composites are built using standard laminar techniques.

Prepreg

lus), over 90 percent of the mass can be saved. The implications for such weight savings can be dramatic. In spacecraft, because the payload is a smaller portion of the spacecraft than the power and communications systems, the payload may be increased by as much as 40 percent. In communications satellites, the mass savings could be taken up in attitude-control fuel, extending the useful lifetime of the spacecraft. In some cases, it could enable the launch by smaller and cheaper launch vehicles. In aircraft, decreased weight would allow for fuel savings, which, when figured over the life of the aircraft, could be substantial. For consumer products, such as notebook computers and cellular telephones, lower weight itself might be a significant selling point.

This work was done by James R. Gaier of Lewis Research Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Components and Circuits category, or circle no. 124 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Lewis Research Center, Commercial Technology Office, Attn: Tech Brief Patent Status, Mail Stop 7-3, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-16535.

Instrument Records Electric Fields Generated by Lightning

This instrument complements another instrument that measures magnetic fields generated by lightning.

John F. Kennedy Space Center, Florida

A portable, self-contained, compact instrument measures and records transient electric fields generated by nearby lightning strikes. This instrument complements, and in many respects is similar to, the one described in "Instrument Records Magnetic Fields Generated by Lightning" (KSC-11769), NASA Tech Briefs, Vol. 19, No. 4 (April 1995), page 38. Both instruments are designed to be placed near sensitive electronic equipment before thunderstorms.

Three Orthogonal Antennas sense the three orthogonal components of the rate of change of electric field; that is, E_x, E_y, and E_z. These components and their time integrals (proportional to the electric field) are sampled and recorded for subsequent analysis.
The data recorded by the instruments during thunderstorms can be analyzed afterward to determine whether the electromagnetic fields associated with the lightning were strong enough that they might have damaged and/or affected the operation of the sensitive equipment. Thus, the instruments provide data that can be used in deciding whether the sensitive equipment should be tested for damage and/or other effects caused by lightning. Typical installations in which the instruments could prove beneficial include outdoor sensing equipment, computer rooms, broadcasting stations, and powerplant-control rooms.

The present instrument (see figure) includes three orthogonal antennas on an electrically conductive sphere. Each antenna senses one of the three orthogonal components of the transient electric field. The current $i(t)$ induced in each antenna is proportional to the rate of change of the electric-field component $E(t)$, and is given by

$$i(t) = kA\varepsilon \frac{\partial E}{\partial t}$$

where t is time, A is the area of the antenna, ε is the permittivity of air (very close to ε_0, the permittivity of the vacuum), and k is a constant that expresses the concentration of the electric field in the vicinity of the antenna or a similar electrically conductive object. The spherical shape was chosen because k for a sphere is easily determined and is found to equal 3.

In the instrument, the currents are measured to determine the rates of change of the components of the electric field. The current signals are also integrated to obtain signals proportional to the electric-field components.

The instrument includes a microprocessor that controls its overall operation. It also includes an analog-to-digital converter and a sampling clock. Under control by the microprocessor, the analog-to-digital converter samples the waveform of one component of the electric field at a rate of 10 MHz for a duration of 50 μs. (The reason for not sampling all three waveform components is simply that doing so would consume too much power.) Also under control by the microprocessor, the peak values of all three components of the electric field and their time derivatives are sampled and compared with specified threshold levels during intervals of 1 ms. The electric-field waveform sample values and their times are stored in a non-volatile random-access memory (NVRAM). The peak electric-field and derivative sample values that exceed the threshold levels, and their times, are also stored in the NVRAM.

The stored values are subsequently read out by use of a portable computer. The instrument is powered by batteries and can operate unattended for as long as two weeks. The inclusion of the NVRAM prevents the loss of data in the event of a power failure. The batteries can be changed in the field, so that the instrument can remain in place and continue to measure the electric field without interruption.

With their 10-MHz sampling rate, both this instrument and the previously reported magnetic-field instrument measure electromagnetic fields generated by lightning more accurately than do portable commercial magnetic-field meters. Lightning waveforms typically include frequencies up to tens of megahertz, while the commercial meters, which are designed to measure magnetic fields of high-voltage power lines, are usually limited in frequency response to a few hundred hertz.

This work was done by Pedro J. Medelius and Howard James Simpson formerly of I-Net for Kennedy Space Center. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com under the Electronic Components and Circuits category, or circle no. 156 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).
Optoelectronic System Measures Tile Cavities

Three-dimensional measurement of a cavity is accomplished in less than one second.

John F. Kennedy Space Center, Florida

A hand-held optoelectronic shop tool measures cavities of the order of 6 in. (15 cm) in length and width, 2 to 4 in. (5 to 10 cm) in depth, with nominally flat side walls, and either curved or flat outer and inner surfaces. The system is called the Tile Cavity Measurement System (TCMS) because in the initial application for which it was developed, the cavities are those created by removal of space shuttle insulating tiles. In that application, the

Using a Hand-Held Shop Tool that contains a camera and a projector, the technician measures a tile cavity in less than 1 second. Previously, it was necessary to make and use a plaster model in a tedious, messy process that took as long as 30 hours and yielded marginal accuracy.
Use this digital, data retrieval device to access AMP samples, pricing and customer support.

It's so **easy to work** with AMP; the only helping hand you need is your own. Whether you're with a company on the way up, or one that's already there.

Easy access to AMP begins at **1-800-524-6579-Extension 2067**. It's the source for product literature, ordering, pricing, tooling, contact information for the nearest distributor locations, engineering help and drawings. Much of it, like our automated faxback service for specs and technical drawings, is available 24 hours a day. Our **Product Information Specialists**, available from 8 to 8 Eastern Time Monday through Friday, can answer your product questions and connect you with the sales and customer service people assigned to your company to make sure you get everything you need from AMP.

On the Internet, our extensive electronic catalog is waiting for you at **connect.amp.com**, with detailed engineering data on over 92,000 AMP interconnection products.

It's easy to access AMP with the device above. So easy, you might even give us a big hand.
data acquired by the system are used in computer-aided design (CAD) and in computer-aided manufacturing (CAM) of new tiles to fit in the cavities. The system can also be used to measure other cavities of similar size and shape.

The hand-held optoelectronic shop tool (see figure) contains a white-light projector that illuminates the surfaces of the cavity with a pattern of stripes. Two high-resolution video cameras mounted on opposite sides of the projector are aimed toward the sidewalls and inner surfaces of the cavity to facilitate viewing the cavity sidewalls from different angles. The reason for using two cameras is simply that one camera would not suffice to view all cavity surfaces. The combined field of view of the cameras is an area of about 10 in. (25 cm) square, which includes the side walls and inner surface of the cavity plus the surrounding outer-surface area. The projector and cameras are connected by a 30-ft (9-m) cable to a mobile workstation, which includes a computer, video display, and the control and interface electronics. The projector and cameras operate under control by the computer, and the outputs of the cameras are digitized and sent to the computer for analysis.

The projector and cameras are mounted on a rigid frame, which includes a shroud that keeps out background light and also serves to stabilize the tool against the cavity outer surface during measurements. The hand-held unit is equipped with handles and a pistol grip for positioning and control. On the pistol-grip handle are menu-selection thumb buttons and a trigger switch to initiate the measurement. A small color video monitor attached to the pistol-grip handle displays menus, video images of the measurement scene, and data.

The projector system includes a solenoid-operated translation stage with a striped pattern mounted on it. In operation, the video cameras acquire a set of four images of the pattern, each translated 1/4 of the stripe width. The entire measurement of a cavity takes less than 1 second. The shifted-stripe-pattern data are then processed by established phase-shifted-fringe-measurement techniques to obtain data from which the cavity surfaces are reconstructed in three dimensions. The data are stored and transferred to other computers in International Graphics Exchange Specification (IGES) format. The data can also be printed.

This work was done by Edward D. Huber and Rick A. Williams of Lockheed Martin Missiles & Space Co. for Kennedy Space Center. No further documentation is available.

Title to this invention, covered by U.S. Patent No. 5,561,526 has been waived under the provisions of the National Aeronautics and Space Act (42 U.S.C. 2457 (f)). Inquiries concerning licenses for its commercial development should be addressed to Edward D. Huber, Department H1-52, Bldg. 202, Advanced Technology Center, 3251 Hanover St., Palo Alto, CA 94304 (650) 424-3308.

Refer to KSC-11727, volume and number of this NASA Tech Briefs issue, and the page number.
Digital Signal Processing has revolutionized the world of synchronous detection, offering significant performance advantages over conventional techniques. Now this dramatic performance is available in two new instruments - the SR810 Single Phase and SR830 Dual Phase DSP Lock-In Amplifiers. These instruments use the same DSP technology as the flagship SR850 Lock-In Amplifier, letting you measure signals with greater accuracy, higher stability and less noise—at prices you expect from SRS.

The SR810 and SR830 have the specifications you need -
- 1 mHz to 102 kHz frequency range
- >100 dB of drift free dynamic reserve (without pre-filtering)
- Output time constants from 10 µs to 30,000 s (6, 12, 18, 24 dB/oct rolloff)
- Low distortion (-80 dBc) synthesized source

The features you want -
- Auto-gain, auto-phase, auto-reserve
- Harmonic detection (2F, 3F, ... nF)
- Four 16-bit DACs, Four 16-bit ADCs
- RS-232 and GPIB computer interfaces

At prices you'll appreciate -
- SR810 Single Phase DSP Lock-In Amplifier$3650
- SR830 Dual Phase DSP Lock-In Amplifier$3950

DSP. Only SRS has it.
You're looking at the two best video scan converters available anywhere. Both can automatically lock to interlaced or noninterlaced video sources and turn your high-resolution workstation, PC, or Mac displays into broadcast-quality video. At $5,900, the Model 9400JR provides excellent picture quality at an affordable price. The 9700XL provides extremely high-quality output images, an advanced feature set (including dynamic pan and zoom), and flexible control over all aspects of the scan conversion process. Now the proof! Call us for a free demonstration and see for yourself.

TO CONVERT REAL-TIME COMPUTER GRAPHICS TO VIDEO...
...and get the best possible image, you will need the Model 9400JR or Model 9700XL from Folsom Research.

A technique for estimating the boresight direction of a Global Positioning System (GPS) receiver antenna involves utilization of the relationship between the strengths of received signals and the direction-dependent antenna gain pattern. The technique is fundamentally different from, and much less precise than, other attitude-determination techniques based on interferometry with multiple antennas. The major advantage of this technique is that it quickly gives a coarse estimate, using data from only one antenna. The coarse estimate is not suitable for fine-attitude applications like aiming a telescope or a laser beam, but it can be used, for example, to guide the orientation of a broadbeam communication antenna, to aim a solar panel, or to initialize a fine attitude-determination algorithm or instrument.

The technique is most easily practiced in the case of an antenna with a broad radiation pattern in which the gain decreases monotonically with increasing angle off boresight. The GPS receiver used in this technique must be one that generates data on the signal-to-noise ratio (SNR) of the signal received from each GPS satellite that it tracks. Once the GPS receiver has computed its position from the received GPS signals, the direction to each tracked GPS satellite is known as a byproduct.

The SNR of the signal received from each tracked GPS satellite is taken as a crude measure of the relative strength of the signal and, as such, is used as a weighting value to obtain a vector sum: The unit vector in the known direction to each tracked satellite is multiplied by the SNR for that satellite. The sum of such scalar-vector products for all the tracked satellites is a vector, the direction of which is taken to be the estimated antenna boresight direction. The length of the vector also constitutes ancillary information about the geometric properties of the constellation of tracked GPS satellites.

If only one GPS satellite is being tracked, then the estimated boresight points directly at that satellite; such an estimate is usually erroneous, but it could be helpful in finding other satellites to track and thus obtain a better estimate. When six to eight GPS satellites are being tracked, the estimated boresight differs from the actual boresight by no more than about 15°. This work was done by Charles Dunn and Courtney Duncan of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Systems category, or circle no. 107 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). NPO-20323
When it comes to critical recording, we’re instrumental.

Quality is easy to detect. And no company provides a higher caliber of digital instruments than Sony. Reliable. Field-proven. And loaded with features that meet your needs for any type of on-site data acquisition. Our lightweight, easily portable data recorders use progressive technology such as Advanced Intelligent Tape (A1T), the new standard for high speed, large capacity digital data storage. But that’s not surprising, considering our record for pioneering DAT technology. Sony data recorders. Call us today and learn how you can take data acquisition to dramatically new levels.

OUR 1000 SERIES HIGH SPEED, DIGITAL DATA RECORDERS FEATURE A1T TECHNOLOGY, A WIDE-BANDWIDTH (UP TO 160KHz), MULTICHANNEL CONFIGURATION (UP TO 128CH), HIGH SPEED DIGITAL DATA (24 Mbps) TO RECORD EVER-INCREASING VOLUMES OF DATA.

Our data recorder interface software for Windows 95 and Windows NT enables high speed digital data transfer from our 200 & 1000 Series data recorders, performs various control functions and features quick, easy operation.
An integrated circuit physical layout has been developed for the RSDL ASIC — an integrated circuit that encodes telemetry data and transfers the data (which are grouped together in transfer frames) to a radio transmitter. The RSDL ASIC is described in "ASIC for Reed-Solomon Coding and Related Functions" (NPO-19614), which appears elsewhere in this issue of NASA Tech Briefs. The present physical layout will be converted to mask for IC fabrication of the RSDL ASIC. The physical layout has been extensively simulated for its timing, control, bus-arbitration, encoding, and data-transfer functions, which have been summarized in the noted prior article.

This work was done by James A. Donaldson, Steven H. Wood, and Huy H. Luong of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Systems category, or circle no. 115 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office JPL Mail Stop 122-116 4800 Oak Grove Drive Pasadena, CA 91109 (818) 354-2240 Refer to NPO-19626, volume and number of this NASA Tech Briefs issue, and the page number.

COSMIC, NASA's Software Technology Transfer Center, has an inventory of over 800 software packages that originally were developed by NASA and its contractors for the U.S. space program. These packages have a wide range of applications other than space exploration and are used by industry, academic institutions, and other government agencies.

For further information about software available from COSMIC, or to receive a free diskette catalog, contact COSMIC at:

COSMIC
The University of Georgia
382 East Broad Street
Athens, GA 30602-4272
Phone: 706-542-3265/
Fax: 706-542-4807
e-mail: service@cosmic.uga.edu
WWW: http://www.cosmic.uga.edu

Vacuum Connectivity
Building-Blocks for Vacuum Science and Technology
feedthroughs with 9, 15 or 25 pins hermetically sealed and electrically insulated using the latest in glass-ceramic bonding technology.

MDC provides a complete connectivity solution. Complete air-side Type-D connectors are included with each hermetic feedthrough assembly. For in-vacuum connections we have developed a unique combination of in-vacuum ribbon cables and Type-D connectors, constructed to meet the rigorous demands of UHV environments.

For additional information on this product or MDC's full range of vacuum components, call 1-800-443-8817.
Nonlinear Dynamic Analysis for Virtual Engineering that's:

1. As EASY as Linear Static Stress Analysis
2. At Linear Stress Pricing Levels
3. Fully Integrated with your CAD Station

Accupak/VE from Algor is the nonlinear dynamic analysis software that's as easy to use as regular linear stress analysis while providing advanced solution technology. Its ease-of-use, affordability, and compatibility with Pentium computers and mainstream CAD systems make Accupak/VE ideal for everyday engineering. Engineers can learn it quickly and easily with the help of Docutech-Technical Documentation On-line Information Resource.

Visit Algor at:
WWW.ALMOR.COM

Products
Services
Download Superdraw III

You have 4 ways to get your free demo video and CD-ROM:
1) Call: +1 (412) 967-2700
2) WWW.ALMOR.COM
3) E-mail to: info@algor.com
4) Complete this form and fax to:
 +1 (412) 967-2781

Name __________________
Company __________________
Address __________________
City __________________ State/Prov. ______ Zip/Postal Code ______
Country ____________ Phone: +1 (412) 967-2700
Fax: +1 (412) 967-2781

When the Engineering
Has to be Right

Algor, Inc.
150 Beta Drive, Pittsburgh, PA 15238-2938
USA
Phone: +1 (412) 967-2700
Fax: +1 (412) 967-2781
California: +1 (714) 564-0844
Europe (UK): +44 (11) (744) 424 246
E-mail: info@algor.com

Video includes 18 action packed minutes of real-world examples combined with Algor FEA demonstrations. See Accupak/VE in action. CD includes a complete version of Algor's website with detailed information and software you can try.

FREE
Reducing CTE Mismatch Between Coatings and Si-Based Ceramics

Coating compositions would be altered and/or intermediate coats would be used.

Lewis Research Center, Cleveland, Ohio

Two techniques have been proposed to reduce thermal-expansion mismatches between (a) substrates made of silicon, silicon-based ceramics, and silicon-based-ceramic composite materials and (b) surface coats that protect the substrates against chemical attack in oxidizing and/or corrosive environments. Typical substrate materials include SiC/Si composites. A typical coating material is mullite (Al$_6$Si$_9$O$_{23}$), which can protect silicon-based substrates against water-free oxidizing and corrosive environments. Mullite can also be applied as intermediate coating layers to relax stresses and enhance the adhesion of overlying protective layers of zirconia (ZrO$_2$) or non-stoichiometric anorthite (stoichiometric composition CaAl$_2$Si$_2$O$_7$). The coefficients of thermal expansion (CTEs) of mullite and of some other typical oxide coating materials are greater than the CTEs of silicon-based substrates and, as a result, the coatings tend to crack through their thicknesses. The cracks become pathways for the entry of the chemical species from which one seeks to protect the substrates.

In one proposed technique, one or more lower-CTE phase(s) would be incorporated into a mullite coating to reduce the CTE of the coating for a better CTE match with the substrate. Suitable lower-CTE compounds include cordierite (2MgO.2Al$_2$O$_3$.5SiO$_2$) and fused silica (see Figure 1). Mullite, cordierite, and fused silica would be chemically compatible with the substrate, with each other, and with typical other oxide coating materials. A composite coating of mullite with cordierite and/or fused silica could be applied by plasma spraying or by a wet chemical process.

The CTE of a polycrystalline material like a mullite/cordierite/fused silica composite can be approximated by a rule of mixtures: $\alpha = \sum \alpha_i V_i$, where α is the CTE of the composite, α_i is the CTE of the ith constituent, and V_i is the volume fraction of the ith constituent. Initially, the proportions of cordierite and/or fused silica could be chosen to obtain a desired value of α, according to this rule. However, because of the complexity of the phase composition of the mullite/cordierite/fused silica system, a process of trial and error would likely be necessary to establish the optimum composition.

In the second proposed technique, zircon (ZrSiO$_4$) would be applied as an intermediate layer between a substrate and an overlying protective coating. Optionally, if a dense, crack-free zircon coating could be produced, then it could be used, instead of mullite, as a protec-
For the First Time ever.....

NASA TECH BRIEFS on CD-ROM
1985-1997

FULLY SEARCHABLE BY KEY WORD, AUTHOR, TITLE, CATEGORY, OR THE NASA FIELD CENTER FROM WHICH THE RESEARCH ORIGINATED.

Each page appears exactly as it did in print.

The search engine works on "Boolean", "Fuzzy Logic", and "Stemming" basis.

PRINT OUT BRIEFS OR CATEGORIES OF BRIEFS WITH THE TOUCH OF A BUTTON.....

ZOOM IN ON SCHEMATICS AND DIAGRAMS WITH THE TOUCH OF A BUTTON.

Search 13 years of NASA technology worth over $130 billion at the touch of a button...

For only

$295

Plus $6.95 S & H, outside U.S. $15.95

E-MAIL CD@ABPI.NET

FAX: (212) 986-7864

CREDIT CARD ORDERS CALL TOLL-FREE 1-800-944-NASA

MAIL TO: NASA TECH BRIEFS
317 MADISON AVE #1900
NEW YORK, NY 10017-5391

Produced by CD/TECHNOLOGIES, INC. HUNTINGTON BEACH, CA.
tive coating, provided that there is no water vapor in the environment. In comparison with mullite, zircon has a CTE closer to the CTEs of the typical substrate constituents SiC and Si. If resistance to water is needed, then a protective coating of zirconia (ZrO2) or of various silicates could be applied over the zircon layer. Zircon would be chemically compatible with both the protective coating and the thin layer of SiO2 that typically forms on the surface of an Si-based substrate.

Like a mullite/cordierite/fused silica composite coating, a zircon coating could be applied by plasma spraying or by a wet chemical process. Plasma spraying could be complicated by the fact that zircon melts and freezes incongruently, forming cubic zirconia first upon cooling from the liquid phase. It might be necessary to add Y2O3 or CaO to the starting composition to stabilize the cubic phase and prevent volumetric changes while allowing the conversion to zircon to take place. Post-spray annealing might be necessary to help the zircon coating reach equilibrium and enhance its stability.

The CTE of zircon is slightly less than that of SiC, though greater than that of Si (see Figure 2). In the case of zircon plasma-sprayed on SiC, the slight difference between the CTEs results in a small compressive stress in the zircon. Inasmuch as the compressive strength of zircon exceeds its tensile strength, this small compressive stress could be advantageous in that it might offset small residual local tensile stresses and thereby help to prevent cracking. As in the first technique, one could incorporate lower-thermal-expansion phases like cordierite and/or fused silica to obtain a lower overall CTE; for example, to obtain a greater compressive stress in a coating on an SiC substrate or to obtain a closer CTE match with an Si substrate.

This work was done by Hongyu Wang of General Electric Co. for Lewis Research Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasa-tech.com under the Materials category, or circle no. 103 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Lewis Research Center, Commercial Technology Office, Attn: Tech Brief Patent Status, Mail Stop 7-3, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-16393.

Single Crystal Nickel-Base Superalloy

Modified turbine-blade alloy resists fatigue and crack growth.

Marshall Space Flight Center, Alabama

A modified alloy, known as Modified PWA1484, is a single-crystal nickel-base superalloy, developed under a NASA Marshall Space Flight Center contract for use as a turbine blade and vane alloy for the space-shuttle main engine (SSME). This alloy is a modified PWA 1484 composition that uses innovative thermal-process techniques to generate a
microstructure specifically tailored for SSME application. The superalloy exhibits significantly better fatigue and crack-growth resistance than previous turbine-blade alloys (such as PWA1480), particularly under severe hydrogen-embrittlement conditions.

When compared to the conventional alloy PWA1480, Modified PWA1484 had a high cycle fatigue life that is 100 times greater than PWA1480. Fatigue strength for the new single-crystal nickel-base superalloy was approximately 90 ksi (207 MPa) higher than the previous turbine-blade material.

In other tests, the smooth low cycle fatigue life for PWA1480 was compared to the Modified PWA1484. Fatigue life for the superalloy was more than an order of magnitude greater than PWA1480.

Additionally, this single-crystal nickel-base superalloy was compared against PWA1480 in notched low cycle fatigue. Modified PWA1484 proved to be 3 to 10 times greater than PWA1480 in notched low cycle fatigue.

When tested for fracture resistance, the Modified PWA1484 was significantly better in the critical near-threshold region of the fatigue-crack-growth curve than PWA1480. (The results of this test can be seen in the illustration.)

These comparisons show that alloys, such as this single-crystal nickel-base superalloys, will provide better turbine blades and vanes for space-shuttle components, such as high-pressure fuel and oxidizer turbopumps.

This work was done by Daniel P. DeLuca, Charles M. Biondo, and Barrie J. Peters of United Technologies Pratt & Whitney for Marshall Space Flight Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasaotech.com under the Materials category, or circle no. 153 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). MPS-31203

Modified PWA1484 has significantly better fatigue resistance in the critical near-threshold region of the fatigue-crack-growth curve than conventionally used material.
Automated PreLaunch Loads Estimation (APLLE)

A computer program quickly and accurately calculates prelaunch ground-wind loads for different launch-vehicle configurations.

Marshall Space Flight Center, Alabama

Over the past year, the Structural Dynamics and Loads Branch of Marshall Space Flight Center has been calculating prelaunch ground winds for several different launch-vehicle configurations. Engineers developed a computer programming system to streamline the analysis cycle.

This documented procedure, known as Automated PreLaunch Loads Estimation (APLLE), uses a spreadsheet, word processor, and FORTRAN computer programs to provide quick and accurate load estimations. APLLE can easily be adapted for structures other than launch vehicles.

APLLE combines the input of structure geometry (width and height), a reference peak-wind value, a reference altitude and density, and an estimated drag-coefficient value based upon the shape of the structure. With these inputs, APLLE calculates a concentrated load, cumulative shear, and bending-moment values for a set of discrete points. The spreadsheet macro provides rapid diagrams of shear and moment. Additionally, pressures are extrapolated from the concentrated loads to form a pressure field that can be applied to a finite-element code.

For a free-standing structure, wind loading is the only forcing function other than gravity acting on the vehicle. Calculation of these wind loads assumes the wind load acts as a steady-state load.

Wind loading is divided into two parts: the drag load and the vortex-shedding load. The drag load is assumed to act parallel to the wind vector, and the vortex shedding acts normal to the wind vector. An uncertainty factor of 1.5 is applied to the wind loads to account for vortex shedding and gusts.

This work was done by Samuel B. Fowler and Joseph Brunty of the Marshall Space Flight Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Mechanics category, or circle no. 192 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

MPS-31149

The Automated PreLaunch Loads Estimation (APLLE) procedure provides quick and accurate load estimations for a variety of structures.
The Modified Fully Utilized Design Method
Solutions are comparable to those obtained by nonlinear optimization techniques.
Lewis Research Center, Cleveland, Ohio

The modified fully utilized design (MFUD) method is undergoing development for use by engineers who favor traditional methods of designing structures over methods based on advanced calculus and nonlinear mathematical programming techniques. Thus far, the MFUD has been developed for trusses, with cross-sectional areas of truss members as design variables. Like nonlinear optimization methods, the MFUD method is iterative, but in comparison with those methods, the MFUD method involves less and simpler computation.

The MFUD method is derived from the fully stressed design (FSD) and fully utilized design (FUD) methods. The FSD method, based on a simple stress-ratio approach, is popular in civil, mechanical, and aerospace engineering. The FSD method is an elegant conceptual tool for arriving at stress-limited designs, but does not provide for displacement constraints, which are imposed with increasing frequency in designing modern structures.

An extension of the FSD method through provision for displacement constraints yields the FUD method. The term "fully utilized design" signifies a design in which the number of active constraints equals or exceeds the number of design variables. One obtains the FUD of a structure by the following procedure:
1. Using the stress constraints only, generate the FSD.
2. Uniformly prorate the FSD to obtain the FUD, using a constant proration factor that satisfies the single most infeasible displacement constraint. For a truss structure, this entails multiplying the cross-sectional areas of all truss members by the same factor to strengthen all the members enough to limit the displacement, as required.

The FUD thus obtained is feasible but can be an overdesign; the weight of the FUD structure can be greater than that of an optimally designed structure.

The MFUD method accommodates both stress and displacement constraints simultaneously. The steps of this method applied to a simple truss structure are the following:
1. Identify the design variables to initiate iterations. Optionally, one can begin iterations from the FSD. For subsequent iterations, the stress constraints are expressed in terms of cross-sectional areas, given by
 \[A_i = \left(\frac{F}{F_m} \right) \]
 where \(A_i \) is the area in question for the \(i \)th member, \(F_{\text{max}} \) is the maximum force in \(i \)th member under all loading conditions, and \(\sigma_{\text{max}} \) is the maximum allowable stress in the \(i \)th member.
2. Identify the displacement constraints violated by the design obtained in step 1.
3. For each displacement constraint identified in step 2, update the design independently to satisfy the constraint. The update process comprises two subprocesses: (1) identifi-
A Five-Bar Truss subject to one load and one displacement constraint was designed by the MFUD and FUD methods and by two optimization methods called “SUMT” and “OC.” In this case, the FUD design was about 39 percent too heavy, while the MFUD design was even lighter in weight (more nearly optimum) than were the SUMT and OC designs.

Despite its relative simplicity, and even though it does not incorporate an explicit minimum-weight condition, the MFUD method can yield solutions comparable to those obtained by nonlinear optimization techniques (for example, see figure). Even if one still prefers a full optimization, the MFUD method could be used to generate initial designs for subsequent optimization iterations, thereby alleviating some of the computational burden of optimization.

This work was done by Laszlo Berke and Dale Hopkins of Lewis Research Center, Surya Patnaik of Ohio Aerospace Institute, and Atef Gendy of the National Research Council. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com under the Mechanics category, or circle no. 109 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Lewis Research Center, Commercial Technology Office, Attn: Tech Brief Patent Status, Mail Stop 7-3, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-16624.

Melles Griot ion lasers have an integrated, hard-sealed mirror design that is maintenance-free for long-term, repeatable results. Choose from violet, blue, green, multiline, and all-line versions with stable power levels to 200 mW. All of our CE-approved laser heads are air-cooled and housed in compact, cylindrical or rectangular casings. The full line of ion lasers, power supplies with power factor-correction, and replacement tubes is available through our worldwide distribution network.

Enhance your analysis, inspection, and recording results — call us now!

MELLES GRIOT

Laser Group
2251 Rutherford Road • Carlsbad, CA 92008
1(800) 645-2737 • (760) 438-2131 • FAX: (760) 438-5208
E-mail: sales@carlsbad.mellesgriot.com

www.mellesgriot.com

Canada (613) 226-5880 Denmark 5361 5049 France (01) 3012-0680
Germany (760) 438-2131 Japan (760) 438-2131 Netherlands (0316) 333041
Singapore 392-5368 Sweden (08) 630-8950 United Kingdom (01223) 203300
The Future of Low-Light Spectroscopy...

-90°C
TE Cooled CCD

- Dark Current less than 1 electron per pixel per hour
- LN₂ performance with thermoelectric convenience
- Software controlled temperature to -90°C for optimised QE
- Maintenance-free hermetic seal - guaranteed
- Wide selection of CCD formats
- High Speed PCI Interface and 32 bit software

ANDOR TECHNOLOGY
A leading designer and manufacturer of multichannel detection systems since 1989

For more information contact your local representatives:

For More Information Circle No. 480
With all the confusion about laser line generators, LASIRIS invites you to see the light. For machine vision, industrial inspection, alignment and R&D applications, our unique patented design and unbeatable customer service combine to give you the power of uniform precision. So when it comes to structured lighting, LASIRIS is the first and only choice for all your standard or custom needs. And that's not just a line.

- Uniform intensity distribution
- Focus adjustment down to 25µm
- Interchangeable pattern heads (SNF Series only) Single line, Crosshair, Multiple lines, Dot line, Dot matrix, Circle generators and custom patterns
- ESD-protected to more than 8,000 volts
- Amplitude and frequency modulation
- Full CDRH safety compliance
- Compact and rugged design
- Available from stock

See for yourself. Call 1-800-814-9552 — and cross the line to quality.

LASIRIS

For U.S. customers, FOB West Chazy, NY
3549 Ashby Street, St-Laurent, Quebec, Canada H4R 2K3
Tel: (514) 335-1005 Fax: (514) 335-4576
Internet: http://www.lasiris.com E-mail: sales@lasiris.com

PHOTONICS Tech Briefs Supplement to NASA Tech Briefs' June 1998 Issue Published by Associated Business Publications

CONTENTS

Feature
6a Photonics Shines in NASA's Field Centers: Part Three

Photonics Tech Briefs
10a Micromachined Interferometric Optoelectronic Display Devices
12a Variable-Wavelength Micromachined Fabry-Perot Interferometers
13a Enhancements to Fiber Optic Bragg Grating Sensors and Demodulation Systems
16a Active Fiber Optic Microelectromechanical Systems Aligner
17a Making Single-Crystal Fibers in a Laser-Heated Floating Zone
21a Room-Temperature External-Cavity Diode Lasers at 2.0 µm

Departments
4a News Briefs
Photonics Tech Briefs' 1997 Product of the Year Awards: VLSI Vision Ltd., Hewlett-Packard, Spiricon, New Wave Research, and Lambda Physik; Uniphase to acquire Philips Optoelectronics B.V.; Roper Industries adds Photometrics to its analytical instrumentation group; GE Plastics opens Optical Media Development Center

23a New Literature

24a New Products

Cover Photo courtesy Renishaw Inc., Schaumburg, IL. See page 8a.

For More Information Circle No. 460

June 1998
The bright idea in visible lasers from Laser Power

- Compact Diode-Pumped Solid-State Laser Systems
- High Brightness
- Fully Air-Cooled Rugged Construction
- Reliable, Long-Life All Solid-State Design
- Low Power Consumption – Less than 100 watts Electrical Input

- Green (532 nm) – 2.5 watts
- Blue (457 nm) – 0.4 watts

and available soon:
- Red (656 nm) – 0.8 watts

For more information contact:
Laser Power Microlasers
12777 High Bluff Drive
San Diego, CA 92130
Tel: (619) 755-0700
Fax: (619) 259-9093
Or visit our web site at www.laserpower.com

For More Information Circle No. 449
IJI) just a single external crystal and single-

VLSI Vision Limited

with software drivers. Products range

VV6405 single-chip NTSC color camera.

core silicon to complete cased cameras

video encoder. The chip draws about

and color balance, and NTSC composite

line memories, auto exposure control

er, 300-MIPS color DSP engine, 5 video

single standard CMOS chip a quarter-

rail 5-V power suppl y. It combines on a

gy, the device delivers color video with

oxide semiconductor (CMOS) technolo-

Scotland, and San Jose, CA, for the

award for Photon ics

Electro-Optics (CLEO) in May, the

ing the Conference on Lasers and

Notes from Industry and

cal value to the magazine's engineering

outstanding technical merit and practi-

chosen b y

still camera market.

color sensors designed for the digital

eras for applications in markets such

from low-resolution monochrome cam-

Using VLSI's complementary metal-

product of the Year was presented to

Product of the Month in 1997,

he 	to Uniphase. The tangible

still laser products for telecomniunica-

tor laser products for telecomniunica-

OMDC, GE's customers can participate

mats to market faster. According to John

O'Sullivan, OMDC's program leader,

"We expect the OMDC to help our cus-

omers become more productive in their

and intangible assets of Philips Opto-

electronics, including approximately 70

U.S. and European patents, are included

in the transaction.

Uniphase currently provides the

majority of the world's volume of 980-

nm semiconductor laser pumps and

lithium niobate modulators, and the

company is establishing production of

fiber Bragg gratings. The Philips Opto-

electronics portfolio includes 1550-nm,

1310-nm, and 1480-nm lasers, electro-

absorption modulators, semiconductor

optical amplifiers, and receivers. Com-

bining the products of the two, Uni-

phase will be able to provide all of the

component categories required by high-

capacity fiber optic networks.

Uniphase Corp. is located at 163

Baypointe Pkwy., San Jose, CA 95134;

(408) 434-1800; (800) 644-8674; fax:

(408) 433-3838.

Photometrics Ltd. of Tucson, AZ, and

Roper Industries Inc. of Bogart, GA,

have signed a definitive purchase agree-

ment whereby Roper will acquire Phot-

ometrics' outstanding stock. With approx-

imately 2000 employees, Roper is an

international manufacturer of fluid-hand-

ling, industrial control, and analytical

instrumentation products. Photometrics,

a manufacturer of scientific digital imag-

ing equipment, joins Roper's analytical

instrumentation products group, which

includes Gatan, Princeton Instruments,

Acton Research Corp., USON, and ISL.

Photometrics is located at 3440 East

Britannia Drive, Tucson, AZ 85706;

(520) 889-3933; fax: (520) 573-1944.

GE Plastics has opened a new Optical

Media Development Center (OMDC)

in its Pittsfield, MA, Plastics Polymer

Processing Development Center. At the

OMDC, GE's customers can participate

in the development of manufacturing

technologies that are expected to

enhance productivity and bring new for-

mats to market faster. According to John

O'Sullivan, OMDC's program leader,

"We expect the OMDC to help our cus-

omers become more productive in their

use of ultra-clean LEXAN® resins, and

help them meet the requirements of

new optical media formats, such as mag-

neto-optical, DVDs, and CD-R."

The OMDC houses the latest optical

media manufacturing equipment to sim-

ulate the environment of GE Plastics'

customers. Companies participating in-

clude Steag Hamatech GmbH, Sumi-

tomo Heavy Industries Ltd., CD Asso-

iates, First Light Technology Inc., and

Arburg International.

GE Plastics is located at 1 Plastics Drive,

Pittsfield, MA 01201; (413) 448-4690.
Announcing
ASAP 6.0 Optical Analysis Software

Anything else is an optical illusion.

New ASAP 6.0 features:
- Easiest-ever graphical user interface
- Powerful new source/geometry builder to address your #1 design challenge
- Smart integrated CAD translator
- New interactive display features
- Expanded Windows help menu
- Support of Radiant Sources™ from Radiant Imaging, Inc.
- New and expanding catalogue of common bulbs

Breault Research Organization

For More Information Circle No. 481

www.breault.com sales@breault.com 1.520.721.0500 1.800.882.5085 Tucson, Arizona
NASA programs generate a great wealth of advanced technology, and the agency, through its technology transfer programs, employs a variety of mechanisms to stimulate such transfer to the commercial sector of the economy. Probably the most important linkage is the group of ten NASA field centers located across the country. Many of them have significant work going on in the disciplines of photonics: lasers, optics, fiber optics, electro-optics, video and imaging, design and fabrication, and related areas. Two previous installations (February and April 1998) have dealt with such work in NASA's Jet Propulsion Laboratory, Marshall Space Flight Center, Goddard Space Flight Center, Ames Research Center, Langley Research Center, Lewis Research Center, and Johnson Space Flight Center. The series concludes with examinations of such programs at Kennedy Space Center, Stennis Space Center, and Dryden Flight Research Center.

KENNEDY SPACE CENTER

The Kennedy Space Center reached a major milestone with the start of the Orbital Flight Test Program and the launch of the first space shuttle in 1981. Today, more than 80 shuttle missions later, Kennedy is the locale for shuttle integration and rollout, payload processing, prelaunch checkout, launch, and recovery. These tasks drive the work in the Center's laboratories.

The Space Shuttle Columbia, which went into orbit last year, contained a typical group of instruments to gather data about the vehicle and its environment. The Shuttle Infrared Leeside Temperature Sensing experiment will obtain high-resolution infrared imagery of the upper surface of the orbiter fuselage and left wing during atmospheric entry. The accumulated data will be used to redesign the orbiter's thermal protection system. The Shuttle Upper Atmosphere Mass Spectrometer will deliver measurements of free-stream density during atmospheric entry. When combined with acceleration measurements from the companion high-resolution accelerometer package experiment, the measurements will allow calculation of orbiter aerodynamic coefficients in a flow regime previously inaccessible to experimental and analytic techniques.

The Columbia will also test a laser imaging system for Space Wing Range Safety officials. Currently, these officials monitor a vehicle's position using optical tracking methods that can be impaired by vehicle engine plume, low-level clouds, and fog. Illuminating a portion of the launch vehicle with a noninvasive laser beam is expected to yield clear and defined images of the vehicle even with low visibility.

An example of commercially exploitable technology coming out of Kennedy's operations is the optical broadcasting wind indicator. Currently transferred to Atlas Technology Corp. of Boca Raton, FL, the device measured wind speed and direction information via optical flashes from a high-intensity strobe light colocated with the wind sensors.

STENNIS SPACE CENTER

Stennis Space Center is home to the testing of large rocket propulsion systems for the space shuttle and future generations of launch vehicles. It is NASA's lead center for rocket propulsion testing and for commercial remote sensing.

The goal of NASA's Commercial Remote Sensing Program is to enhance U.S. competitiveness through the use of remote sensing, Geographic Information Systems, and related technologies. The CRSP office at Stennis administers several partnership programs designed to transfer NASA's technology and expertise into the commercial sector. Among them is LightSAR, a proposed lightweight, low-cost, space-based

"NASA has traditionally measured its progress in terms of technical performance, cost and schedule. Now, in the post-Cold War era there is another measure: contribution of technology to national economic security."

Cambridge Technology offers extensive experience in helping a broad range of laser systems integrators to achieve the highest possible levels of performance from the finest galvanometer based optical scanners manufactured worldwide. Cambridge Technology routinely meets the needs of the most demanding optical systems, and continues to develop higher performance products.

At Cambridge Technology, exciting innovations and advances in state-of-the-art optical scanning technology happen regularly. Recently introduced are two new high performance Moving Magnet galvanometers. Complementing these and various other motors are two new, low-profile, SMT-based servo controller options. With a full line of High Performance Moving Coil and Moving Magnet Galvanometers and supporting products for large apertures and small, our patented technologies offer repeatability of a single micro-radian of angle, and step times of less than 1ms.

Our customer commitment makes Cambridge Technology the obvious choice for your beam positioning system requirements. Contact our Sales Engineers and Field Representatives today for the very latest details on how our team can help you gain the competitive edge required for tomorrow's market.
synthetic aperture radar for commercial and science applications. Four industry-led teams have assessed potential markets and partnering arrangements for LightSAR implementation. The prime contractors for the design definition phase of LightSAR are: DBA Systems Inc. and CTA Space Systems; Lockheed Martin Astronautics; Research & Development Laboratories; and Vexcel Corp.

Stennis is the avenue between NASA's Small Satellite Technology Program and the private sector for encouraging and executing remote sensing applications. Projects include preserving the Central American tropical rain forest, studying sea-surface temperatures to determine conditions for red-tide outbreak, analyzing plant stress, and monitoring cultural and historical archaeological sites.

Remote sensing and Geographic Information System programs are appraised at Stennis, determining their economic benefit, and how best to transfer such approaches to the private sector. A recently formed partnership between Stennis, the University of New Mexico, Jet Propulsion Laboratory, and User Systems Inc., will analyze the more than 18 trillion pieces of information gathered from NASA's shuttle-based synthetic aperture radar for NASA in return for being allowed to find commercial uses for the data.

DRYDEN FLIGHT RESEARCH CENTER

Dryden Flight Research Center's primary study tools are research aircraft, but ground-based facilities also have a key role in the Center's mission as NASA's Center of Excellence for atmospheric flight operations. These include a high-temperature and loads calibration laboratory to test complete aircraft and structural components under the combined effects of loads and heat and a highly developed flight instrumentation capability.

Dryden has cooperated with other NASA centers in the development and evaluation of photonics technology. Dryden's F-18 was the vehicle for the testing of the suite of Lewis-developed fiber optic sensors in the Fiber Optic Control System Integration project.

Sensors play a major part in Dryden-led research. A recent thrust was in flight-qualifiable sensors for inlet air mass flux to improve control of conventional aeroengine gas turbine power plants and variable-geometry, mixed-compression inlets of advanced flight vehicles. Optical techniques are advantageous for inlet measurements, particularly in compressible flows, because they do not disturb the flowfield downstream of the measurement location. Under a Dryden-monitored SBIR contract, Physical Sciences Inc. of Andover, MA, developed an optical air mass flux sensor. On a full-scale Pratt & Whitney F-100 engine in a Dryden ground test, mass flux measurements with an accuracy of 1 or 2 percent over the full range of engine operating conditions were achieved.

A key Dryden endeavor is the Environmental Research Aircraft and Sensor Technology program, or ERAST. It is an effort by a NASA-industry alliance to develop aeronautical technologies to support a family of un piloted aircraft to carry out scientific and environmental missions at heights of up to 100,000 feet and durations of several days or more. Dryden is the lead NASA center in the seven-year evaluation program. ERAST is sponsoring the development of the Suntracking Sunphotometer to support the Tropospheric Aerosol Radiative Forcing Observational Experiment on the eastern seaboard.

On the cover: The HeNe laser interferometer from Renishaw Inc., Schaumburg, IL, is shown being used to automatically calibrate and compensate for machine tool positioning errors. Photo courtesy Renishaw.
You said you needed ultra high resolution imagers.

We said: "We’ve got a 16 million pixel full-frame chip off the shelf!"

From the reliable source for very high resolution imagers.

With over 16 million pixels (4k x 4k), our full-frame Kodak Digital Science™ KAF-16800 Image Sensor is ready for your extremely high resolution imaging requirements.

The single output amplifier eliminates the matching problems associated with parallel output amplifiers. Use the KAF-16800 for your most demanding applications — including film digitizing, industrial inspection, aerospace, and medical.

Need high resolution interline imagers with electronic shutter, anti-blooming and low smear? Try our 1k x 1k progressive scan KAI-1001M imager. Or call us about our 2 million pixel KAI-2090 chip. Both have built-in microlenses for improved sensitivity and optional color filter array!

And don’t forget that Kodak provides a complete line of high resolution linear imagers including our 6000 pixel KLI-6003 and our 8000 pixel KLI-8013 tri-color linear arrays. Ideal for film and document scanning, inspection, and studio cameras.

ISO 9001 CERTIFIED

Kodak is your reliable source for high performance, full-frame, interline, linear, and IR sensors as well as support ASICs. We’re setting the standards for new and emerging imaging technologies worldwide with our comprehensive capability in design, fabrication, testing and technical support.

716-722-4385, ext. 503

Call us today and talk to a Kodak engineer about your application. We’ll help you select the imager your products deserve.

THE SOLID STATE OF IMAGING AT KODAK

For More Information Circle No. 451
Micromachined Interferometric Optoelectronic Display Devices

Miniature Fabry-Perot interferometers would be used as modulators to mix colors.

NASA's Jet Propulsion Laboratory, Pasadena, California

Devices containing planar arrays of micromachined, electrostatically adjustable Fabry-Perot interferometers are undergoing development. These devices could be designed, for example, as color high-definition television displays, as larger flat-panel displays for indoor and outdoor entertainment and advertising, as filter arrays for spectroscopy, and as modulator arrays for optical computing and switching. In comparison with state-of-the-art flat-panel display devices based on liquid crystals, plasmas, and electroluminescence, the present devices offer potential advantages of high speed, insensitivity to changes in temperature, low power consumption, wide viewing angle, scalability, light weight, and long life.

A related concept of using two-stage, micromachined, electrostatically adjustable Fabry-Perot interferometers as rapidly tunable color filters and shutters was presented in "Micromachined Opto/Electro/Mechanical Systems" (NPO-19467), NASA Tech Briefs, Vol. 21, No. 3 (March 1997), page 50, and "Micromachined Tunable Optical Interference Filters" (NPO-19456), NASA Tech Briefs, Vol. 21, No. 3 (March 1997), page 111. The devices being developed according to the present concept are based on the same physical principles but differ in significant details of design and modes of operation.

In a three-color television display device according to the present concept, each pixel would contain three micromachined, electrostatically adjustable Fabry-Perot interferometers, each serving as a modulator for light of one of three wavelengths (see figure). Each micromachined interferometer would contain two parallel, flat, partially transparent mirrors—one on a springy silicon nitride membrane and the other on a stationary glass substrate. The mirrors and the gap between them would constitute an optical cavity with resonant transmission peaks at wavelengths equal to integer submultiples of twice the size of the gap; that is, the interferometer would transmit most of the light at these wavelengths and reflect most of the light at other wavelengths.

The nominal size of the gap in each micromachined interferometer would be selected so that its resonant wavelength falls within the visible part of the spectrum that was of the desired color. The display panel would be illuminated with white light from its back side (the lower side in the figure). Optionally, color filters could be formed on the back side registered with the corresponding interferometers to provide additional selectivity for greater purity of the colors.

When voltage was not applied to the electrostatic-deflection electrodes, the springy silicon nitride membrane in each interferometer would maintain the nominal gap and therefore light of the nominal wavelength would pass through to the front (top in the figure) side, where it would be seen. When voltage was applied to the electrostatic-deflection electrodes of a given color interferometer in a given pixel, the spring force would be overcome and the two mirrors drawn together; this would eliminate the resonant gap, causing the two mirrors to act as ordinary mirrors so that light would not pass through to the front. The net effect would be that each interferometer would act as a light valve or modulator for its assigned color. Thus, by opening each light valve for a specified fraction of each image-repetition cycle, one could mix specified proportions of each color. Since the viewer's eye could not spatially resolve the individual interferometers or temporally resolve the individual flashes of light, the viewer would get the impression of a desired composite color emanating from the pixel.

This work was done by Tony K. T. Tang, Linda M. Miller, Michael H. Hecht, and Judith A. Podosek of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Components & Circuits category, or circle no. 130 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). NPO-19527
Extreme Pumping

Name your flow and pressure and we can provide a pump to meet it. We have over 50 different pumps and plumbing configurations to meet your custom fluid and circulating requirements.

Extreme Customer Support

A NESLAB chiller is at home in all parts of the world. Whether installed in Asia, Europe or North America, we have a customer service office to respond quickly to technical questions and equipment servicing.

We take chilling to the extreme.

If you want to know more about NESLAB chillers, simply phone us at 800/4NESLAB today.

NESLAB recirculating chillers provide extreme performance for the most demanding laser applications.

Extreme Temperature Control

Our chiller designs push the limits of temperature range and capability—computer interfacing, remote sensing, rapid cool-downs. Plus stability to the finest degree.

Extreme Fluid Compatibility

In the past, simply cooling with tap water was good enough. Today’s applications demand the sophistication of deionized water and other fluids that demand specialized materials of construction for compatibility.

Extreme Pumping

Name your flow and pressure and we can provide a pump to meet it. We have over 50 different pumps and plumbing configurations to meet your custom fluid and circulating requirements.

Extreme Customer Support

A NESLAB chiller is at home in all parts of the world. Whether installed in Asia, Europe or North America, we have a customer service office to respond quickly to technical questions and equipment servicing.

We take chilling to the extreme.

If you want to know more about NESLAB chillers, simply phone us at 800/4NESLAB today.

Variable-Wavelength Micromachined Fabry-Perot Interferometers

Displayed colors would be varied at will.

NASA’s Jet Propulsion Laboratory, Pasadena, California

The figure schematically shows a micromachined Fabry-Perot interferometer that, when fully developed, would be part of a two-dimensional array of such interferometers in a flat-panel display device. The interferometers, arrays, and display devices according to this concept would be similar to those described in the preceding article, but there would be differences in some of the details. The major difference in design would be that a device of this type would contain only one micromachined Fabry-Perot interferometer per pixel instead of three as in the devices of the preceding article. The major difference in operation is that instead of using each micromachined Fabry-Perot interferometer as an on/off modulator for light of a preset wavelength, one would use each such interferometer as a tunable band-pass filter and “off” switch: the voltage applied to the electrostatic-deflection electrodes of the interferometer in each pixel could be varied as a function of time to make light of a chosen wavelength pass through at a given time, or the voltage could be increased to a level sufficient to draw the interferometer mirrors together so that no light would pass through. That is, by controlling the voltage applied to each pixel, one could either make it appear to glow in a chosen color or else go dark.

This work was done by Tony K. T. Tang, Linda M. Miller, and Judith A. Podosek of Caltech for NASA’s Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Components & Circuits category, or circle no. 131 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

NPO-19528

June 1998
Looking for outstanding quality, unique laser diode products, and excellent service? Think of Optima. We maintain this simple and straightforward business philosophy by creating unique products that complement the use of laser diodes in today's dynamic technological market.

Whether you need a custom assembly or just an off-the-shelf component, you'll find Optima provides personal service to meet your requirements. Please call or fax requesting our catalog covering these products:

- Laser Diode Collimating and Objective Lenses (multi-element glass and single-element glass and plastic aspheric lenses)
- Diode Laser Modules 635nm to 685nm
- Line Generating Modules and Lenses
- Mounting Kits for Laser Diodes
- Collimated Diode Lasers
- Anamorphic Prisms for Beam Shaping
- Laser Diodes from 635nm to 850nm with optical power from 3mW to 50mW

Optima Precision Inc.
775 SW Long Farm Road
West Linn, Oregon 97068

http://www.optima-prec.com
Phone: (800) 544-4118
Fax: (503) 638-4545

Enhancements to Fiber Optic Bragg Grating Sensors and Demodulation Systems

The sensors and sensor signal readout are improved.

The Boeing Company, St. Louis, Missouri

The Boeing Company has developed and patented certain enhancements to commercially available Bragg grating sensors and demodulation systems. These patents (Nos. 4,471,659, 4,668,093, 5,380,995, 5,563,967, and 5,627,927) are available for license. Knowhow related to these patents is available through laboratory and engineering services offered by Boeing.

The enhancements cover two areas, the sensors themselves and sensor signal readout. The double-core Bragg grating fiber optic sensor consists of a fiber optic designed to transmit different wavelengths of light. Bragg gratings at two wavelengths are written at the same location on the fiber optic. The response from these gratings can be used to simultaneously determine both the strain and temperature on the fiber optic. The multiple overlapping grating method further enhances the separation of variables by allowing separation of x-axis strain, y-axis strain, z-axis strain, and temperature from one sensing location.

High-speed sensor signal readout is improved via an additional pending patent that allows efficient integration of multiple strings of sensors and the use of less expensive sources at the same time. This technique could readily be adapted to telecom applications to reduce cost.

Bragg gratings represent a relatively simple, compact, and low-cost approach to measuring strain or temperature in carbon and glass composite embedding applications. The simplicity arises because there is no need to measure optical phase, and hence no need for a coherent light source. Light demodulation instruments are difficult and costly to manufacture; thus the use of Bragg gratings results in a significant cost savings. Since these gratings can be written at different wavelengths, many individual sensors can be wavelength-division-multiplexed and integrated onto a single fiber optic strand.

June 1998
Ad misation has attached Bragg grating sensors to reinforcing rods and to concrete in numerous roads and bridges.

Bragg gratings may be fabricated on most commercially available fibers. The gratings' reflection and transmission response can also be custom-designed to specifications.

These Bragg grating enhancements are now available for license for use with commercially available Bragg grating and demodulation systems. Bragg grating enhancements are continually being researched and developed further by the Boeing Company, drawing upon the successful implementation of this technology on the Structural Health Monitoring System for the composite Clipper Graham® LH₂ cryotank (see graph) built for NASA.

The Boeing Company is currently developing business relationships with companies interested in applying Boeing technologies to their products. If actively interested, please contact Dennis Donahue, Marketing Manager, Licensing; MC 306-1285, PO Box 516, St. Louis, MO 63166; (314) 234-7093; fax (314) 232-4313; http://www.boeing.com/assocproducts/mdip/.

Subscale Hydrogen Tank Compression Test (-220°F)

Fiber optic sensors can be embedded into the composite without degrading the mechanical performance of the part. Bragg gratings provide significant and important enhancements to fiber optic technology, enabling the integration of the grating filters, reflectors, tunable lasers, couplers, and sensing elements directly in the waveguiding core of the fiber optic. The Federal Highway Administration has attached Bragg grating sensors to reinforcing rods and to concrete in numerous roads and bridges.
Optical Solutions For Today's Imaging Needs.

As quality video imaging becomes an increasingly important part of today's communication highways, Canon, the worldwide leader in broadcast television lenses, continues to set the standard with superior optics, state-of-the-art engineering and innovative technology.

Our full line of video communication lenses include the all new YJ18x9B KTS, the YH18x6.7 KTS and the YH14x7.3 KTS. These lenses feature many important advantages such as super close-up, 18X zoom capability (found in the YJ18 and YH18), and other benefits normally associated with Canon's world-class broadcast TV lenses. The lenses can be used with most any 2/3" or 1/2" camera and offer remote control zoom, focus and iris functions available via our TCR-101F, 201F or 301F line of controllers. Lightweight and sturdy, these lenses are also available with a simple interface for use with custom controllers.

KTS Lenses
- Visual Inspection
- Telemedicine
- Machine Vision
- Quality Control

For more info
Call 1-800-321-4388
(In Canada: 905-795-2012)
http://www.usa.canon.com

Emmy winner for "Implementation in Lens Technology to Achieve Compatibility with CCD Sensors."

For More Information Circle No. 484
Active Fiber Optic Microelectromechanical Systems Aligner

The cost per aligned fiber optic is significantly less than the device to be pigtailed.

The Boeing Company, St. Louis, Missouri

As currently practiced, packaging of individual optoelectronic components accounts for 40-50 percent of product cost. The development of higher-volume, lower-cost optoelectronic manufacturing technologies must take place in order to accelerate the installation of optoelectronics in lower-speed and shorter-distance networks, such as telecommunications, computer, and video applications for both defense and commercial systems.

Schematic of the Active Fiber-Optic Micro Aligner. Components of the embedded microactuator include the X- and Y-counteract springs, and the bimorph.

The microelectromechanical systems (MEMS) devices and fabrication and packaging described herein were developed by the Boeing Company to address needs for the coupling of single-mode optical components for military and commercial applications. The company has demonstrated for the first time a fully integrated wafer-level processed active fiber-optic micro aligner (AFMA). These MEMS devices are capable of large force and displacements with submicron accuracy. The technology is covered by three patents (Nos. 5,606,635, 5,602,955, and 5,553,182).

One of the principal reasons more applications of photonic (all-optical) devices and optoelectronics are not seen in the consumer and business marketplace is the lack of reliable cost-effective and easily implemented fiber optic alignment and bonding to discrete optoelectronic and photonics devices. The problem is the need to align optical components and fiber optics with submicron ($<1 \times 10^{-6}$ m) precision in less than 0.1 minute, with the cost per aligned fiber optic significantly less than

Schematic of an Array of Active Fiber-Optic Micro Aligners.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

From our flagship AP™ Series, to our high speed KX™ Series for microscopy, to our ultra high quantum efficiency SPH™ Series for spectroscopy, Apogee systems represent full-featured, cost effective technology.

If your work goes beyond off-the-shelf, consider us an extension of your development team for custom OEM or high-reliability applications.

For complete technical information, call us or visit our highly praised website at www.apogee-ccd.com.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.

Apogee Instruments cooled CCD camera systems have all the features you require for high dynamic range image acquisition, at prices that let your budget live in moderation.
the device to be pigtailed. This submicron or nanometer precision is even more critical for the more efficient lensed fiber optics.

MEMS-based actuation during the manufacturing of packaged-fiber optically coupled optoelectronic devices would meet the cost-per-alignment requirements. This AFMA technology can satisfy this need short-term while at the same time solving problems associated with the realization of the all-optical photonic system.

The primary application for active fiber micro-actuators is highly cost-effective in-package alignment and coupling of single-mode fiber optics (single or multiple fibers) to laser diodes in small packages. The process works with lensed or unlensed fibers and is polarization-preserving. Other applications include single-mode fiber optic backplane connectors and a multiple-fiber-optic connector.

The Boeing Company has fully developed fabrication, testing, and packaging methods for the AFMA devices. Currently there are several more active fiber optic components and methods that the company has disclosed to the U.S. Patent and Trademark Office.

The Boeing Company is currently developing business relationships with companies interested in applying Boeing Co. technologies to their products. If actively interested, please contact Dennis Donahue, Marketing Manager, Licensing; MC 306-1285, PO Box 316, St. Louis, MO 63166; (314) 234-7093; fax: (314) 232-4313; http://www.boeing.com/assoc/products/mdip/.

Making Single-Crystal Fibers in a Laser-Heated Floating Zone

Process parameters can be controlled to obtain high-quality single-crystal fibers.

Lewis Research Center, Cleveland, Ohio

Figure 1 shows an apparatus for growing a single-crystal fiber by solidification from a floating zone of laser-heated molten material on the tip of a feed rod. The apparatus can be used to produce single-crystal fibers of various highly pure ceramic and metal compo-
sitions, controlled crystal orientations, and small, uniform diameters. Such fibers are needed for experimental research on fiber reinforcements for metal-matrix/fiber and intermetallic-matrix/fiber composite materials. Fiber compositions that have been produced thus far include sapphire (Al₂O₃) with and without ternary additions, ZrO₂, and yttrium aluminum garnet (YAG). Typical fiber diameters have ranged from 100 to 250 μm.

Preparation of a feed rod begins with mixing of metallic or ceramic powders with an organic binder. The powders are formulated with a modified stoichiometric composition; that is, the composition is chosen to obtain the desired fiber crystal composition, taking account of anticipated losses of various constituents through differential vaporization from the melt. The mixture of powders and organic binder is extruded to produce the feed rod. The organic binder is typically a commercial water-soluble cellulose ether product formulated to obtain the desired extrusion properties and to vaporize during subsequent laser heating, leaving behind little or no residue.

The feed rod is mounted vertically on a vertical-translation mechanism inside the vacuum chamber. A seed crystal (which could be a piece of previously grown fiber) is placed in the desired orientation by use of X-ray diffraction for measurement and a goniometer for adjustment. The oriented seed crystal is mounted in the desired orientation on the tip of a pull rod that is collinear with the feed rod and is connected to another, independently controllable vertical-translation mechanism inside the vacuum chamber.

The laser beam is split into two beams aimed at the floating-zone melt location from opposite sides. The tip of the feed rod and the seed crystal on the tip of the pull rod are slowly brought toward each other and into the laser-heated floating zone, causing them to begin to melt (see Figure 2). Eventually, the molten tips touch and wet each other. Once a stable molten zone with a relatively uniform temperature profile has been established, growth of a single-crystal fiber can begin.

To effect this growth, the feed rod is translated toward the laser-heated zone at one speed while the pull rod is translated away from the laser-heated zone at a different speed. The ratio between the speeds is chosen to obtain the desired change from the diameter of the feed rod to the diameter of the fiber. Ordinarily, one seeks to produce a fiber narrower than the feed rod, so that the pull rod must be translated...
Wescon®/98

North America's Largest Electronics Technology Event for the OEM Marketplace

September 15 - 17, 1998
Anaheim Convention Center, Anaheim, California

featuring

IC EXPO®

Integrating Semiconductor & EDA Technologies

with a special focus on 'Systems-on-a-Chip'

Visit www.wescon.com for information and registration!
Figure 2. The Seed Crystal and Feed Rod are brought together in the laser-heated zone. Once a stable melt has been established, the feed rod is slowly fed into the laser-heated zone while the pull rod is withdrawn to pull out the growing fiber.

more rapidly. The translation can be either downward as in Figure 2, or else upward.

A technique called "melt modulation" is used to maintain stability and symmetry in the molten zone. Melt modulation is effected by optomechanically scanning the opposing laser beams back and forth across the feed-rod/fiber axis to obtain more nearly even heating. Melt modulation gives rise to small vibrations that help to stabilize the molten zone. The vibrations also increase thermal agitation and mixing, thereby helping to make the temperature more nearly uniform throughout the melt. The vibrations also help to shake bubbles out of the melt; without the vibrations, small bubbles tend to coalesce into one large bubble in the molten zone, with consequent disruption of crystal growth. The frequency of vibration can be adjusted to avoid mechanical resonances and minimize vibration of the growing crystal. Typically, the optimum frequency lies between 30 and 50 Hz.

This work was done by Frank Ritzert and Leonard Westfall of Lewis Research Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Materials category, or circle no. 132 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Lewis Research Center, Commercial Technology Office, Attn: Tech Brief Patent Status, Mail Stop 7-3, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-16539.
Room-Temperature External-Cavity Diode Lasers at 2.0 μm

These are the first commercially available room-temperature broadly tunable diode lasers with output wavelengths in the 2.0-μm range.

Focused Research Inc. and New Focus Inc., Santa Clara, California

External-cavity diode lasers (ECDLs) have been commercially available for several years. Since their introduction, they have found applications ranging from telecommunications to atomic spectroscopy. These lasers provide a combination of extremely narrow linewidth, broad tunability, and ease of use, making them some of the most versatile lasers available. Until recently, the accessible wavelengths have been limited to the 0.6-1.6-μm region where commercial laser diodes are available. Development conducted by Focused Research, a research subsidiary of New Focus, and Sarnoff Corporation, with support from NASA Goddard Space Flight Center, has extended this range, resulting in the commercialization of the first external-cavity diode laser operating beyond 2.0 μm.

![Diagram](image)

Figure 1. Schematic of a Modified Littman-Metcalf Laser Cavity.

To develop this technology, researchers designed and fabricated a new strained-layer InGaAs/InP quantum-well ridge-waveguide semiconductor laser. Tensile strain was then added in the barrier region to extend the operating wavelength beyond 2.0 μm. To suppress laser oscillation between the facets of the diode, an antireflection coating was deposited onto the output facet. The quality of the antireflection coating is critical to achieving single-mode operation with narrow linewidths and wide tuning ranges, as oscillations between the facets will interfere with the effectiveness of the external cavity.

The laser is then placed in an external cavity with a grating in a Littman-Metcalf grazing incidence configuration, as illustrated in Figure 1. The grating serves as the wavelength-selective output coupler. The narrow linewidth is a result of the highly dispersive nature of the grating, which forces the laser to oscillate in a single longitudinal mode at any given setting. Adjusting the angle of the feedback mirror (or retroreflector) with respect to the grating tunes the output wavelength. There are two methods of doing this: a DC motor provides rapid (>10 nm/s) coarse tuning over the entire tuning range of greater than 70 nm. Fine wavelength adjustment is achieved with a...
CHILLERS/COOLERS CATALOG
NESLAB's newest product catalog features industrial chillers and liquid coolers. It includes features, specifications, and customizing options available, including refrigeration, controller, pump, fluid, heater, and electrical specs. NESLAB offers a range of cooling solutions for applications such as industrial lasers, EDM, plastics, plating, packaging, chilled rolls, and welding. There is a NESLAB solution to fit each constant-temperature application. E-mail: ieslab0; iieslabinsu iinients.cotlt; tRL: http://

NEW WDM VARIABLE ATTENUATOR
The IQ-3100BW Variable Attenuator, also offered in a benchtop version (PVX-3100BW), is built to offer extremely high spectral uniformity. This important feature allows you to maintain the attenuation value throughout the complete WDM spectrum when characterizing EDFA's or subsystems. The IQ-3100BW maintains the attenuation value when changing wavelengths. The module is controlled by a Windows-based software in a true multitasking environment. EXFO Electro-Optics Engineering Inc., 465 Godin Ave., Vanier, Quebec, Canada GIN 3G7; (418)683-4211; 800-663-3936; fax (418)683-2170; E-mail: info@exfo.com; http://www.exfo.com.

FREE 1998 PRECISION OPTICS CATALOG
Edmund Scientific's New 1998 Catalog features hundreds of technical solutions from our inventory of precision optics, machine vision, and optical components. All off-the-shelf precision optics and optical instruments are available in prototype and production quantities and pricing. Engineering assistance and custom products available for production orders. Edmund Scientific Co., Industrial Optics Division, Dept. 999, Barrington, NJ 07007; Tel: 609-573-6296; Fax: 609-573-6295; e-mail: industrialoptics@edsci.com; www.edsci.com

FREE CATALOG "OPTICS FOR INDUSTRY"
Free 130 page catalog from Rolyn, world's largest supplier of "Off-the-Shelf" optics. 24-hour delivery of simple or compound lenses, filters, prisms, mirrors, beamsplitters, reticles, objectives, eyepieces, plus thousands of other stock items. At off-the-shelf prices. Rolyn also supplies custom products and coatings in prototype or production quantities.
Rolyn Optics
706 Arrow Grand Circle, Covina, CA 91722-2199
Tel: 626-915-5707; Fax: 626-915-1379
For More Information Circle No. 493

Figure 2. Typical Tuning Curve of a Model 6332 Velocity 2-μm laser.

Figure 3. Survey Spectra of CO₂ taken with a 2-μm Velocity laser. Data courtesy of Stanford University's High-Temperature Gasdynamics Laboratory.

The 2.0-μm wavelength region is especially useful for spectroscopy of molecular species such as CO₂, H₂O, N₂O, and NH₃, for combustion diagnostics and environmental monitoring, and HBr for in-situ gas-phase substrate etching for the semiconductor industry. Figure 3 shows data from a survey spectrum of CO₂ taken with the Model 6332 Velocity laser. The laser itself is compact and uses wall-plug power, making it useful for field applications. Until the development of these lasers, researchers had to use cryogenic color-center or laser-salt lasers or complicated nonlinear schemes. These systems require much more care and time than the new lasers, and are generally used only in research labs.

With their combination of simplicity, broad tuning range, and narrow linewidth, these 2-μm ECDLs are useful sources for many spectroscopic and chemical sensing applications. Further advances in materials technology will continue to fuel development in laser diodes. As longer-wavelength materials become available, New Focus anticipates their rapid integration into external-cavity tunable systems.

This work was done by Dr. Tim Day, Dr. Ian Wu, Dr. Bill Chapman, and Greg Feller at Focused Research, Inc., a subsidiary of New Focus Inc., Santa Clara, CA. For more information, please call New Focus at (408) 980-8088.

For More Information Circle No. 490
For More Information Circle No. 491
For More Information Circle No. 492
For More Information Circle No. 493

For More Information Circle No. 490
For More Information Circle No. 491
For More Information Circle No. 492
For More Information Circle No. 493
Fiber Optic Video Link
Math Associates, Hauppauge, NY, is offering a specification sheet on its new Beamer fiber optic video link. The company calls Beamer a complete high-quality cost-effective transmission system designed to transmit color or black-and-white video signals across distances from a few feet to more than a mile. Consisting of a transmitter, receiver, and two power supplies, Beamer transmits over standard 62.5-micron multimode fiber optic cable. It is compatible with all standard analog video formats, including NTSC, PAL, and SECAM, and operates with industry-standard ST-type connectors. Specifications provided include signal-to-noise ratio, differential gain and phase, optical loss budget, and operating temperature.

Optics and Parts for Laser Systems
Convergent Energy, Sturbridge, MA, has produced a 48-page catalog of replacement parts for its carbon dioxide and Nd:YAG laser systems. The catalog also includes widely used mirrors; gas discharge, flash, and arc lamps; and beam delivery optics for Nd:glass, YAG, and carbon dioxide lasers. Separate sections of the catalog detail the company's laser offerings, diagnostic and safety equipment, customer support capabilities, and the care and cleaning of optics.

Lightwave Test and Measurement Guide
EXFO E. O. Engineering, Vanier, P.Q., Canada releases its "1998 Lightwave Test and Measurement Reference Guide," showcasing its most recent developments in fiber optic test and measurement technology. Among new products outlined in the catalog are the dense WDM testing line, which includes a PDL analyzer and tunable lasers, and new modules for the FTB-300 universal test system. The guide has more than 240 pages of information for fiber optic specialists, enhanced with diagrams, tables, and graphs. Also included is equipment for performing fiber geometry analysis and spectral attenuation measurements for cable and fiber manufacturers.

Coating Technology Innovation
ZCR Inc., Carson, CA, has published an 8-page full-color catalog titled "Coating Technology Innovation." The document provides specifications on the company's extensive line of standard off-the-shelf and custom coatings. Included are reflectance and transmittance curves on antireflection, metal, transparent conductive, and ultrahigh-power laser coatings, infrared filters, BlackLite and color dichroic filters, thin-film polarizers, color and heat control filters, and beam splitters.

Spectral Data Acquisition Systems
Now available from Acton Research Corp., Acton, MA, is a full-color brochure called "Beyond Peak Performance," detailing spectroscopic tools for research, analysis, and process monitoring. Featured is the new NCL: High-performance spectral data acquisition system for spectroscopy. Combined with ARC's SpectraSense software, it makes real-time data collection, system automation, and chemometric analysis possible for process monitoring and research applications. The brochure gives specifications for SpectraSense software, the NCL electronic interface, and SpectraPro monochromators and spectrogaphs.

Laboratory Benchtop Instrumentation
The new "1998 Short Form Catalog" from ILX Lightwave, Bozeman, MT, contains information on the company's instrumentation for laser diode control and fiber optic test and measurement. New products include combination (current and TEC) modules for the LDC-3900 laser diode controllers; the LDM-4980 RF laser diode mount for telecom laser diodes; WDM DFB and external-cavity laser modules for the 7900 modular fiber optic source system, and the 8012/24 single- and dual-output low-cost fiber optic sources and more.

Photronics Surface Preparation Equipment
Ultra Tec Manufacturing Inc., Santa Ana, CA, has prepared a series of specification sheets on its line of precision saws and lapping and polishing machines. Included are the Ultralap and Microsive saws that provide precision sectioning for a wide range of applications. Microsive 2 provides an annular cutting mode, making it the choice for many users in optical and materials science applications. The company says that the Ultralap 1200 series polishing offers maximum versatility in preparing samples of all shapes and orientations. The UT-1600 Micropositioned Polishing Heads may be ordered in all planes to suit optical, optoelectronic, and fiber-type workpieces.

Spectrophotometer with FO Dip Probe
A recently published brochure from Varian Analytical Instruments, Palo Alto, CA, focuses on the Cary 50 spectrophotometer. The company says its new xenon flashlamp technology offers better efficiency, longer lamp life, and no sample degradation. Full-color diagrams and photographs illustrate the Cary 50's flexibility and range for applications such as scanning, kinetics studies, and concentration measurements. The brochure highlights the instrument accessories, such as the fiber optic dip probe for speed; precise liquid sampling without cuvettes.

Replacement Optics for CO2 Lasers
A new brochure describing lenses, mirrors, phase retardation reflectors, and other optics for industrial carbon dioxide lasers is available from Laser Research Optics, Providence, RI. The brochure features low-absorption ZnSe positive focusing lenses and molybdenum mirrors, and has descriptions, photographs and technical specifications for each of the many product categories.

See Breault Research at SPIE's Annual Meeting July 19-24
Design, analyze, and prototype optical systems in one program. Combines 3D surface/structure modeling techniques with very flexible ray tracing and coherent and incoherent beam propagation algorithms. Easiest ever graphical user interface, powerful new source and geometry builder, smart integrated CAD translator, catalogue of common bulbs and direct import of Radiant Imaging's measured sources.

Breault Research Organization, Inc.
6400 E. Grant Road, Suite 350
Tucson, AZ 85715
Phone 520-791-0500 • Fax 520-791-9630
NEW PRODUCTS

PRODUCT OF THE MONTH

Optical Linear Encoder
BEI Sensors & Systems Co.'s Encoder Systems Division, Sylmar, CA, introduces its LIE5 Series optical linear encoders, the first product to be developed under a new business alliance with Carl Zeiss Group. Called the most efficient interferometric technology to result from an extensive research and development effort by the two companies, the LIE5 encoder is a reflective-read device that works in conjunction with a steel measuring scale. BEI says the head employs flip-chip-on-glass optics, which account for its small size as well as its ability to include built-in interferoplation circuitry with resolutions as fine as 0.1 μm and output frequency up to 36 MHz. The head's dual scanning arrays allow for continued reading under contamination conditions that the company says would prove fatal to other linear encoders. The package measures only 54 mm x 13.2 mm x 12.4 mm, offering multiple mounting options. The scale features etched graduation marking of a 20-μm pitch with high optical accuracy; custom scale options are available.

Laser Power Measurement Systems
Labsphere Inc., North Sutton, NH, includes two precision power meters designed to measure the total output power of lasers or highly divergent sources. Integrating-sphere systems are available for measurements, insensitive to polarization and input-beam alignment, over the wavelength region from 300 to 1800 nm. These systems consist of an integrating sphere, detector assembly, and system control, with calibration traceable to the National Institute of Standards and Technology.

Flow Visualization Imaging System
The Saber 2/4" system from Oxford Lasers Inc., Acton, MA, is a fully integrated portable image velocimetry (PIV) system consisting of the HS11000 solid-state pulsed laser illuminator, a megapixel cross-correlation camera, digital framegrabber, Visiflow® PIV analysis software, and fully configured PC for image capture and analysis. In cross-correlation mode, the imaging system provides the ability to capture two frames with as little as 10 μs of time separation. The fully digital system enables image capture to be externally triggered for precise timing with external events.

Small-Diameter Borescope
Gradient Lens Corp., Rochester, NY, introduces the Super Slim, part of the Hawkeye Precision Borescope line. The instrument is just 2.4 millimeters wide. Because it is based on gradient-index (GRIN) optics, one long straight glass tube takes the place of many tiny lenses that make up the insides of other micro borescopes. Gradient Lens says that Hawkeye borescopes cost about a third to a half of today's conventional instruments. The company says its patented endoGRINS design results in rods that are unique in having negative dispersion, which virtually eliminates aberrations such as color fringing and loss of sharpness.

Optical Wavelength Meters for WDM
Burleigh Instruments Inc., Fishers, NY, says its new WA-1600 and WA-1100 Wavemeters® optical wavelength meters are designed specifically for characterization of wavelength division multiplexing components in manufacturing environments. Using Wavemeter's scanning Michelson interferometer-based technology to compare fringe patterns with those of a built-in HeNe laser wavelength standard, the meters achieve absolute wavelength accuracy of ±0.2 ppm. The Wavemeters also measure total optical power, and monitor, as a function of time, changes in wavelength or power of an optical signal.

Thin-Film Thickness Mapping System
The FS5 system from Filmetrics Inc., San Diego, CA, is a thin-film thickness mapping system designed for optical coating and semiconductor wafer applications. It automatically measures the thickness of oxides, nitriles, resists, polymers, and other films used in silicon, III-V, and LCD fabrication. It will measure films between 20 nm and 30 μm thick on substrates up to 8 in. in diameter. In addition, the system models and characterizes a multitude of complex multilayer optoelectronic structures, including vertical-cavity lasers and distributed Bragg reflectors.

For More Information Circle No. 793
For More Information Circle No. 794
For More Information Circle No. 795
For More Information Circle No. 796
For More Information Circle No. 797
For More Information Circle No. 798
For More Information Circle No. 799
For More Information Circle No. 800
For More Information Circle No. 801
For More Information Circle No. 802
For More Information Circle No. 803

For More Information Circle No. 804

IR Camera for Predictive Maintenance
Raytheon, Goleta, CA, makes available ExplorIR®, an infrared camera designed for predictive maintenance and condition monitoring applications. Incorporating a 320×240-pixel uncooled focal plane array, the camera operates in the 8-to-14-μm range with a sensitivity of 0.15°C. Measurement accuracy is ±4 percent or ±4°C, whichever is greater. Weighing 5.5 pounds, the camera has a flip-out 5-in. active-matrix color display, designed to function in high ambient light. The system has two models: the SR features a measurement range of -20°C to 900°C, while the ER model enables measurement up to 900°C.

For More Information Circle No. 805

For More Information Circle No. 806

Tunable Laser with Direct UV Output
Lambda Physics Inc., Fort Lauderdale, FL, calls its UVStar® the first commercially available, all-solid-state tunable laser with direct output in the ultraviolet. UVStar consists of a cerium-doped LiCaAlF, laser pumped by a Lambda Physik StarLine® 266 frequency-quadrupled Nd:YAG laser. UVStar can be continuously tuned from 282 to 310 nm. Maximum output power is more than 150 mW with a bandwidth of less than 250 pm. At a repetition rate of up to 1 kHz, output pulse duration is 2.5 ns.

For More Information Circle No. 807

Diode-Pumped Rod Laser
Cutting Edge Optronics Inc., St. Charles, MO, introduces the Stiletto, a sealed, compact 35-W diode-pumped Nd:YAG rod laser. The company says the product is a turnkey Q-switched laser system that will be useful for a wide range of near-infrared OEM, industrial, and scientific applications. The laser head, 1.75 in. in diameter and about 20 in. long, is housed in a sealed cylindrical tube that is the size of a typical HeNe laser. This makes possible using the laser with a wide variety of available HeNe mounts. An optional external scrambler-driver-adjustable mode control switches the laser to any one of three higher beam qualities, including TEM00 output.

For More Information Circle No. 808

Laser Diode Power Module
New from Analog Modules, Longwood, FL, is the Model 5705 isolated laser diode power module designed to drive diode lasers for CW or pulsed diode-pumped solid-state laser applications. The module, which can be configured with either positive or negative output, delivers up to 2 kW of average power. With a 325-s circuit, it can deliver 40 A at 50 V, 20 A at 100 V, or 10 A at 200 V. For pulsed applications, the Model 5705 can be used in conjunction with an external switch to provide peak currents of up to 300 A. Weighing 3 lbs., the device measures 6.0 x 5.5 x 2.78 in.

For More Information Circle No. 809

www.nasatech.com
June 1998
It's the little things we do that bring the world closer to you. With innovative designs and the highest manufacturing standards backed by extensive engineering support, UDT Sensors offers:

- Standard and Custom Photodetectors
- X-Ray and UV Detectors
- Fiber Optic Emitters and Detectors
- LED's and Optical Switches
- Opto-Assembly / Medical Products
- Ceramic Substrates / Hybrids
- SMT / Through-Hole PCB Assembly
- Tool & Die / Injection Molding and Cable Over-Molding

Do what companies around the world do, call us at (310) 978-0516.
Wait a Minute...
Who's Kobayashi?

OptoSigma's Mitsuo Kobayashi is a dreamer. He didn't discover gravity or a new moon, but awoke early one morning with a revolutionary new concept in opto-mechanical positioning. After a few quick sketches, he rushed to work. It didn't take long for us to realize that his extended contact bearing stage was an astronomical leap forward. The rest is history.

Now available from OptoSigma in a wide range of models, Kobayashi's "Dream Stage" combines crossed-roller and ball-bearing concepts for eye-opening load capacities and laser-straight travel accuracies. And because it uses only two pieces with an integrated bearing design, conventional bearing ways are eliminated. So there are no preload screws to adjust, nothing to loosen up.

The great minds at OptoSigma are always searching for better ways to make your job easier. It often begins with a dream. And continues with the best selection, prices and service in the industry.

Call (949) 851-5881 today for your Free copy of the OptoSigma Catalog and a complete listing of our Stages, Optics & Mounts.

OptoSigma. A Stage Ahead in Positioning.
The working fluid for this new device is helium, which is nontoxic to humans and harmless to the environment.

Marshall Space Flight Center, Alabama

The Pulse-tube Refrigeration unit offers a viable alternative to units that currently require chlorofluorocarbon (CFC) and hydro-chlorofluorocarbon (HCFC) working fluid. Pulse-tube Refrigerators use helium as the working fluid, which is nontoxic to humans and harmless to the environment.

Pulse-tube Refrigerators can be operated over a wide range of temperatures. These units can be used in numerous space and commercial refrigeration applications, including food refrigerator/freezers, laboratory freezers, and freeze dryers. Pulse-tube Refrigerators can also be used to cool detectors and electronic devices.

Pulse-tube Refrigeration, a variation of the Stirling cycle, is a relative newcomer compared to other refrigeration cycles. The Pulse-tube Refrigerator is the first unit applied to the temperature range and load level needed for typical food freezers and laboratory freezers.

The design of the Pulse-tube Refrigerator unit was based on the Orifice Pulse-tube concept. First, the gas is compressed in the compressor. Next, it flows through the compressor aftercooler, where heat is rejected to a water-cooling loop. Then the gas flows through the regenerator, which is basically an economizer, conserving cooling from one cycle to the next. The gas then enters the cold-end heat exchanger where heat is added to the gas from the surroundings.

The gas finally enters the Pulse Tube, orifice, and reservoir. These three components produce the phase shift of the mass flow and pressure, which is necessary for cooling. The gas shuttles back and forth between the hot and cold ends rather than circulating continuously around a loop, as in some refrigeration cycles. Heat is lifted against the temperature gradient and rejected at the hot-end heat exchanger, which is also water-cooled.

The compressor designed and built for this unit is a dual-opposed-piston type. The displacement of these two pistons is 180° out of phase, to reduce vibrations. The compressor, which can be operated over a wide range of frequencies, is designed for operation at a nominal 60 Hz.

The compressor pistons are supported by helical mechanical springs which assist in producing harmonic motion and return the pistons to the needed null positions before startup. The pistons are supported inside the cylinders on dry lubricated, low-friction sleeve bearings. Each piston is attached to a separate moving coil, which is formed by wrapping copper wire around the end of a spool. When voltage is applied to a coil, the resulting current produces a force on the coil.

Optical encoders provide real-time readout of all piston positions. These encoders use a noncontacting interrupter scale between a light-emitting-diode source and sensors to detect motion. A tachometer pulse and direction signal are generated.

The cold-end and hot-end heat exchangers consist of fine mesh copper screens, fabricated in-house using proprietary techniques.

After design and fabrication, the Pulse-tube Refrigerator unit was subjected to numerous tests. A temperature of —45 °C was reached, which is well below the temperature required for food freezers.

Pulse-tube Refrigerators offer increased reliability, fewer moving parts, and much lower cold-end vibration than other spacecraft or commercial refrigeration concepts.

This work was done by W.G. Dean of Dean Applied Technology Co. for Marshall Space Flight Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasa.teclh.com under the Machinery/Automation category, or circle no. 166 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to: Dean Applied Technology, Inc. 1580 Sparkman Drive #103 Huntsville, AL 35816 (205) 721-9550

Refer to MFS-26440, volume and number of this NASA Tech Briefs issue, and the page number.

Improved Hybrid System Protects Airfoils Against Icing

This system includes an upstream thermal and a downstream electromechanical subsystem.

Lewis Research Center, Cleveland, Ohio

An improved hybrid thermal/mechanical system has been developed to protect airplane wings and other airfoils against the accretion of ice, which degrades aerodynamic performance. The system is designed with particular attention to advanced, high-performance airfoils, which exhibit significant loss of lift when their leading edges and adjacent areas become rough, as they do when ice accretes.

In aeronautical terminology, "anti-icing" denotes the prevention of icing, while "deicing" denotes the removal of ice that has already formed. Anti-icing is the only way to keep the leading edge and adjacent areas of an airfoil aerodynamically smooth in the presence of impinging supercooled water droplets. Deicing is adequate for the area sufficiently downstream of the leading edge,
The Heater Prevents Freezing of impinging supercooled water droplets in the leading-edge region. The electromagnetic actuators occasionally deflect the metal skin outward to knock off ice that accumulates downstream from the leading edge. However, the power demand of a fully evaporative anti-icing system is excessive for most light jet and regional turboprop airplanes. The present hybrid system was developed to enable the anti-icing and deicing of such airplanes at an acceptably low power demand. This hybrid system includes an upstream thermal anti-icing subsystem, a downstream electromechanical deicing subsystem (see figure), and an electronic subsystem that controls the other two subsystems. The thermal subsystem heats (either electrically or by use of hot gas from the engine) the leading-edge region enough to prevent water from freezing, but not enough to evaporate most of the water. The electromechanical subsystem includes actuators inside the airfoil at downstream locations on the upper and lower airfoil surfaces. The actuator housing is a long cylindrical container made of aluminum, brass or plastic. The metallic tip is a long cylindrical rod, about 18 in. long and 0.60 in. in diameter, which is attached to the outer cylindrical wall of the actuator housing. The rod is made of austenitic stainless steel, cold worked to a hardness of 300 hardness number on the Rockwell C scale. The rod is stressed at a fatigue limit of 15,000 psi, which is far below the ultimate tensile strength of the material. The actuator is driven by a direct current pulse of 100 amperes per second, which is applied to the rod through electromagnets located in the actuator housing. This pulse creates a high level of acceleration, which is transmitted to the rod through a conical tip at the end of the cylinder. The actuation that removes the accumulated ice deflects very slightly outward, with high level of acceleration, and returns to its original position. This is the actuation that removes the accumulated ice. Although the momentary pulse power is high, the average power consumed by the electromechanical subsystem is low.

The electromagnetic force causes the actuators to expand perpendicularly to the skin. The airfoil skin momentarily

The electromechanical deicing subsystem includes actuators inside the airfoil at downstream locations on the upper and lower airfoil surfaces. These are locations where ice forms by freezing of impinging droplets and of water that runs back from the leading edge. The actuators are basically electromagnetic coils to which large dc pulses are occasionally applied, as required, by discharging energy-storage capacitors, creating a rapid impulsive force. The electromagnetic force causes the actuators to expand perpendicularly to the skin. The airfoil skin momentarily
Evaluation of a “Smart” Aircraft Control Actuator

Benefits for future aircraft could include decreases in weights, costs, and electromagnetic susceptibility.

Dryden Flight Research Center, Edwards, California

An aircraft control actuator that incorporates self-contained control electronics has been installed in the F-18 Systems Research Aircraft and evaluated in flight tests. This “smart” actuator is a prototype of fly-by-wire servoactuators for future advanced aircraft.

Fly-by-wire servoactuators now used in military and commercial aircraft are not “smart” in that they do not use self-contained control electronics. Generally, electronic control and monitoring of servoactuators on aircraft are accomplished within separate flight-control computers. As a result, a large amount of wire is needed to operate all the actuators on an aircraft. Especially in a large commercial aircraft, the weight of the wire is significant. Other disadvantages of such a fly-by-wire system include high cost of maintenance, vulnerability to interference by electromagnetic signals (including electromagnetic pulses), and the need for a unique flight-control interface for each actuator.

The smart actuator (see Figure 1) was designed to fit in the left aileron bay of the F-18 airplane. The smart actuator contains two independent electronic channels that perform actuator-control, fault-monitoring, and redundancy-management functions. Communication with the actuator has been simplified by use of standard serial data buses. Instead of wires, optical fibers are used as the communication media.

Installation of the smart actuator on the F-18 airplane necessitated two interface units. These units not only provide the electrical-to-optical interface between the smart actuator and the F-18 flight-control computers, but also provide data to the instrumentation system of the airplane. The use of the interface units also makes it unnecessary to modify the flight-control computers.

The performance of the smart actuator throughout the flight-test program has been exceptional (see Figure 2). Likewise, the fiber-optic data buses used with the smart actuator performed well throughout flight testing. Moreover, the smart actuator performance was virtually identical to the F-18 production actuator. Although environmental tests revealed that the fiber-optic data buses were thermally sensitive, a maintenance-and-calibration procedure was developed to account for the sensitivities. Fiber optics were found to be satisfactorily reliable, and maintenance was easily performed. No anomalies occurred during the flight tests.

The development and flight testing of the smart actuator have proved that local control and monitoring of servoactuators is possible. Although sensitivities of the fiber-optic data buses were discovered, these sensitivities can be factored into future system designs. The use of fiber optics and serial data buses simplified integration of systems and provided valuable information regarding reliability and maintainability of fiber optics on aircraft. In addition, the use of fiber optics may translate to decreased weights, decreased costs, and decreased electromagnetic susceptibility for future aircraft.

This work was done by Kari Alvarado, Denis Bessette, Dorothea Cohen, Bill Fredriksen, Gordon Fullerton, Don Hermann, Linda Kelly, Doug Lindquist, Dick Klein, Bill McGory, Harry Miller, Cynthia Norman, Lyle Ramey, Mauricio Rivas, Karla Shy, Joel Sitz, Daryl Townsend, and Eddie Zavala at Dryden Flight Research Center; Karen Richards of HSI; Gavin Jenney and Bruce Raymond of Dynamic Controls, Inc.; Dave Dawson and Major Dennis Trosen of the U.S. Air Force Wright Laboratories; Sean Donley of the U.S. Navy; and Bob Heggy and Bob Deller of HR Textron. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Machinery/Automation category, or circle no. 157 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). DRC-96-73

Figure 1. The Smart Actuator includes self-contained control electronics that perform functions that, in older systems, were performed within flight-control computers remote from actuators.

Figure 2. Nearly Identical Performances were exhibited by the smart actuator and the standard F-18 aileron actuator in a flight test. [Aileron reversal ±60° bank angle, 24 kft (7.2 km), 0.4 M, 88 q.]

Apparatus for Coating and Cold Welding in Vacuum

Vacuum need not be broken between the coating and cold-welding processes.

Lewis Research Center, Cleveland, Ohio

The figure illustrates selected aspects of a manually actuated apparatus for use in coating two small objects with suitable metals, then forcing the two objects together at the coated flat surfaces with uniform pressure to cold-weld them to each other. The design of this apparatus provides for all steps of the coating and cold-welding processes, including intermediate steps of manipulation between these processes, to be performed in a vacuum, with no need to break vacuum. The wafer can be positioned facing upward toward a metal-deposition source, the turntable can be turned to bring the rod and disk to different metal-deposition sources, and the metal-coated wafer can be pushed down onto the rod for cold welding, all without breaking vacuum.
between the processes as in older methods of coating and cold welding. By maintaining vacuum through all processing steps, one prevents the formation of surface oxides, which interfere with cold welding. Maintaining vacuum also prevents the formation of pockets of trapped gas, which render the bond nonuniform.

In the original application for which the apparatus was designed, the objects to be joined are components of an ultrasonic transducer; namely, a piezoelectric (e.g., lithium niobate) wafer as thin as 0.001 in. (25 µm) and a round sapphire rod with a flat surface (to mate with the wafer) at one end and a concave focusing surface at the other end. The faying surfaces of the rod and disk must be coated with thin layers of chromium, then gold, then indium, by sputtering or vapor deposition in a vacuum. Then the wafer is pressed onto the end of the rod with a pressure of about 300 kg/cm² (about 0.1 MPa) to cold-weld the rod and disk together at the indium surface layer. Thinness and uniformity of the bond layers and uniformity of the cold-weld joint are necessary for proper acoustic performance.

The apparatus includes a collet that holds the sapphire rod and a rotating arm that contains a swivel disk, on which the wafer is held by a layer of wax. The arm enables the initial pickup of the prealigned wafer, the orientation of the wafer facing a metal-deposition source, and the repositioning of the wafer for subsequent bonding to the rod. During coating with metal, both the rod and the wafer are oriented with the bonding surfaces to be coated facing the source of the metal. The chromium, gold, and indium layers are deposited from three different sources. The apparatus includes a turntable so that the rod and wafer can be positioned below each of the three sources in sequence.

The collet is mounted in a spring-loaded holder, the springs of which are preadjusted to provide the appropriate bonding force. The springs are compressed and restrained by a cam-actuated lever. The cam is driven by a linear-and-rotary vacuum feedthrough that enables actuation without breaking vacuum. The feedthrough can be made to engage a cam socket when the angular position of the rotary table is such that the cam socket and the feedthrough are aligned with each other.

A similar feedthrough and cam-actuation mechanism is provided for the positioning arm. The arm is initially set in the coating position. After deposition of the three metal layers, the arm is rotated, by use of this mechanism, to push the wafer down onto the rod in the collet. The swivel disk provides limited freedom of tilt to allow the wafer to align itself with the tip of the rod when the wafer and rod are pushed together. A latch locks the arm into position for bonding. A restraining cam is rotated to unload the spring compression from a restraining lever, allowing the spring to press the wafer and rod together.

After the pressing, the vacuum system can be opened. Spring clips that hold the swivel disk in place and the collet that holds the rod in place are loosened, making it possible to remove the bonded parts with the swivel disk still attached to the wafer by wax. The swivel disk is released by gently heating the parts to melt the wax.

This work was done by Richard Oeftering and Floyd Smith of Lewis Research Center. For further information, access the Technical Support Package (TSP), free online at www.nasa-techbriefs.com under the Manufacturing/Fabrication category, or circle no. 106 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Lewis Research Center, Commercial Technology Office, Attn: Tech Brief Patent Status, Mail Stop 7-3, 21000 Brookpark Rd., Cleveland, OH 44135. Refer to LEW-15922.
Carbon/Carbon Shield/Antenna Structure

This strong, lightweight structure could withstand high temperature.

NASA's Jet Propulsion Laboratory, Pasadena, California

A proposed lightweight, off-axis reflector structure for a microwave communication antenna would be made of a carbon/carbon composite material. The structure was conceived for use aboard the Solar Probe spacecraft, where it would also serve as a shield to protect the spacecraft against solar radiation at perihelion. The basic concept of the carbon/carbon reflector structure could be also adapted to design lightweight, strong, off-axis reflector structures for antennas to be used on Earth.

Carbon/carbon was chosen as the class of structural materials because such materials offer a combination of light weight, high strength, good radio-frequency (RF) reflectance properties, and low mass loss at high temperatures. Results of tests of candidate materials suggest that the proposed shield/antenna structure would function well at a temperature greater than 2,000 K. The major drawback of materials in this class is that they are expensive.

In the original Solar Probe application, the dual use of the structure as a solar shield and antenna reflector was made possible by a fortuitous combination of optimum shield and antenna shapes that was effected by designing the spacecraft trajectory to obtain Sun/spacecraft/Earth quadrature at spacecraft perihelion. The combined shield/antenna would also enable a reduction of overall spacecraft diameter: According to an older design concept, the solar shield would be a separate, conical structure and the antenna reflector would lie within the shadow of the shield. The overall spacecraft diameter according to that concept would be 4 meters. The overall diameter according to the proposed simplification would be reduced to 1 meter, and the overall mass and cost of the spacecraft would be concomitantly smaller. Of course, whether or not such simplification and reduction in size could be effected in other applications would depend on the geometries and design and operational requirements specific to those applications.

This work was done by James Randolph of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasa tech.com under the Physical Sciences category, or circle no. 148 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Got Switches?

(pressure switches, that is)

- Over 20 models of pressure and vacuum switches
- Some models with all stainless steel wetted parts
- UHP models built in Class 100 cleanroom
- Customs are our specialty
- 18 different fittings

Wasco Inc.

3130 Skyway Dr. #701 Santa Maria, CA 93455 usa
tel. 805-739-2747 fax 805-739-2751
sales@wascoinc.com www.wascoinc.com

Software Models

Processes in a Gaseous Chemical Reactor

A simple, volume-averaged model provides guidance for designing reactors.

Ames Research Center, Moffett Field, California

The Simple Analysis of Materials Processing Reactors (SAMPR) computer code is meant for the analysis of plasma and nonplasma processes used in manufacturing semiconductors. The code can also be used to analyze any chemical-processing reactor with gaseous (but not liquid) streams.

The code implements a mathematical model that consists of balance equations for the total mass, mass of individual chemical species, and gas energy. In the case of plasma reactions, a plasma power balance is also included.

The balance equations are volume-averaged; in other words, they represent a zero-dimensional (0-d) analysis. For this analysis to be valid, the reactor contents must be well mixed and not exhibit significant gradients of species concentrations or gas temperatures in any part of the reactor. Such perfect mixing conditions can be found in reactors used in chemical process industries. Such ideal conditions may not exist in reactors used...
Plan Now To Attend

TECH EAST '98

8000 scientists, senior engineers, technology managers, and entrepreneurs in the heart of the New England high-tech corridor.

Photonics EAST
The Northeast's only optics and photonics exhibition

TECHNOLOGY 2000
"The Engineering Innovation Show"
9th Annual National Technology Transfer Exposition

ELECTRONIC IMAGING INTERNATIONAL
The East Coast's premier annual imaging exhibition

SMALL BUSINESS TECH EXPO
Showcasing the latest resources and technologies to launch new products and develop partnerships

National SBIR Conference
Over $1 billion in R&D grant opportunities

The latest products and services for design, prototyping, testing, and manufacturing applications

Six major shows at Tech East '98

INTERNATIONAL R&D CONFERENCES • REGIONALLY TAILORED EDUCATION PROGRAMS
• TUTORIALS • WORKSHOPS • PLENARIES

Sponsored by

SPIE The International Society for Optical Engineering

NASA TECH BRIEFS
ENGINEERING SOLUTIONS FOR DESIGN & MANUFACTURING

Small Business Tech Expo and National SBIR Conference:
Phone 360/683-1828 Fax 360/683-6654

For More Information Circle No. 536

www.techeast.net
for etching, deposition, annealing, or performing any other functions in the course of manufacturing integrated circuits. Nevertheless, approximate solutions to somewhat idealized reactor conditions may be valuable in estimating overall conversion efficiency of feedstock, effluent concentrations, and energy utilization.

SAMPR provides volume-averaged electron density, electron temperature, and concentrations of radicals and ions as functions of pressure, input power, and flow rates. Obviously, detailed information on the departure from uniformity of the plasma, and on fluxes of radicals and ions near a wafer in the reactor is lost in such a global model, but quantitative behavior of the plasma as a function of system parameters or the so-called “scaling laws” can be obtained very rapidly. Generation of such valuable knowledge with minimal computational resources is the attraction of this simple approach.

Also, the results obtained from a 0-d model can provide guidance for further multidimensional simulations. Usually, in a semiconductor-processing situation, the numbers of chemical species and reaction pathways are large. Multidimensional analysis with a large set of reactions and species is computationally intensive. A 0-d analysis in such a case can be used effectively in a systematic study to generate a “reduced chemistry set” that provides reasonable results.

This work was done by M. Meyyappan of Ames Research Center and T. R. Govindan of Applied Research Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Physical Sciences category, or circle no. 142 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to the Patent Counsel, Ames Research Center; (650) 604-5104. Refer to ARC-13392.

Automated Calibration of Temperature Transducers

John F. Kennedy Space Center, Florida

An automated system of laboratory equipment and computer hardware and software reduces the time that technicians must spend in calibrating temperature transducers. The laboratory equipment includes a controlled-temperature bath, two digital multimeters for processing the outputs of two temperature transducers at a time, and standard interface bus circuitry for controlling and monitoring the bath and the multimeters. The operation of the laboratory equipment is controlled by equipment-specific software on a computer that runs Windows 95 and is equipped with a standard general-purpose interface bus circuitry. A technician specifies data points for calibration, and thereafter the software controls the calibration process. The process includes timed advances to subsequent temperatures and holding periods for stabilization at calibration temperatures, with a sampling period of 1 second. The technician can leave the system unattended during the calibration process. Using manual techniques, it usually takes about half a day to calibrate two temperature transducers at three data points; using this system, it takes about two hours.

This work was done by Timothy Joe Ragain of United Space Alliance for Kennedy Space Center. No further documentation is available. KSC-11988
In addition to being plug-and-play with ESP stages, the ESP6000 is compatible with existing Newport stages.

The ESP6000 Motion Controller delivers the ultimate in plug-and-play micropositioning. Right out of the box. Just connect the ESP6000 to as many as six Newport stages. Then hook up to your PC. That’s it—you’re done.

And you don’t have to worry about which stage you’re using. The ESP6000 is compatible with all ESP linear and rotary stages as well as with your existing Newport equipment. The system instantly identifies every stage and automatically configures driver and motor parameters. All you do is dictate where you want to go and when you want to get there. The ESP6000 even handles data acquisition tasks, so you don’t need extra data acquisition cards.

So the next move is yours. Just call 1-800-222-6440 to find out how the ESP6000 fits into your application. Then kick back and don’t give motion control another thought.

For more details on Newport’s complete line of motion control products, request our 1997 Motion Control catalog today at www.newport.com/catalog

For More Information Circle No. 655
How did we create today's lowest priced air valves?
We broke the rules.

With the new, multi-patented Isonic® valve design, Mead has significantly reduced the cost of making air valves. Isonic® valves are formed by joining two mirror-image molded body sections. This visionary design allows flow paths, solenoids and other components to be designed directly into the valve body, minimizing overall valve size, increasing flow potential (to 0.8 Cv) and eliminating machining costs associated with traditional valves.

With its remarkable "half-shell" valve design, Mead has set the standard in valve performance and price. Among comparable 4-way models, Isonic® is today's lowest cost air valve.

Call today for more information!
INTEGRATION OF MOTION AND SEQUENTIAL CONTROL

Rockwell Automation's new approach integrates motion control on a common hardware and software platform.

Typically, performing motion control functions requires the use of a dedicated motion controller separate from an application's programmable controller. These two devices must then be linked together using hard-wiring, a serial interface, or some other communication interface. The resulting system is frequently difficult to program and maintain, and may suffer performance problems as well. For example, users must write separate application programs for both controls, typically with two different programming packages.

Rockwell Automation's new modular approach involves a controller and one or more motion modules, all residing in the same hardware chassis as the controller. The controller plays an expanded role, to include motion instructions embedded in firmware. The general-purpose programming software provides full motion programming and configuration support for the controller.

CONTROL COMPONENTS

The three components of this new approach are:

- Controller(s). The controller is an Allen-Bradley Logix5550™ controller from Rockwell Automation. The controller is part of the Allen-Bradley ControlLogix™ system, a control architecture for sequential, process, and motion control applications. As the heart of this approach, the controller performs all of the high-level motion command execution and motion trajectory planner functions, in addition to the traditional sequential control (counting, timing, shifting) functions. The 27 motion commands embedded on the controller support a range of motion functions from simple point-to-point moves to more complex ratioing moves. These motion commands are based on those found in other commonly used motion controllers. Up to eight servo modules (or 16 axes) can be controlled by a single controller.

- Motion modules. The motion module is the 2-axis servo module for the ControlLogix system (Figure 1). It provides two channels of 16-bit analog output, and two channels of quadrature encoder input. This allows it to connect to a wide variety of servo drives. All needed configuration parameters are sent to the motion module by the controller. As a result, the motion module does not require separate configuration or programming. The module contains a digital signal processor (DSP) that provides very fast 100-μs fine trajectory planner, position loop, and velocity loop closure.

FIGURE 1. The 2-Axis servo module (front) for the ControlLogix system (back).
Miniature DC Servo Actuators Mini RH Series

HD Systems offers a line of miniature DC servo actuators for use in applications such as robotics, instrumentation, and factory automation where precise motion control is required. The actuators combine zero backlash harmonic drive gearing with rare-earth magnet DC servo motors to provide both high torque and positional accuracy better than 2 arc-minutes. Rated torques of 2.6 thru 56 in-lb and rated speed of 15 thru 60 rpm are available depending on frame size and gear ratio. The smallest actuator measures just 20 mm in diameter. Encoders and/or tachometers are available as an integral part of the actuator.

New, Hollow Shaft Gearing SHF Series

Featuring a through-bore up to 70 mm in diameter, the SHF Series component sets and gearheads enable the design engineer to pass shafting, wire bundles, or other components directly through the center of the gear. The new SHF Series provides high accuracy in a compact design. This unit design is both axially shorter and lower in weight, as compared to conventional harmonic drive gearing. This is accomplished by using HD Systems patented "S" tooth profile. Rated torques up to 6590 in-lb and positional accuracy better than 2 arc-min can be achieved. Gear reduction ratios of 50:1 through 160:1 are available in a single stage.

Hollow Shaft DC Brushless Actuators

The FHA Series of actuators feature a through-bore up to 45 mm in diameter and provide high torque and exceptional positioning accuracy. This performance is achieved in a compact design using a patented "S" tooth harmonic drive gear coupled to a DC brushless pancake motor with integral electronic commutation and a high resolution encoder. Rated torques up to 1730 in-lb and positional accuracy better than 1 arc-minute can be achieved. The FHA Series is available in five frame sizes, ranging from 128 to 300 mm in diameter, and 116 to 248 mm in length.

The CSF Series...

Zero Backlash...
Twice the Torque...
Double the Life...
Half the Size!

HD Systems offers higher performance harmonic drive gearing using its patented "S" tooth profile. The CSF Series provides higher torque, higher torsional stiffness, and longer life, all in a smaller package while maintaining accuracy and efficiency.

For More Information Circle No. 657
Programming environment. The standard programming package for the controller, RSLogix5000™ software, also provides complete programming, configuration, and commissioning support for motion control. This allows users to easily perform sequential control and motion control programming within a single environment. When a motion module is added to the system, the user is stepped through configuration of each axis, including initiation of autotuning for determining axis gains and dynamics. All configuration and application program information is downloaded to the controller for execution.

SYSTEM OPERATION

Using this approach to perform multi-axis closed-loop control of a servo system consists of two major parts. The first is a high-speed Motion Task that runs in the controller and generates position and velocity trajectory information based on commands received from motion instructions executed in the application program (Figure 2). The position and velocity trajectory information is then sent transparently, over the backplane of the hardware chassis, to one or more motion modules, where a 100-µs fine trajectory planner, position loop, and velocity loop is closed. The motion module returns position, velocity, and status information to the controller, where it can be used by the trajectory planner or application program. A service is supported in the chassis that fully synchronizes one or more controllers and up to 16 two-axis motion modules per controller.

The second major part of the motion system involves the use of the controller to perform asynchronous services to configure the motion system or to monitor the current state of the system. The controller’s Motion Task exists in one of the three states of operation: idle, configuration, or run. On power-up, the Motion Task is in the idle state. Upon receipt of a service request, the Motion Task checks to see whether the axis instance is within an allowable range. If it is, the system transitions to the configuration state. Here, attributes such as the motion module’s slot number are checked for duplication to prevent a user from associating multiple axis instances with a specific motion module. In the run state, the motion system is fully configured, and the loop is closed upon request by the motion module.

The benefits of this new approach include higher system performance, faster application development and integration, and easier maintenance. Performance is increased because the controller and motion module reside on the same hardware chassis, for faster communication than is possible over a multinode network.

Performance is enhanced because the elements that usually require tight synchronization—sequential control and motion command execution/trajectory planner—are executed on the controller, while the high-speed position and velocity loop are closed on the motion module (Figure 3). Because of this modular, distributed approach, it is possible to maintain fast position and velocity-loop closure while maintaining tight synchronization of the logic and motion command execution/trajectory planner functions. In cases where fast scan times or faster trajectory planner update rates are required, additional controllers can be placed in the chassis.

Startup and maintenance times are decreased. Synchronizing the controller and motion no longer requires two separate “boxes” connected over a network, but instead is handled in a manner transparent to the user. The system’s integrated programming environment enables faster development of application programs, more complete integration, and improved ease of maintenance because the same programming environment is used for both motion and sequential control during development and operation of the system.

This work was done by Gregg Meinert of Rockwell Automation, Mayfield Heights, OH, and Bob Hirschinger, Rockwell Automation, Mequon, WI. For more information, please call (800) 223-5354, ext. 0733.
Harmony is the Key to Your Control System’s Performance.

Lower costs, improved throughput, higher quality, lower downtime, increased flexibility... These are the key advantages you can expect when proven, pre-integrated Rockwell Automation products are brought together in harmony. Like our ControlLogix system for synchronized motion and sequential control using a common hardware and software platform. And as the world’s leading supplier of automation equipment, we offer much more than off-the-shelf solutions:

• Consultation and support throughout every phase of your project
• Global back-up services and distributor network.

Music to your ears? Call for details. 1-800-223-5354, ext. 0735.

Copyright 1998 Rockwell International Corporation
ControlLogix is a trademark of Rockwell Automation
AD CIG0735

Rockwell Automation
Allen-Bradley
For More Information Circle No. 658
Magnetostrictive Inertial-Reaction Linear Motors
Fine positioning could be achieved at temperatures from near absolute zero to ambient.

NASA's Jet Propulsion Laboratory, Pasadena, California

Linear-translation motors containing inertial-reaction masses driven by magnetostrictive actuator elements are undergoing development. These motors could be used to make fine position adjustments in diverse scientific and industrial instruments that operate at temperatures ranging from near absolute zero to room temperature; for example, they could be used to drive translation stages in scanning tunneling microscopes that operate at liquid-helium temperature (4 K), or to move cryogenic-temperature optical elements that must be located at long but precise distances from each other (as in interferometers). [These motors should not be confused with proposed magnetostrictive motors that would move in “inchworm” fashion and would be used for similar purposes, described in “Magnetostrictive Actuators for Cryogenic Applications,” NASA Tech Briefs, Vol. 20, No. 3 (March 1996), page 84.]

An inertial-reaction motor includes a platform that slides along a pair of tracks. One end of an electrically driven linear actuator is mounted on the platform, and a substantial mass (the inertial-reaction mass) is attached to the other end. The actuator can be made to move the mass, rapidly or slowly, along a short range parallel to the track. If the mass is driven with sufficient acceleration that the reaction force overcomes the friction between the platform and the track, then the platform moves a short distance along the track. If, following a rapid stroke in the forward direction, the mass is driven relatively slowly in the reverse direction, then the reaction force is insufficient to overcome friction, and thus the platform remains in the position to which it moved during the forward stroke. By driving the actuator with a sawtooth waveform at the appropriate amplitude and frequency, one can cause the actuator to repeat this action and thus move the platform in a succession of small steps. The total distance traveled can range from a single step to the length of the tracks, which could be as much as 1 m or more in some instruments. The motion can be reversed by inverting the waveform driving the actuator.

The principle of operation as described thus far does not call for any particular type of linear actuator. Herefore, inertial-reaction motors have been constructed with piezoelectric actuators. However, piezoelectric actuators exhibit diminished performance as temperature decreases into the cryogenic range; at liquid-helium temperatures (about 4 K), piezoelectric actuators perform poorly.

Unlike piezoelectric actuators, magnetostrictive actuators perform well at temperatures from ambient down to 4 K and below; indeed, magnetostrictive actuators reach their performance peaks at cryogenic temperatures, while at room temperature, they produce strokes about 7 times as large as those of comparable piezoelectric actuators. Moreover, if the magnetostrictive linear actuators for cryogenic inertial-reaction motors are constructed with superconducting solenoids, then the conversion of electrical to mechanical energy could be more efficient.

The feasibility of magnetostrictive inertial-reaction motors has been demonstrated in tests of such a motor built with a commercial room-temperature magnetostrictive actuator (see figure). Incremental motions as small as 100 nm have been achieved. With further development, it should be possible to achieve increments as small as 10 nm.

This work was done by Christian Linden-Smith and Robert Chavez of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Mechanics category, or circle no. 134 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). NPO-20153

Device for High-Pressure Fused Deposition of Engineering Polymers From Feed Rods
New technology builds a solid object from true functional engineering materials.

Marshall Space Flight Center, Alabama

A more versatile delivery system for fused deposition has recently been developed. This system uses a very stiff, precise, and compact actuator to drive a small piston/cylinder extruder that has a heated nozzle. Because feed rods are used as the feed material, this newly developed delivery system does not have the materials limitations of conventional delivery systems. This innovative technology is a mechanical assembly that can achieve high extrusion pressure that can be constructed in a compact enough form to retrofit existing fused deposition sys-
WHEN THEY NEED THE BEST, THE BEST CALL ON BETATRONIX FOR:

- Linear Motion Potentiometers
- Potentiometer Switch Modules
- Motor Potentiometer Assemblies
- Arc Segment Potentiometers
- Gear Potentiometer Assemblies
- Multi-Turn Potentiometers
- Miniaturized Potentiometers
- Synchro Potentiometers
- Concentric Shaft Potentiometers

Whatever your potentiometer needs, the company to call on is Betatronix, recognized as the most technically capable designer and manufacturer of wirewound and conductive plastic custom precision potentiometers in the U.S. Whether you have a final specification or are facing a difficult design problem, Betatronix can help. We specialize in meeting specs other manufacturers claim are impossible, including tighter accuracies, unique packaging, reduced size, operation in extreme environments and extended life. For more information and a free copy of our all-new catalog, please visit our website or call 1-800-411-8799.
tems. The heart of this mechanical system is the combination of a hollow cylindrical servo motor and a ball screw, which are used to directly drive the piston of a piston extruder. The end of the screw is secured on a plate, which slides on four posts to provide counterrotation. This plate also prevents any axial misalignment of the screw and houses the load cell. The four posts provide a frame that attaches to a top plate to support the motor and a bottom plate to support the cylinder of the piston extruder. These elements form a very stiff mechanical linkage with very low lag or backlash and produce very precise volumetric displacement of material.

The cylindrical pancake motors for this invention were designed to eliminate gear reductions and avoid backlash in direct-drive equipment. Because the stator has been moved to the outside of the rotor, these motors produce very high torque at extremely low and controlled angular velocities. The increased radius and mass of the rotor translate to very high torque and rotor inertia. Also, the cylindrical motor is hollow, which allows the ball nut to fit inside the motor. This makes the actuator assembly very compact.

Two configurations of the high-pressure deposition were fabricated. One configuration was designed to retrofit into a Statasys Fused Deposition Modeler (FDM). The second configuration was designed for an Advanced Ceramics Research, Inc. (ACR) in-house fused deposition system. In the FDM, the head is moved in the horizontal plane and material is deposited onto a base that is moved vertically. In the ACR in-house system, the head is mounted on a stationary bridge and material is deposited onto a base which is moved in the horizontal plane and vertically beneath the head. The ACR system has more piston displacement, but the basic design of both units is the same.

This innovative technology has been used to free-form a number of important functional materials, such as polyaryletherketone, polycarbonate, thermoplastic polyurethane, and polylactic acid/polyglycolic acid block copolymer. This delivery system has also been used to fabricate green bodies that were subsequently fired to high density, including alumina, yttria stabilized zirconia, and silicon nitride.

Testing of these materials showed that the mechanical properties of the materials systems developed with this new invention greatly surpassed those of other free-formed polymer materials.

This work was done by Peter Creegan, Robert Hoffman, and Gabriel Chambers of Advanced Ceramics Research, Inc., and Kevin Stuffle of Materials and Machines, Inc., for Marshall Space Flight Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasaotech.com under the Manufacturing/Fabrication category, or circle no. 135 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to the Patent Counsel, Marshall Space Flight Center; (205) 544-0021. Refer to MFS-26446.
FEDLABS FORUM

News from the Federal Laboratory Consortium for Technology Transfer (FLC) — the nationwide network of federal labs that provides the forum to develop strategies and opportunities for linking technology with the mission and the marketplace.

INTO THE FUTURE...With over 700 Federal labs and 16 agencies, the Federal Laboratory Consortium takes the lead in technology transfer into the 21st Century. Offering vast resources — technology, expertise and patents in all scientific areas — many of our R&D labs have T&E as well, additional capabilities to test and evaluate. One step closer to market....

Call our expert lab sources for answers to your individual needs — CRADA assistance, a specialized technology, licensing advice, etc. It's "one-stop shopping." And look for FLC's list of Critical Technologies, cutting-edge inventions that meet and integrate with industry demands. Expect to "shop" globally. Soon technology transfer with international lab and industry partners will be as commonplace as technology collaborations at home.

THE FLC LOOKS AHEAD...IN AGRICULTURE, NUTRITION, TRANSPORTATION...

Seeing the Forest and Trees...USDA Forest Service Chief Mike Dombeck unveiled the Natural Resource Agenda for 2000 and beyond to meet the needs of Americans, as well as protect the environment. The agency is committed to watershed restoration and maintenance, sustainable forest ecosystem management, forest roads and outdoor recreation.

Fungus Foiled...A new and better test developed by Agriculture Research Service researchers that detects a harmful fungus (Phomopsis Longicolla) causing seed decay and discoloration in harvested soybean seeds, can be easily adapted for commercial use. Isolating a unique genetic sequence (DNA) in the fungus, the ARS method can distinguish the fungus from similar fungi infecting soybean seeds. Glenn Hartman, 217/244-3258.

Soil Saver...1997 FLC Award-winner saved about one million tons of soil on an estimated 50,000 acres of furrow-irrigated land in its first year of commercialization. The novel furrow-irrigation erosion control technology halts irrigation-induced erosion by small additions of water-soluble polyacrylamide (PAM) to irrigation water. The developer, the USDA-ARS Northwest Irrigation and Soils Research Lab of Kimberly, Idaho, worked with CRADA partner Cytec Industries. Rick Lentz, 208/423-6531.

HOPE Has Heart...U.S. Army's National Automotive Center (NAC) and the Tank-Automotive and Armaments Command (TACOM), of which it is a part, work with Focus: HOPE, a civil/human rights organization of over 700 employees, 49,000 supporters. HOPE's food and technology training programs — FAST TRACK, Machinist Training Institute, Center for Advanced Technologies (CAT) — help solve area economic/racial problems and provide skilled workers for commercial enterprises. Together they developed a metal matrix machining process involving piston prototypes for military and commercial vehicles, a CRADA for advancing machine tool technologies, and many other manufacturing projects. CAT and U.S. Army, partners since 1989, continue with new, challenging ventures. Joe Petrosky, Technical Manager, 313/494-4274.

NAC Track...Your company can work with the NAC in Michigan to develop dual-use automotive technologies to meet both industry and government needs. NAC works with industry giants as well as start-ups to improve vehicle performance, safety and endurance while reducing design, manufacturing, operation and maintenance costs. TACOM/NAC also developed the Hybrid HMMWV, the hybrid electric drive approach project for military ground vehicles and the commercial automotive market, with significant performance improvements. Questions? Call NAC representative, 810/574-5793.

Web Work...The Agricultural Research Service (ARS) Quarterly Report, at http://www.ars.usda.gov/is/qtr/, provides updates on current USDA projects, with ARS patent info and contact scientists familiar with each project. For 13,000 ARS research summaries, check ARS TEKTRAN database, http://www.nalusda.gov/ttic/tektran/tektran.html. Or http://crisel.nal.usda.gov:8080, the USDA Current Research Information System (CRIS) of nearly 33,000 project summaries, and USDA's latest progress reports, recent publications.

www.fedlabs.org
Navigation and Control of Continuous Mining Systems
Advanced technologies improve the accuracy of continuous mining systems.
National Institute for Occupational Safety and Health, Pittsburgh, Pennsylvania

Research conducted at the Pittsburgh Research Center (formerly U.S. Bureau of Mines) developed technology that will allow computer-assisted operation of mechanized equipment normally used in underground room-and-pillar coal mining, while permitting workers to be located away from the hazardous coal extraction area (the face). Advanced navigation and control technologies developed for underground room-and-pillar and highwall coal mining can be applied to commercially available mining equipment. The technology being developed uses off-the-shelf components, minimizing the effort required to adapt it to mining equipment. Because the new developments are completely modular, only the modules required in a particular application need be used on the system.

The most important requirement for a computer-assisted mining system is an accurate, reliable navigation system that is mounted on the mining machine to provide the continuous miner's location at all times. The navigation system provides information allowing the machine to cut to a predetermined mine plan. Many different navigation devices were evaluated in an effort to identify the best one for use on the machine. The Honeywell ring laser gyro known as HORTA was selected as the best navigation device for the application. The data provided by the gyro includes position of the machine in state plane coordinates (feet); position of the appendages of the mining machine in state plane coordinates; heading of the mining machine (degrees); pitch, roll, and yaw of the machine (degrees); altitude above sea level, cross-track and along track.

Investigators developed a fieldbus style of control network based on BITBUS standards that allows non-line-of-sight control of all the mining machine's moving parts. The control network consists of a microcontroller board in a 19-in. rack in the control center that attaches to a single-board PC plugged into a passive PC backplane. The two ends of the control network are connected with a twisted cable pair. The network uses a second fieldbus network to provide data collection of the positions of all the moving parts of the mining machine, as well as the status of the machine's critical parameters, such as motor currents, hydraulics, pressures, temperatures, and other relevant parameters. This network consists of sensors, signal conditioning modules, and a microcontroller board on the continuous miner, and a PC card that plugs into a passive PC backplane in the 19-in. rack. The two ends of the data network are connected with a twisted-pair cable. The third connection between the machine and the 19-in. rack is two twisted-pair cables that connect the machine-mounted gyro to a PC.
Earthwormlike Exploratory Robots

Mobility would be achieved through coordinated actions resembling peristalsis.

NASA's Jet Propulsion Laboratory, Pasadena, California

Mobile robots that would resemble earthworms have been proposed for use in exploring remote, hostile, or inaccessible terrain surface and subsurface environments. This class of robots would be a special case of a more general class of proposed small, lightweight, relatively inexpensive exploratory robots. Bio-
Straightening of these jointed plates streamlines the front end, facilitating penetration of soil.

These jointed plates buckle outward, anchoring the rear end.

Little spikes on the plates provide further traction only when the plates are in the buckled position.

Shortening/Widening and Elongating/Narrowing motions of the segments would be timed to generate an overall peristaltic motion like that of an earthworm.

switches & motors

- Very wide range of miniature microswitches
- UL, CSA, VDE approvals
- Ratings up to 25 Amp, 250 VAC, 2 Hp
- Waterproof models
- Gold cross point contacts

- Synchronous/stepper gear motors
- Linear actuators
- Short lead time
- Applications added value
- Dedicated customer service
- CE, UL, CSA certification

part of your success

Fax: 847-215-9606
www.SAIA-Burgess-USA.com
E-mail: SALES@SAIA-Burgess-USA.com

SAIA-Burgess Electronics

ISO9001 & QS-9000 registered

800-429-0365

For Switches Circle No. 663
For Motors Circle 672
Morphic explorers would exploit the emerging technology of biomorphic controls and advanced actuators. They would achieve motion by use of simple electronically or photonically controlled, flexible advanced actuators instead of conventional motors with complex drive trains. The robots would carry advanced microsensors for measuring or detecting specific objects or substances. Anima-like combinations of mobility, adaptability, fault tolerance and a limited capability for "learning" would be achieved by integrating the actuators with very-large-scale integrated (VLSI) circuits that would implement neural-network and/or genetic algorithms.

The proposed earthwormlike robots would be flexible in the sense that they would be foldable in segments. The first several segments at one or both end(s) of each robot would generate motion. These segments would be covered with hinged plates connected to interior actuators (see figure on page 12b). Upon command, the interior actuator in each segment would shorten or lengthen the segment, causing the plates to buckle outward or to move inward to straighten, respectively. A wave of shortening/buckling versus lengthening/straightening, resembling the peristaltic motion of an earthworm, could be generated by sending coordinated, sequential contraction and expansion commands to the actuators in the segments. By this action, the robot could move along the surface or burrow beneath the surface of terrain. The direction of travel could be reversed by reversing the sequence of buckling and straightening.

Special-purpose microsensors could be housed in one or more end or middle segment(s). The tips on the end segments could be sharpened to facilitate penetration of soil. Alternatively or in addition, the tips could contain sensors and/or mechanisms to collect samples.

The design of the robot, including the details of the mobility features and the choice of sensors, would be specific to the intended application. For example, an earthwormlike robot might be designed to probe earthquake rubble to find missing persons and animals. The sensors for this application could include a miniature active-pixel-sensor video camera, a temperature sensor, and microspectrometer for detecting carbonates, water, and other chemical signs of life.

This work was done by Sarita Thakoor, Kim Quillin, Alex Fukunaga, John Michael Morookian, and Adrian Stoica of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasa.gov under the Machinery/Automation category, or circle no. 138 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). NPO-20266

Miniature Multispeed Transmissions for Small Motors

Transmissions would be batch-fabricated using micromachining technologies.

NASA's Jet Propulsion Laboratory, Pasadena, California

A design has been developed for manufacturing multispeed transmissions that are small enough to be used with minimotors — electromagnetic motors with power ratings of less than 1 W. Like similar, larger systems, such as those in automobiles, the proposed mechanism could be used to satisfy a wider dynamic range than could be achieved with fixed-ratio gearing.

June 1998
NEW MINIATURE OPTICAL ENCODER

The E9 miniature optical encoder is the world’s smallest high-resolution optical encoder. Just 0.866 in. (22 mm) in diameter, this low-cost incremental encoder is ideal for use on small motors, especially when powered by battery, and in small mechanisms to sense axis position and speed. It easily replaces H-P’s HEDS models and provides resolutions to 512 lines in two output configuration versions. API Harowe Inc., 110 Westtown Rd., West Chester, PA 19382; (800) 566-5274 or (610) 692-2700; fax: (610) 696-4598; URL: www.apiharowe.com.

API Harowe Inc.
For More Information Circle No. 675

DC MINI MOTORS & MORE

API Portescap’s new 50-page brochure highlights the world’s largest range of ironless rotor DC mini motors, ranging from just 0.29 in. to 2.7 inches and 1.5 kW peak. Also includes detailed information on spur and planetary gearboxes, small DC brushless motors, including two-wire versions, disc magnet stepper motors, optical and magnetic encoders, tachometers, and drive electronics. More than 10,000 combinations of standard products are featured. API Portescap, 110 Westtown Rd., West Chester, PA 19382; (800) 566-5274 or (610) 692-2700; fax: (610) 696-4598; URL: www.apiportescap.com.

API Portescap
For More Information Circle No. 677

1998 MOTION CONTROL CATALOG

Gall’s 1998 catalog is 128 pages filled with specs for ISA, PC/104, VME, and standalone motion controllers with RS-232. Features include: “Mix-and-match” step-pers and servos on 1 through 8 axes, memory for application programs, uncommitted I/O, linear and circular interpolation, gearing and Ecam. Also, software for servo tuning and interface to AutoCAD, G-codes and Visual Basic. DOS, Win 3.1, 95 and NT. Catalog includes 28-page technical reference about motion control systems. Galil Motion Control, 205 Ravendale Drive, Mountain View, CA 94043; (650) 967-1700; 800-377-6329; fax (650) 967-1751; web site: www.galilmc.com.

Galil Motion Control
For More Information Circle No. 680

MINIATURE MOTION SYSTEMS

Ready to Step! MMC systems provide 2 to 8 axes of mini-stepping, 2-amp., 48-volt drivers. GS45 controller features 16 million steps of ramped, high-speed, absolute motion. RS-232 serial port. Optical slip-detection. 100-percent accuracy. Network up to 256 axes/port. Dimensions 6 x 7 x 2 in. (with enclosure 7 x 11 x 3 in.).

TMG—the Motion Group, 1931 Old Middlefield Way, D, Mountain View, CA 94043; 800-424-STEP.
For More Information Circle No. 678

SPACE STATION T-SHIRT

Colorful rendition of orbiting station superimposed dramatically on back of black shirt; image of Earth on front left side. 100% cotton. Adult L or XL...
$12.95 Add $5.00 for handling and shipping charges
Mail payment to: NASA Tech Briefs, Dept F 317 Madison Ave, New York, NY 10017
For credit card orders call (212) 490-3999

FREE CATALOGS AND LITERATURE FOR MOTION CONTROL TECH BRIEFS READERS

To order, circle the corresponding number on the Reader Information Request Form (opposite page 88).

This Miniature Transmission could be regarded as a flattened version of a conventional three-speed automatic transmission. The components would be fabricated by micromachining.
However, whereas typical transmission components are machined individually and then assembled, this device would be made using silicon batch-fabrication techniques, similar to those used to manufacture integrated circuits and sensors.

Until now, only fixed-ratio gear trains have been available for minimotors, affording no opportunity to change gears in operation to optimize for varying external conditions, or varying speed, torque, and power requirements. This is because conventional multispeed gear-train geometries and actuation techniques do not lend themselves to cost-effective miniaturization. In recent years, the advent of microelectromechanical systems (MEMS) and of micromachining techniques for making small actuators and gears has created the potential for economical mass production of multispeed transmissions for minimotors. In addition, it should be possible to integrate these mechanisms with sensors, such as tachometers and load cells, as well as circuits, to create integrated silicon systems, which could perform closed-loop speed or torque control under a variety of conditions. In comparison with a conventional motor/transmission assembly, such a package would be smaller and lighter, contain fewer parts, consume less power, and impose less of a computational burden on an external central processing unit (CPU).

Like conventional multispeed transmissions for larger motors, miniature multispeed transmissions would contain gears, clutches, and brakes. However, the designs would be more amenable to micromachining and batch fabrication. Gear stages would be nestled one inside the other (see figure on page 14b), rather than stacked one over the other, creating a more planar device. Actuators and the housing would be fabricated on separate layers. The complex mechanical linkages and bearings used to shift gears in conventional transmissions would not be practical at the small scales of interest here. Promising alternatives might include electrostatic-friction locks or piezoelectric actuators. For example, in the transmission depicted in the figure, piezoelectric clamps would serve as actuators in clutches and brakes.

The structures would be aligned and bonded, followed by a final etch to release the moving parts. The entire fabrication process can be automated, making it both precise and relatively inexpensive. The end product is a “gearbox on a chip,” which can be “dropped” onto a compatible motor to make an integrated drive system.

This work was done by Indrani Chakraborty and Linda Miller of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com under the Machinery/Automation category, or circle no. 139 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). NPO-20316

A Technique For Compensating Joint Limits in a Robot Manipulator

Upon saturation of a joint, control demand is redistributed among remaining unsaturated joints.

Lewis Research Center, Cleveland, Ohio

A robust, optimal, adaptive technique for compensating rate and position limits in the joints of a six-degree-of-freedom manipulator has been developed. In this new algorithm, the unmet demand as a result of actuator saturation
Robot Joint Commands are used with optimal joint limit compensation. The unmet demand, which would otherwise saturate a joint, is fed back through the optimal gains to provide supplemental commands to joints with authority remaining.

Robot Joint Commands are used with optimal joint limit compensation. The unmet demand, which would otherwise saturate a joint, is fed back through the optimal gains to provide supplemental commands to joints with authority remaining. The scheme is used to compensate for inadequate path planning, problems such as joint limiting, joint freezing, or even obstacle avoidance, where a desired position and orientation are not attainable due to an unrealizable joint command. Once a joint encounters a limit, supplemental commands are sent to other joints to best track, according to a selected criterion, the desired trajectory.

A standard six-degree-of-freedom manipulator has six independently controlled joints. The position and orientation of the end effector, each of which is described in three dimensions, are fully determined by the angles of the joints. As long as the appropriate joint angles are achievable, the desired position and orientation can be obtained. However, when the specified joint trajectories cannot be followed due to a command beyond the range of the actuator, positions and orientations downstream from the limited joint will all be affected, causing in some cases extreme deviations from the expected values. This new scheme is an ideal solution candidate for this problem. It was designed to compensate for actuator saturation in a multivariate system by supplementing the commands to the remaining actuators to produce the desired effect on the output, in this case the gripper position and orientation. For each joint which saturates, a degree of freedom is lost, but the remaining joints can be used to track the desired path within the physical limits of the manipulator.

The matrix known as the Jacobian, J, describes how a small change in the joint positions, Δq, affects the gripper. The resulting position and orientation change of the end effector, D, is com-
LIFTING OFFSET LOADS

TELE MAG

Telemag is a telescoping pedestal to raise and lower tables, chairs, instruments, patients, and work surfaces. Its functional design eliminates the cost of additional structural supports and shrouds.

Advantages:
- Aluminum telescoping tubes in two or three sections
- Stroke lengths from 100 to 700 mm
- Loads up to 1350 lbs.
- Speeds up to 30 mm/sec
- Available in 12/24 VDC or 120/230 VAC
- Optional hand switch or foot switch
- Synchronization and programmability by micro processor
- Exclusive 3 year warranty

Recognized to U.S. and Canadian Safety Requirements by UL

These telescoping actuators combine more than 25 years of experience in manufacturing linear drive units. Call us for additional information or catalog at 1-800-835-3624.

Magnetic Corporation
3519 N. Union Drive • Olney, Illinois 62450 • Phone 800-835-3624 • Fax 618-392-0033

This work was done by Ten-Huei Guo of Lewis Research Center, Jonathan Litt of the Vehicle Technology Center of the U.S. Army Research Laboratory, and André Hickman of Morehouse College. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Machinery/Automation category, or circle no. 140 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Lewis Research Center, Commercial Technology Office, Attn: Tech Brief Patent Status, Mail Stop 7-3, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-16566.

June 1998

For More Information Circle No. 667
A paper suggests the development of a hybrid rocket engine and associated equipment for returning a sample of material from Mars at relatively low cost. In a hybrid rocket engine, a solid fuel is burned by use of a liquid or gaseous oxidizer, the flow of which can be throttled to control the engine. Unlike conventional solid rocket propellants, a solid rocket fuel can be made relatively inert in the absence of the oxidizer and therefore presents little hazard of explosion or inadvertent ignition. Unlike conventional (and relatively expensive) liquid rocket propellants, a solid rocket fuel is not corrosive or susceptible to leakage. The solid fuel in the proposed system would be in granular form, packed into the rocket motor. Oxygen or another suitable oxidizer could be transported from Earth together with this solid fuel. Alternatively, oxygen could be generated from CO\textsubscript{2} in the Martian atmosphere by use of in-situ resource utilization (ISRU) equipment. Inasmuch as ISRU is not yet a mature technological discipline, some research on ISRU would be necessary to estimate the reduction in cost achieved by not having to carry the oxidizer to Mars.

This work was done by Kumar Ramohalli of Caltech for NASA's Jet Propulsion Laboratory. To obtain a copy of the paper, "Hybrids for Low-Cost Sample Return Missions," access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Machinery/Automation category, or circle no. 141 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). NPO-20195

Genuine Synchron®

World-class performance from Hansen

Hansen Synchron® motors offer:
- Custom designs
- Precision
- Quality
- Long life
- Encapsulated coil
- Indefinite stall capabilities
- Spring return capabilities

Synchron® motors perform flawlessly worldwide in a variety of speed and voltage/hertz combinations, with light to moderate torque loads.

Of all the motors you might be offered for continuous movement, the only original is genuine Synchron® from Hansen.

Hansen's offering includes:
- **Synchron® motors**
 The original synchronous motor, custom-made to fit your needs
- **Stepper motors**
 Three sizes with direct or gear drive
- **DC/Servo motors**
 Three sizes with optional encoder, high torque

Hansen Corporation
A Minebea Group Company
901 S. First Street • Princeton, IN 47670
Phone 812-385-3415 • Fax 812-385-3013

Hydraulically Driven High-Speed Spindle for General Machining

Improved design for high-speed spindles increases strength and rigidity and improves balance.

Marshall Space Flight Center, Alabama

A hydraulically driven high-speed spindle system for milling, machining, facing, drilling, and joining metallic and nonmetallic materials has been developed. Spindles are the most critical elements of high-speed milling machines. The keys to successful design of high-speed spindles are strength, rigidity, and balance.

The hydraulically driven spindle includes a hydraulically driven gearmotor. The rotation of the motor is transmitted to the main shaft of the spindle. The main shaft supports a fixture that holds the tool to effect the desired operation. The main shaft is supported by a series of bearings that withstand axial and radial loads encountered during use. The pressure and flow rate can be adjusted manually or controlled by a computer. This system includes a hydraulic subsystem that supplies pressurized fluid to drive the spindle.

Pressurized fluid is fed into the...
hydraulically driven spindle for machining, milling, drilling, tapping, facing, and joining. Hydraulic fluid volumetric flow rate, fluid pressure, gear size, and geometry of the hydraulic motor are variables which govern spindle torque and rotational speed, ranging from 5,000 to 6,000 rpm and operating at 1,000- to 6,000-psi (6.9- to 41 MPa) pressures.

The bearing system for this hydraulically driven spindle can be made of recently developed fluid bearings or of roller element type bearings. The balls in the bearings in this system can be made of standard steel or of newly-developed ceramics for increased rigidity, accuracy, and longer life. Bearings that are designed for use at lower speeds with air/oil or air/mist lubrication can be used at higher speeds, provided they are lubricated with grease.

High-speed machining allows for the production of thin wall sections with minimal deformation. High-speed machining can make it possible to reduce the number of parts, sometimes even making it possible to fabricate, as unitary parts, objects that would ordinarly have to be assembled from multiple pieces. Therefore, production and assembly times are reduced.

For the purpose of fabricating complex and thin-walled parts, high-speed machining of solid stock can be an alternative to casting and to the more expensive use of composite materials. Use of this hydraulically driven spindle system for high-speed machining reduces times and cost of the manufacturing process and helps to ensure defect-free finished parts.

Another significant advantage of high-speed machining is minimization of effects of heat on machined parts. Most of the cutting heat is removed, reducing thermal warping and increasing the life of the cutting tool. In many cases, the need for a cooling fluid is eliminated. Also, elimination of cutting fluids reduces subsequent contributions to pollution and aids in the recovery and recycling of such expensive materials as aluminum-lithium alloys.

This work was done by Majid J. Babai and Samuel C. Geise of Marshall Space Flight Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Machinry/Automation category, or circle no. 143 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Inquiries concerning rights for the commercial use of this invention should be addressed to the Patent Counsel, Marshall Space Flight Center; (205) 544-0021. Refer to MFS-26430.
slide that offers "plug-and-play" mounting simplicity for almost any off-the-shelf linear motor, including Anorad, Etel, Fanuc, Indramat, Kollmorgen, Normaq, Pratec, Siemens, and Trilogy. They are available for ironless and iron-core motors. For the former, there are two styles: the high-speed model, with travels from 300 to 1500 mm, uses recirculating bearings, and the high-accuracy model, with travels from 250 to 500 mm, uses crossed hollow roller bearings. The iron-core style uses large recirculating bearings, and has travels from 300 to 1500 mm.

For More Information Circle No. 781

Brake Motors in Nine Sizes

Electrody Co., Springfield, NJ, announces that it offers its EBM Series of brake motors in nine sizes, with horsepower ranges from one-half to 10, and with Power OFF ("failsafe") brake torques from 6 lb. ft. to 55 lb. ft. The company says that the series, combining its AC brakes with a NEMA standard motor, provides reliability and the fastest brake response time in the industry. They are dual wound for 208-230/460 VAC three-phase 60-Hz operation. Recommended applications include machine tools, packaging machinery, conveyor systems, cranes, hoists, and valves.

For More Information Circle No. 784

Modular Motion Control System

Intelligent Motion Systems, Marlborough, CT, says LYNX*, its modular motion control system, programs easily and interfaces with stepper or digital servo drives. The company adds that the system’s 1.5 axes of control makes following external clocks or rationing a second axis easy for the user. Features include zero to 5-MHz step clock rate, selectable in 0.005-Hz increments through the entire range; and 7 hardware and 62 software addresses for multidrop communication.

For More Information Circle No. 787

Controllers with Pentium MMX

The new ORION® Model 30 motion controllers from ORMEC, Rochester, NY, incorporate the Pentium MMX 233-MHz processor, adding it to the lineup of industry-standard X86-family microprocessors. The new processor offers three to five times more processing power than the fastest ORION processor previously offered. Also offered in the line are the Pentium 133-MHz processor, along with the previously offered 586/1133-MHz and 80486 microprocessors. The Model 30 features two PC-card slots, 8 megabytes of RAM, a 512-K external cache, a keyboard connector, and three 16-bit ISA-bus expansion slots.

For More Information Circle No. 790

Moving-Magnet Linear Motor

The Lightning Series from Anorad Corp., Hauppauge, NY, is a line of brushless linear DC moving-magnet servo motors that eliminates the requirement for moving power and control cables. Inclusion of an encoder makes the series suitable for applications requiring high velocity (up to 10 m/s), resolution of 5 microns, and repeatability of ±10 microns. A proprietary current-switching technology charges only the coils under the moving magnet, resulting in cool operating temperatures, Anorad says. Applications the company cites include material handling, pick and place, winding machines, flying shear, metrology and dispensing.

For More Information Circle No. 782

Rotary Motion into Vacuum

Kurt J. Lesker Co., Clairton, PA, describes its MagDrive as a device for delivering rotary motion into a vacuum vessel in which the shaft is entirely enclosed by a stainless steel vacuum casing, without O-rings, bellows, or fluids. Between the outer hand-operated or motor-driven rotor and the inner shaft, MagDrive gives absolute vacuum integrity, since there is no moving seal to fail. Drives of various sizes can be mounted end to end, using conventional copper-gasket-sealed flanges. The device can be heated to 230 °C for ultrahigh vacuum operation.

For More Information Circle No. 785

Multilingual Variable Frequency Drive

The A500 Series variable frequency drives from Mitsubishi Electric Automation Inc., Vernon Hills, IL, are compact units with ratings of one-half through 100 horsepower at both 240 V and 480 V. All units carry UL and CUL listings and CE marking, and the optional 4-axis, 13-character back-lit LCD display parameter unit supports users in eight different languages. Mitsubishi says that advanced flux vector control provides superior open-loop torque and speed control, and the optional encoder feedback feature further enhances performance.

For More Information Circle No. 788

Controller with Three Indexers

Continuum Engineering Inc., Tarzana, CA, announces availability of the second generation of its MCL Series multiaxis controllers. The MCL-300 motor indexer/driver is described by the company as a complete turnkey solution because it combines the function of three indexers, three drivers, and a power supply in one package. Single- and double-axis versions are also available. Features include internal fused and filtered power supplies for all drivers and control logic, CW/CCW limit and home optically isolated switch inputs, and a three-axis joystick with multiple speed settings and LED indicators.

For More Information Circle No. 791

Line of Planetary Gearboxes

ITW Spireid, Glenview, IL, releases a line of planetary gearboxes that it says has more torque, more strength, and more power than conventional involute gearboxes. Available in four frame sizes (300, 1000, 2000, and 4000 series), these gearboxes feature an exclusive CONCURVE® gear design that allows 50 percent more running-time hours at equivalent loads or fifty percent more torque capacity. Backlash is 6 arc minutes standard and minimum efficiency rating is 90 percent for the entire gearbox. All four sizes are available in ratios between 3:1 and 100:1.

For More Information Circle No. 783

Servo Motion Controller

Delta Computer Systems Inc., Vancouver, WA, offers the RMC180-Profi, an eight-axis linear servo motion controller. The company says the module provides the power of the Profibus open architecture fieldbus with independent or coordinat

For More Information Circle No. 786

Motion Control for 28 Axes

Custom Servo Motors Inc., New Ulm, MN, says that a simple online programming system for controlling up to 28 axes makes the Motion Plus® XDC-720 motion controller ideal for packaging and converting applications. The panel-mounted module features 56 bidirectional I/O points, four high-speed sensor inputs, and two serial ports. The sensor <1-μs response time makes the XDC 720 useful for product registration and other critical-response applications. Incremental and absolute encoder feedback, analog input, and feedback from the Temposonics® position sensors are accepted by the controller.

For More Information Circle No. 789

Driver Board for Position Control

The Series 6500 from ETI Systems Inc., Carlsbad, CA, is a self-contained driver system for motorized potentiometers, and operates as an analog control interface. It uses a dual-gang potentiometer to provide an isolated variable output and feedback to null the servo system at the desired position. The 6500 accepts inputs of 0-10 VDC, or 4-20 mA, or 16-bit binary signals. The company says average accuracy exceeds 0.2 percent. An inhibit control eliminates uncommanded movement.

For More Information Circle No. 792
New Products

Zero-Backlash Gearmotor
The 535MBG cycloidal gearmotors from Nyden Corp., San Jose, CA, are NEMA 17 size and have zero backlash. They feature positional accuracy of less than ±60 arc sec., efficiency of 85 to 90%, low audible noise, and long mechanical life. The gearmotors integrate a five-phase stepping motor with an in-line cycloidal ball reducer that increases output torque and output precision. Standard reduction ratios of 5:1 and 10:1 offer 10,000 and 20,000 steps of true resolution per one revolution of the reducer’s output shaft at up to 108 oz. in. of torque. Applications include linear and rotary table positioning, robotic arm actuation, and index feed mechanisms.

For More Information Circle No. 748

Step Motor System
The CMAX-810 microstep control system from Advanced Micro Systems, Nashua, NH, is rated for 8 amps at 80 volts or 160 volts. The unit incorporates the company’s Variable Resolution Microstep Control (VRMC®) indexing technology with high-output, bi-polar chopper drives and toroidal power supplies. Packaged in a compact, heat-shrinked, and fan-cooled enclosure, the unit provides serial communication, 2K bytes of non-volatile memory, extended industrial I/O, and AC power entry. Other features include integral controller/driver/power supply; power line filtering and surge protection; and short circuit, over temperature, and under voltage protection.

For More Information Circle No. 757

Servo Class Couplings in Large Sizes
Zero-Max, Minneapolis, MN, has introduced Servo Class couplings in eight sizes in torque ranges from 8.84 to 880 in. lbs. for servomotor and precision motion control applications. The couplings feature zero-backlash, flexible metal discs, and keyless clamp-type mounting hubs. They offer high torsional stiness and low inertia, and accommodate higher torque, high speed, and high misalignment. Other features include one-piece assembly, lightweight design, and maximum RPM of 10,000.

For More Information Circle No. 761

Accelerometer Offers High Sensitivity
The Model 370A03 capacitive accelerometer from PCB Piezotronics, Depew, NY, features 1000 mV/g sensitivity (±5%) for high-resolution measurement of sensitive vibration events. Operating from a standard 16 to 28 VDC power supply, the hermetically sealed accelerometer provides a lower noise floor, allowing the user to measure very low-level vibration. The unit takes measurements in any orientation, drives long cables, and handles frequencies from pure DC to 100 Hz (±5%). Air damping improves temperature stability and allows the device to withstand high-level loads.

For More Information Circle No. 764

24-Axis Positioning Stage
Northern Metronics, Santa Clarita, CA, has released a 24-axis linear motor-driven positioning stage that provides independent motion along all 24 axes, as well as rapid acceleration and deceleration. The base stage is a 72-inch-long single (X) axis EPS positioning stage with a non-cogging, medium-force brushless linear motor with 12 independent coil assemblies. Each assembly has a 1/1.2” stroke, bellows, encoder, special bearings, and limit switches. Mounted to each X-axis slide is a single (Y) axis special bearing positioning stage with a non-cogging, medium-force brushless linear motor with 3.5” stroke, encoder, and limit switches.

For More Information Circle No. 765

Miniature and Compact Load Cells
The EL Series miniature and compact load cells from Entrran Devices, Fairfield, NJ, measure compression and/or tension, and are available in 15 styles and shapes for a range of applications. Compact to robust, or low-profile to threaded models are available in either English or metric threads. Full-scale load ranges are available from 1 pound through 20,000 pounds; 5 Newton through 10,000 Newton; and precision low ranges to 20 grams or 0.2 N. Applications include force and weight measurements in industrial, automotive, aerospace, and biomechanic labs and factory installations.

For More Information Circle No. 769

AC Synchronous Motors
VARI-HERTZ® 1/4- to 10-horsepower permanent magnet AC synchronous motors from Welco Technologies, Milford, OH, are designed for applications requiring precise open-loop speed control for constantly fluctuating temperature and load conditions. The motors simplify synchronization of two or more pieces of equipment by eliminating the need for external feedback devices such as resolvers or encoders. Available features include 2 through 12 pole designs, TENV or TEFC enclosures, and speeds up to 18,000 RPM. The motor design allows it to operate in a precise ratio to the frequency being sent to the motor by the variable speed drive.

For More Information Circle No. 760

Controller Offers Fieldbus Conductivity
Parker Hannifin Corp., Compumotor Division, Rohrers Park, CA, offers the Compass servo controller, which features Fieldbus conductivity options. The position, velocity, and torque controller is used with three-phase sinusoidal brushless motors, and offers speeds up to 5,000 RPM and shaft power up to 15 Kw. The controller features a dual microprocessor design in which the host processor handles I/O and low-speed communications, and a DSP controls the digital current loop and processes encoder and resolver data. The unit is available in both single-axis and multi-axis configurations.

For More Information Circle No. 762

Introducing the Bodine Selection Guide. With the included worksheet, you can easily determine speed and torque and select the appropriate motor. It’s as easy as 1, 2, 3. Call now to get yours. 1-800-7-BODINE

For More Information Circle No. 670

www.bodinemotor.com
Torque Motors for AC Drives
Danfoss Electronic Drives, Division of Danfoss, Rockford, IL, has introduced the Blue Max® and Black Max® line of variable and constant torque motors with a range of horsepower from 1 to 350 HP. The Blue Max AC inverter duty motors feature a variable torque XRI motor designed for optimum torque operation in pump and fan applications. The Black Max family features an aluminum frame motor that provides constant torque with a 1000:1 speed range.

Servoamplifier for AC Motors
The Model 7425AC from Coley Controls Corp., Westwood, MA, is a servoamplifier for driving AC brushless motors in the torque mode. Operating directly from 50/60-Hz power supplies, the amplifier develops symmetrical sinusoidal output waveforms for energizing the motor's three U, V, and W stator coils, synthesizing the third (W) waveform from the U and V current commands provided by the controllers. The amp can drive AC brushless motors to 2.5 hp.

Bearings with Added Travel Life
Thomson Industries Inc., Port Washington, NY, introduces the JIS (Japanese Industrial Standard) Metric Super Smart Ball Bushing™ linear bearings and pillow blocks. The company says these bearings provide 6X the load capacity, or 216X the travel life, of conventional JIS bearings, and are universally self-aligning for easy low-cost installation. Available in 16-mm to 40-mm sizes, the bearings are dimensionally interchangeable with conventional JIS bearings and pillow blocks. Thomson says the quantum increase in load capacity enables a 90-percent cost reduction with downsizing.

Microdrive with Quick Response
ABB Industrial Systems Inc., New Berlin, WI, says its new ACS 140 is the world’s fastest microdrive. Capable of responding to input signal changes in as little as 9 milliseconds, it is available in a variety of frame sizes ranging from one-half to 3 HP, 230 VAC and 460 VAC, in single- and three-phase configurations. Seven application macros permit users to select a preset pattern of parameter values and I/O configurations, and the user can also tailor them to suit. There are three options for installation: wall mounting, DIN-rail mounting, or flange mounting.

Modular Controller System
Melles Griot, Boulder, CO, introduces a main controller PC, which can be bench-cabinet or 19-inch-rack mounted, and can drive up to 32 module racks to accommodate system expansion or extremely complex applications. The main suite of modular control software resides in the controller unit, and offers four control options: Visual Basic, C, LabVIEW, and Melles Griot Macro Environment, running under Windows NT or Windows 95. Available drive modules include piezo actuators, stepper motor drivers, and, for precise nanometric auto-alignment, a NanoTrak™ driver.

Servo Drives with Electronic Camming
Electro-Craft Division of Rockwell Automation, Eden Prairie, MN, announces the addition of camming capability to its Electro-Craft® IQ-Series® positioning servo drives. The programmable IQ Cam enables replacement of mechanical cams with electronic servo-based systems that can be modified to accommodate different product lengths and cam profiles. Integrated programmable limit switch capability provides commands to activate designated outputs at defined machine positions. The IQSeries is available in power output ranges from 1 to 15 kW.
Wavelet Processing for Aeroservoelastic-Stability Analysis

Stability margins are more realistic and robust than those obtained by older techniques.

Dryden Flight Research Center, Edwards, California

A wavelet-based modal-parameter-extraction procedure has been developed to augment wavelet filtering and thereby produce more-realistic, robust aeroservoelastic-stability margins. The procedure is intended for use in processing data from aircraft flight tests.

Some background information is prerequisite to an explanation of this development. Deterministic nonstationary input test signals are often essential for extracting aeroelastic-stability trends from noisy measurements. The analysis of flight data is improved by discrimination among areas of low signal-to-noise ratio, unmodeled dynamics, and external disturbances. Wavelet signal processing has shown promise for identification of the conceptual structures, operators, and parameters of mathematical models (hereafter called "system identification") of aeroservoelastic systems for these purposes.

Nonparametric wavelet filtering removes aspects of signal responses detrimental to linear system-identification methods to improve stability tracking. Wavelet transforms are also used to directly supply information on time-dependent modal decay rates and phases for estimation of parameters of mathematical models of time-varying systems. Without any approximation of the range of parameters of a system, natural frequencies and damping ratios are extracted from the response of the system. Damping and frequency trends are useful for noting changes in system dynamics as functions of flight conditions.

Model validation is a critical procedure in the computation of robust stability margins. The margins are adversely affected by poor characterizations of uncertainty size and structure, which are determined by the magnitudes of perturbations, locations of perturbations within the system, and the types (real or complex) of perturbations. This completes the background information.

In the present wavelet-based modal-parameter-extraction procedure, both complex, nonparametric and real, parametric perturbations are decreased to generate reduced-norm uncertainty sets,
Lowest Cost
Data Acquisition

ADAC's new Value-Line has uncompromising design features and high quality components at prices below the low cost guys! Plus drivers for Windows NT, Windows 95, 3.1 and DOS.

Just check the specs:

Lowest Cost
5500MF
8 channels 12-bit A/D, 16 digital I/O, Counter/Timer
$195

High Speed
5508LC
8 channels 12-bit A/D, 100KHz, DMA
$245

Multi-I/O, DMA
5516DMA
16 channels 12-bit A/D, DMA, 16 digital I/O
$295

High Resolution
5500HR
16 channels 16-bit A/D, DMA, 8 digital I/O
$595

High Performance Data
Acquisition Since 1974
voice 800-648-6589
fax 781-938-6553
web www.adac.com
email info@adac.com

ADAC
American Data Acquisition Corporation
70 Tower Office Park, Woburn, MA 01801

For More Information Circle No. 432

The Flows of Information represented graphically here are those that occur when the \(\mu \) method is coupled with wavelet processing for robust stability-margin analysis of an aeroservoelastic system.

which result in models with less conservatism. The models are used in a robust stability-boundary-prediction method called the "\(\mu \) method" because it is based on a structured singular value called "\(\mu \)". [This method was described in "Characterizing Worst-Case Flutter Margins From Flight Data" (DRC-97-03), NASA Tech Briefs, Vol. 21, No. 4 (April 1997), page 62.]

Within the \(\mu \) conceptual framework, a system is represented as an operator, \(F(P, \Delta) \), which, in turn, represents a feedback interconnection of a plant \(P \) and uncertainty \(\Delta \). Flight data can be incorporated into the \(\mu \) method by formulating a description of uncertainty that accounts for observed variations and errors. A model-validation analysis is performed on the plant model to ensure that the range of dynamics admitted by the uncertainty is sufficient to cover the range of dynamics observed with the flight data.

The \(\mu \) method can be coupled with wavelet processing for parametric and nonparametric estimation. This coupling is achieved by introducing, into the basic process, several time-frequency operations based on wavelet filtering (see figure). Wavelet transform operations are introduced to process time-domain data, \(x(t) \), before computation of a frequency-domain representation, \(X(\omega) \). These operations map the time-domain data into the time-frequency domain via a wavelet transform, then map them back to the time domain via an inverse wavelet transform. A time-frequency filtering operation is performed between the wavelet transform and the inverse wavelet transform to remove unwanted features before the inverse wavelet transform yields a time-domain signal, \(\hat{x}(t) \).

A modal-parameter-estimation algorithm is introduced by use of the wavelet algorithm. The estimated parameters are used to update the elements of a nominal plant model, \(P \), and a new plant model, \(\hat{P} \), is used to represent the dynamics of the aeroservoelastic system.

The final operations of the \(\mu \) method are traditional robust-stability operations on frequency-domain data. The effect of the wavelet filtering is to introduce filtered versions of the data and the plant model for model validation. Thus, a new uncertainty operator, \(\Delta \), is associated with the parameter-updated plant, \(P \), to account for errors observed from the filtered data, \(\hat{x}(t) \). There is computed a robust stability margin, \(\Gamma \), that describes the largest change in dynamic pressure for which \(\hat{P} \) is robustly stable to the errors, \(\Delta \).

Nominal stability margins are computed for the plant model by use of the original theoretical modal parameters and are computed for the updated model by use of parameters estimated from wavelet filtering. These margins are computed from a \(\mu \) analysis with respect to variation in dynamic pressure, \(\hat{q} \), but ignoring the modal and complex uncertainty operators.

This work was done by Martin J. Brenner of Dryden Flight Research Center and Rick Lind of NRC. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com under the Information Sciences category, or circle no. 175 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

DRC-98-26
Micromachined Tunneling Accelerometer for Use in Outer Space

Two short reports describe a micromachined quantum-mechanical-tunneling accelerometer and radiation-hardened support electronics designed for use in outer space. Like the micromachined tunneling accelerometers described previously in NASA Tech Briefs, this device is based on the use of electronic sensing/feedback control circuitry that measures acceleration in terms of an electrostatic-deflection voltage necessary to maintain a small constant distance (typically a few Angstroms) between a membrane and a tunneling tip in a mechanical acceleration-sensing/electron-tunneling device.

This work was done by Vardkes Victor Boyadzhian-Sevak of Caltech for NASA's Jet Propulsion Laboratory. To obtain copies of the reports, "ATC Electron Tunneling Accelerometer Integrated Sensor Circuitry for Space Applications" and "Tunneling Accelerometer Multichip Module (Integrated Sensor) Thin Film Technology Radiation Hardened MCM," access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Components and Circuits category, or circle no. 188 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). NPO-20264

Analysis of Stresses and Deflections in RTDs

A report presents an analysis of stresses and deflections in resistance temperature detectors (RTDs) of various model numbers with standard sizes and shapes. The RTDs are assumed to be installed in pipes that contain flows of oxygen and hydrogen in a test facility at Stennis Space Center. The analysis, performed in a spreadsheet format, involves calculation of maximum stresses and deflections for each RTD under specific fluid conditions. The drag force is entered as a circular reference in the spreadsheet and must be calculated iteratively. The equation for drag force is used to calculate the allowable fluid density for a given velocity. The deflection of the RTD at the inner pipe wall is also compared with the

Solar/Infrared Aerobots for Exploring Several Planets

A report discusses a class of balloon-borne robotic instrumentation systems that have been proposed for use in exploring Venus, Jupiter, Saturn, Uranus, and Neptune. The balloons would be of the Montgolfier type; that is, buoyancy would be achieved through heating of atmospheric gases contained in the balloons at ambient pressures. However, unlike the familiar fire-heated hot-air balloons invented by the Montgolfier brothers, the proposed balloons would be heated primarily by the Sun during the day and by infrared radiation from relatively warm planetary surfaces at night. The proposed balloons would be modified versions of solar/infrared-heated Montgolfier balloons that were flown in the upper stratosphere of the Earth by the French space agency CNES during the 1980s. The lower parts of those balloons were made of infrared-transparent polymeric materials to admit infrared radiation from below; the upper inside surfaces were blackened to maximize absorption of the admitted infrared radiation, and the upper outside surfaces were aluminized to minimize radiation of heat to outer space. During the day, the balloons would rise high due to solar heating. At night, the balloons would sink lower, with the descent slowed by heating due to compression of the contained gasses, as well as by heating from lower planetary radiation.

This work was done by Jack Jones, Matthew Heun, and Kerry Nock of Caltech for NASA’s Jet Propulsion Laboratory. To obtain a copy of the report, “Solar Infrared Balloons for Venus, Jupiter, Saturn, Uranus, and Neptune,” access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Physical Sciences category, or circle no. 184 on the TSP Order Card in this issue to receive a copy by mail ($5 charge). NPO-20013

For More Information Circle No. 433
maximum allowable deflection at that point. The output of the analysis is a curve, for each RTD model and size, of fluid density versus flow speed. On the basis of allowable stress and deflection, it is deemed to be safe to operate an RTD at any point below its curve. Thus, the collection of curves serves as a guide for preliminary selection of RTDs for the facility.

This work was done by Michael Joe of Lockheed Martin for Stennis Space Center. To obtain a copy of the report, “RTD Stress Analysis for the E-1 Test Facility,” access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Physical Sciences category, or circle no. 198 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Performance of a Soft Digital-Data-Transition Tracking Loop

A report discusses the performance of a soft digital-data-transition tracking loop (DTTL) in a radio receiver that recovers digital data conveyed by binary phase-shift keying. The DTTL is used as a symbol synchronizer; it provides symbol timing to essential parts of the receiver. The DTTL includes a quadrature channel and an in-phase channel, which contains a transition detector with a hyperbolic-tangent response. The DTTL is said to be “hard” or “soft” in the special case of high or low signal-to-noise ratio (high or low SNR, respectively), for which the hyperbolic tangent can be approximated as a hard-limiting or a linear function, respectively.

This work was done by Samson Million and Sami Hinedi of Caltech for NASA’s Jet Propulsion Laboratory. To obtain a copy of the report, “Tracking Performance of the Soft Digital Data Transition Tracking Loop,” access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Systems category, or circle no. 172 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

Muscle Wires for Planetary-Exploration Robots

A report proposes the use of muscle wires as mechanical actuators for planetary-exploration robots. Muscle wires are commercially available in kit form in the hobby market, and have been described (though not explicitly called “muscle wires”) in previous articles in NASA Tech Briefs. A muscle wire is made of a shape-memory alloy. By sending a sufficient electric current along the wire, one can heat the wire above its transition temperature, causing it to change length. When the current is turned off, the wire cools, returning to its original length. The aspects of muscle wires that make them attractive for planetary-exploration robots are low mass, simplicity, and the ability to exert large tensile forces (thousands of times their own weights); in these aspects, muscle wires are superior to conventional electric motors. Moreover, because of their low thermal masses, muscle wires would respond to turn-on and turn-off of currents rapidly enough for the actuation frequencies needed in planetary-exploration robots.

This work was done by Kumar Ramohalli of Caltech for NASA’s Jet Propulsion Laboratory. To obtain a copy of the report, “Muscle Wires for Efficient Planetary Exploration Robots,” access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Materials category, or circle no. 111 on the TSP Order Card in this issue to receive a copy by mail ($5 charge).

NPO-20194
Visualization/Analysis

Structural Research & Analysis Corp., Los Angeles, CA, offers COSMOS/Works 4.0 for SolidWorks 98 that allows design engineers to analyze complete SolidWorks assemblies with a new Assembly Analysis module that can be added to COSMOS/Works Basic for $1,500. COSMOS/Works 4.0 is fully integrated into SolidWorks and allows design-team members to communicate design information through reports reviewed and distributed via the Internet. Intelligent application of loads and boundary conditions enables the program to identify the model geometry, automatically applying the appropriate loads and boundary conditions. Other features include drag-and-drop of material properties and results settings. Circle No. 717

Electromagnetic Design

OPERA Version 7 for analysis of electromagnetic design is offered by Vector Fields, Aurora, IL. New features include automatic mesh generation in both 2D and 3D; a new 3D analysis module for rotating machines; full anisotropic material definitions; and a user-friendly interface. Modules are available to analyze static, magnetic and electric fields, time varying (eddy current) effects, rotating machine models in 3D, eddy currents due to velocity effects, particle beam optics with space charge limitations, and high-frequency devices such as resonant cavities. The software is available for various platforms, including PCs and workstations. Circle No. 725

Interactive Data Language

IDL Version 5.1 from Research Systems, Boulder, CO, offers support for Microsoft's ActiveX Component Object Model (COM) architecture, allowing users to integrate IDL capabilities such as advanced graphics and data analysis with COM-enabled development environments such as Visual Basic, Visual C++, and Delphi. Data analysis and visualization capabilities can be added to COM-enabled programs such as Excel and other Windows productivity applications. Additional features include native clipboard support; enhanced TrueType font support; Basic Linear Algebra Subroutines (BLAS) for rapid processing of large multi-dimensional arrays; and performance-tuned statistics routines with improved user interfaces. IDL 5.1 is available for Windows 95/NT, Mac OS, UNIX, LINUX, and OpenVMS. Circle No. 718

Data Analysis Tools

The MathWorks, Natick, MA, has announced the availability of MATLAB 5.2, an application-development platform for analyzing data, building models, prototyping solutions, and developing custom end-user software. Also released were MATLAB 5-compatible versions of the MATLAB Compiler and C/C++ Math Libraries, enabling users to develop large-scale applications in MATLAB while preserving existing investments in programs written in C and C++. MATLAB code, data, and graphics are transferable across platforms. The new version has expanded data manipulation features, increased control over visualization tasks, and new capabilities in application-specific Toolbox add-ons. It is available for Windows 95/NT, UNIX, and Macintosh platforms. Circle No. 719

Real-Time Data Display

Sammi Format Editor Plus (FE+) from Kinesix Corp., Houston, TX, unites two core components of the Sammi Application Development Kit (ADK) to create graphical, interactive displays of real-time data. The software gives Sammi users the ability to create functional interfaces and connect them to sources that simulate actual data updates. FE+ combines the look and feel of a PC drawing program with the functionality of a full-featured CAD product. Users can "drag-and-drop" more than 40 pre-built static objects and dynamic building blocks. The program is available for Windows NT and UNIX platforms. Circle No. 720

Why reinvent the wheel?
Save time, money & minimize your programming headaches.

NAG Software Productivity Tools.

Numerical Libraries
- • C Compilers
- • Fortran Visualization
- • Parallel Simulation

Numerical Algorithms Group, Inc.
Phone 630-971-2337 FAX 630-971-2706
EMAIL info-nb@nag.com
WEB http://www.nag.com

For More Information Circle No. 435
New on the MARKET

Polymer Seals and Gaskets
Lauren Manufacturing, New Philadelphia, OH, offers Super Seal, a line of high-performance extruded polymer seals and gaskets made from silicone, fluoroelastomer-coated polymers, and fluoro-elastomers. The silicone seals and gaskets retain rubbery properties through temperature extremes. They can be compounded to perform for extended periods at 150°F to 500°F. Seals and gaskets coated with a thin film of fluoroelastomer polymer protect the substrate from oil, fuels, acids, and solvents. Fluoroelastomer seals and gaskets also provide resistance to oils, fuels, acids, and solvents at elevated temperatures. Circle No. 702

Sealed Linear Actuator
EXLAR Corp., Chanhassen, MN, has introduced the GS Series of electric, compact, sealed linear actuators that combine a brushless servo motor as the driving force, with an inverted roller screw mechanism as the power transmission. With the electronic feedback source, the package is the same size as a typical brushless motor. The actuators provide continuous thrust ratings from 100 to 8000 pounds and speeds to 40 in/sec. Frame sizes range from 2 to 6 inches. The roller screw mechanism provides lead accuracy of 0.001 in/lin. ft.; zero back-lash units are available. The actuators are available in a variety of stroke lengths, sizes, speeds, and mounting configurations. Custom designs are available. Circle No. 704

Portable Data Acquisition System
IOtech, Cleveland, OH, has introduced the WaveBook/516 portable data acquisition system, which uses a DSP-based A/D design to achieve up to 1-MHz sample speed while maintaining 16-bit resolution. The PC-based, multichannel system combines high resolution and high speed in a portable notebook-sized form factor. The eight-channel system can be expanded to sample up to 72 channels of voltage, acoustic, vibration, strain, temperature, and other transducer input. Operable from AC or DC power, the unit connects to a notebook PC via an enhanced parallel port or an optional PC-Card interface. Other features include low-noise architecture, advanced triggering, pre- and post-trigger, external clock, channel and range scanning, signal connections, WaveView® Out-of-the-Box® software, and expansion options. Circle No. 708

Mini Pressure Transducer
The Model 355 subminiature pressure transducer from Sensotec, Columbus, OH, is a one-piece, stainless steel unit that features a flush diaphragm design for operations involving spraying or application of coatings, sealants, paints, or other concealable media. The transducer accepts input voltage from 9-32 VDC and provides output of 4-20 mA or 0-5 VDC output. The Model 355 is available in pressure ranges from 0-500 psi through 0-5,000 psi. Operating temperature is from -40°F to 200°F, with a standard compensated temperature range from 60 to 160°F. The unit measures 2.5" in length and has a 7/16"-20 UNF straight-thread pressure port. It is welded and hermetically sealed. Circle No. 714

Nonlinear FEA Book
Linear and Nonlinear Finite Element Analysis in Engineering Practice by Dr. Constantine Spyroukos, is available from Algor, Pittsburgh, PA. The book seeks to simplify the topic of nonlinear finite element analysis (FEA), making FEA a practical tool for mechanical engineers. The book provides information on topics such as breaking, buckling, bouncing, shattering, swinging, rotating, and oscillating. It is the second in a series of books by the professor. The first book, Finite Element Modeling in Engineering Practice, explains the fundamentals of modern engineering analysis. Circle No. 709

Clamp-On Ammeter
The HHM51-DC digital clamp-on DC ammeter from OMEGA Engineering, Stamford, CT, measures DC current up to 1200 ADC, DC voltage to 200 VDC, and resistance to 2000 Ohms. It is designed for
New on the Market

MARKET

MARKET

checking equipment such as dc motors, starters, generators, and voltage regulators. No connections are necessary when measuring current since the inductive pick-up clamps around any single conductor. Standard features include high-contrast LCD readout, display hold, and amp zero adjustment. It comes with an integral clamp-on jaw for DC current measurement, contact probes for DC voltage and resistance measurements, a carrying case, and battery. Circle No. 701

Slip-On Fittings

Clippard Instrument Laboratory, Cincinnati, OH, has introduced Minimatic® Slip-on Fittings as an alternative to ferrule and push-to-connect design fittings. They feature a single-barb design that provides a slip-on/locked-on connection, and are available in multiple configurations with 1/16" or 1/8" hose barb, and ported #10-32 or 1/8 NPT. The low-profile fittings are designed to be used with flexible Clippard urethane hose. The leak-free connection will hold to the burst pressure of the hose without the need for additional clamps. Electroless nickel plating offers corrosion resistance. Circle No. 703

Pocket-Sized Infrared Thermometers

Three pocket-sized, non-contact infrared thermometers are available from Yokogawa Corporation of America, Newman, GA, for temperature measurement of electrical equipment such as transformers, motors, circuit breakers, bus bars, and HVAC systems. They safely measure temperatures to 792°F in one second with the push of a button, and are accurate to ±1% of reading. The model 53001 is for general-purpose measurements with a distance-to-target ratio of 10:1. The model 530 03 is for small objects and analog output, and the 580 04 measures small targets down to 35 mm at a distance of 1 meter with laser sighting. All models are switchable from degrees F to C, dark to bright emissivity, and max/hold mode. Circle No. 710

Two-Channel Signal Analyzer

Stanford Research Systems, Sunnyvale, CA, has introduced the SR785 two-channel dynamic signal analyzer that features Analog Devices' ADSP21020 32-bit floating point processor, which allows the system to deliver a two-channel 100-kHz real-time bandwidth. A low-distortion source generates sine, two-tone, white noise, pink noise, burst, chirp, and arbitrary waveform outputs. Basic measurements include FFT, order tracking, real-time octave analysis, correlation, and time capture mode. Using two 16-bit ADCs, all single and two-channel measurements can be made on spans up to 102.4 kHz. Other features include a 1.44 MB DOS-compatible floppy drive; GPIB and RS-232 computer interfaces; and a printer port. Circle No. 712

Image/X-Ray Analyzer

AutoSEM 1 is a PC-based image and x-ray analyzer from Advanced Research Instruments Corp., Boulder, CO, that works with virtually any scanning electron microscope (SEM). It produces particle/feature and field data such as area, size distribution, number of features per field, and percent area coverage, and performs x-ray analysis on each feature. It can operate live or automatically without operator attendance. The system provides complete image/x-ray analysis reports, including statistics in standard spread-sheet format; digital color-coded x-ray maps based on composition; digital high-resolution imaging; image enhancement; image archiving; and printed images. Circle No. 705

Precision Screws

Allied Devices, Baldwin, NY, has introduced AccuStar™ Phillips-head precision shoulder screws for close tolerance applications. The screws are engineered with high precision tolerances in shoulder diameter, shoulder length, and concentricity of thread to shoulder. The Phillips head provides torque control and is suited for automatic insertion or robotic assembly. The AccuStar™ screws are manufactured in magnetic and non-magnetic 303 stainless steel, in standard and custom sizes. Circle No. 700

We Do TFT Monitors

Flat panel displays. Operator interface workstations. For Automation, Process Control or the Factory Floor. No matter what your application or budget, MITAC can deliver a low-cost, quality solution.

- NEMA 4/12 10.4" TFT display with touchscreen
- 1-slot ISA, 6-slot ISA or 6-slot PICMG passive backplane chassis
- 10.4" or 12.1" TFT flat panel monitors
- 300 nits, 40,000 plus hours MTBF

One of the world's largest manufacturers of PCs.

& HMI Workstations

MitAC Industrial Corporation
1-800-648-2295
www.mitacinds.com

For More Information Circle No. 437 87
Digital Panel Meters
The 1998 Acculex Catalog and Reference Guide from Keithley Instruments, Cleveland, OH, highlights Acculex digital panel meters, panel printers, and associated instruments. New products include the DP-899 Process Indicator Alarm that allows user selection of high and low setpoints; the Big Digit Temperature Meters for direct temperature measurements; and the DP-7000 Series six-digit LCD display counters, timers, and ratemeters.

Vacuum Metallizing
Metallized Products, Winchester, MA, has released a brochure describing products and services incorporating vacuum metallizing technology. Capabilities include UV/EB cured products, vacuum metallizing, and thermal laminations. Products available include multi-ply laminates, superinsulation, crosslinking, functional coatings, and decorative coatings.

Adhesive Tapes
The FT 8306, FT 8326, and FT 8708 adhesive tapes are described, with applications, in literature from Avery Dennison, Specialty Tape Division, Painesville, OH. The FT 8306 is a double-coated film, permanent/removable differential adhesive tape; the FT 8326 is a permanent/permanent tape; and the FT 8708 is a pressure-sensitive adhesive fastening tape for bonding two substrates together.

Stepper Motors
Thomson Industries, Airpax Mechatronics, Port Washington, NY, offers a handbook of permanent magnet stepper motors and geared motors. The motors range from 15 to 60 mm in diameter; provide step angles of 1.8 and 3.6° (hybrids) and 3.6, 7.5, 15, and 18° (permanent magnet); come in industry-standard configurations; and are available in a range of magnet materials.

Engineering Design Guide
Switchcraft, Chicago, IL, offers a 350-page engineering design guide that features more than 5,000 electronic and electromechanical components from five product categories: connectors, jacks and plugs, jack panels and jackfields, molded cable assemblies and patch cords, and switches. Specifications, part numbering systems, mating, and ordering information are provided.

Magnetic Shielding
Magnetic Shield Corp., Bensenville, IL, has released a six-page brochure of magnetic shielding products and materials for transformers, CRTs, motors, relays, and other components. Included are enclosures, vacuum shields, zero gauss chambers, magnetic field evaluator probes, and materials such as stock alloys and annealed foils.

Test & Measurement
A 1998 catalog of test and measurement equipment from Marconi Instruments, Fort Worth, TX, features test solutions for RF and microwave products. An updated selection of signal sources, radio test sets, and microwave and RF analyzers is included.
Use this form for quickest processing of your inquiry, or if the bind-in card has been removed. Fax: (413) 637-4343.

Name
Company
Address
City/St/Zip
Phone
Fax

e-mail_

Circle the numbers below to order Technical Support Packages for briefs in this issue.

<table>
<thead>
<tr>
<th>101</th>
<th>102</th>
<th>103</th>
<th>104</th>
<th>105</th>
<th>106</th>
<th>107</th>
<th>108</th>
<th>109</th>
<th>110</th>
<th>111</th>
<th>112</th>
<th>113</th>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
</tr>
<tr>
<td>129</td>
<td>130</td>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
</tr>
<tr>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td>155</td>
<td>156</td>
</tr>
<tr>
<td>157</td>
<td>158</td>
<td>159</td>
<td>160</td>
<td>161</td>
<td>162</td>
<td>163</td>
<td>164</td>
<td>165</td>
<td>166</td>
<td>167</td>
<td>168</td>
<td>169</td>
<td>170</td>
</tr>
<tr>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td>176</td>
<td>177</td>
<td>178</td>
<td>179</td>
<td>180</td>
<td>181</td>
<td>182</td>
<td>183</td>
<td>184</td>
</tr>
<tr>
<td>185</td>
<td>186</td>
<td>187</td>
<td>188</td>
<td>189</td>
<td>190</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
<td>196</td>
<td>197</td>
<td>198</td>
</tr>
<tr>
<td>199</td>
<td>200</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
<td>207</td>
<td>208</td>
<td>209</td>
<td>210</td>
<td>211</td>
<td>212</td>
</tr>
<tr>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
<td>220</td>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
</tr>
<tr>
<td>227</td>
<td>228</td>
<td>229</td>
<td>230</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
<td>236</td>
<td>237</td>
<td>238</td>
<td>239</td>
<td>240</td>
</tr>
<tr>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>248</td>
<td>249</td>
<td>250</td>
<td>251</td>
<td>252</td>
<td>253</td>
<td>254</td>
</tr>
<tr>
<td>255</td>
<td>256</td>
<td>257</td>
<td>258</td>
<td>259</td>
<td>260</td>
<td>261</td>
<td>262</td>
<td>263</td>
<td>264</td>
<td>265</td>
<td>266</td>
<td>267</td>
<td>268</td>
</tr>
<tr>
<td>269</td>
<td>270</td>
<td>271</td>
<td>272</td>
<td>273</td>
<td>274</td>
<td>275</td>
<td>276</td>
<td>277</td>
<td>278</td>
<td>279</td>
<td>280</td>
<td>281</td>
<td>282</td>
</tr>
<tr>
<td>283</td>
<td>284</td>
<td>285</td>
<td>286</td>
<td>287</td>
<td>288</td>
<td>289</td>
<td>290</td>
<td>291</td>
<td>292</td>
<td>293</td>
<td>294</td>
<td>295</td>
<td>296</td>
</tr>
<tr>
<td>297</td>
<td>298</td>
<td>299</td>
<td>300</td>
<td>301</td>
<td>302</td>
<td>303</td>
<td>304</td>
<td>305</td>
<td>306</td>
<td>307</td>
<td>308</td>
<td>309</td>
<td>310</td>
</tr>
</tbody>
</table>

There is a $5.00 postage & handling charge for each TSP ordered, payable by check or credit card.

Method Of Payment:
☐ Check to NASA Tech Briefs
☐ American Express ☐ VISA ☐ Mastercard

Card No.
Exp. Date
Signature

No. of TSPs: _____ x $5.00 each = total enclosed: $$

Mail in envelope to:
NASA Tech Briefs
PO Box 5077
Pittsfield, MA 01203-5077
or fax to: (413) 637-4343
Thank you for your order.

TSPs can be accessed free on-line at www.nasatech.com
INTERNALLY GAGED FORCE TRANSDUCERS
Catalogs describe a complete line of force transducers manufactured by Strainsert. Transducers include: flat load cells, tension and compression from 250 to 2 million pounds; clevis pins with 0-10 vdc and 4-20 ma outputs; tension links up to 400,000 pounds; load-sensing bolts and studs; and load indicators. "Special" designs are invited. Strainsert, Union Hill Industrial Park, West Conshohocken, PA 19428; Tel: 610-825-3310; Fax: 610-825-1734.

Seastrom
For More Information Circle No. 626

THE SOURCE FOR ELECTRONIC & MECHANICAL HARDWARE
Seastrom takes pride in offering one of the widest selections of standard electronic and assembly hardware. 111A from stock. Seastrom's 66-A Catalog provides a complete source for over 45,000 products. For a free 550-page catalog, call 800-634-2356.

Seastrom Manufacturing Co. Inc.
For More Information Circle No. 626

OEM TUBING PUMPS
Barnant Company announces their extensive line of Masterflex tubing pumps, specifically designed for OEM requirements. Virtually maintenance-free, these self-priming, positive displacement pumps, smooth, quiet, and efficient at flow rates up to 720 GPH and pressures to 40 psig. Models are available in 115 and 230 VAC, as well as 12 and 24 VDC. Panel mounting is optional for many of the pump configurations. Custom design is available by contacting Barnant Company, 28902 Commercial Ave., Barrington, IL 60010; Tel: 800-637-3739; Fax: 847-381-7053; e-mail: barnant@nic.net; www.barnant.com

Barnant Company
For More Information Circle No. 629

FREE SONEX™ NOISE CONTROL BROCHURE
Reduce the pain of cost of industrial noise with SONEX acoustical products. SONEX acoustical products contain loud noise at its source or absorb overall noise in your facility. SONEX™curtains, SONEX™acoustic panels, and SONEX™modular can be used as barrier walls or enclosures to surround noisy equipment or processes. SONEX panels, wedges, and baffles absorb overall noise and echoes. Call illbruck, inc. at 800-662-0092 for a free brochure on Noise Control, or visit our web site at www.illbruck-sonex.com

illbruck, inc.
For More Information Circle No. 631

STANFORD RESEARCH SYSTEMS 1998-99 CATALOG
The new 1998-1999 Scientific and Engineering Instruments catalog from Stanford Research Systems contains product specifications, prices, and application notes on our full line of instruments. This 200-page catalog also has new product information as well as a current listing of our international representatives. Stanford Research Systems, 1290 D Reamwood Ave., Sunnyvale, CA 94089; Tel: 408-744-9049; Fax: 408-744-9049; email: info@srsys.com; www.srsys.com; srsys/

Stanford Research Systems
For More Information Circle No. 635

For More Information Circle No. 624

TIME & FREQUENCY PRODUCTS
TrueTime's precision time and frequency product catalog features GPS synchronized clocks in rackmount, board level, and portable configurations. These units are used for computer clock synchronization, telecommunication timing, time code generation, and a wide range of applications requiring precise time and frequency outputs. TrueTime Inc.; Tel: 707-528-1280; Fax: 707-527-6640; e-mail: truetime@truetime.com; www.truetime.com

TrueTime Inc.
For More Information Circle No. 627

InvenSense announces their new line of InvenSense IMU products, a touchless IMU for use in industrial and consumer applications. The IMU's built-in sensors are capable of providing an accurate and reliable motion measurement. InvenSense, Inc.; Tel: 619-454-3300; Fax: 619-454-3304; e-mail: info@invensense.com; www.invensense.com

For More Information Circle No. 628

THE SOURCE FOR ELECTRONIC & MECHANICAL HARDWARE
Seastrom takes pride in offering one of the widest selections of standard electronic and assembly hardware. 111A from stock. Seastrom's 66-A Catalog provides a complete source for over 45,000 products. For a free 550-page catalog, call 800-634-2356.

Seastrom Manufacturing Co. Inc.
For More Information Circle No. 626

OEM TUBING PUMPS
Barnant Company announces their extensive line of Masterflex tubing pumps, specifically designed for OEM requirements. Virtually maintenance-free, these self-priming, positive displacement pumps, smooth, quiet, and efficient at flow rates up to 720 GPH and pressures to 40 psig. Models are available in 115 and 230 VAC, as well as 12 and 24 VDC. Panel mounting is optional for many of the pump configurations. Custom design is available by contacting Barnant Company, 28902 Commercial Ave., Barrington, IL 60010; Tel: 800-637-3739; Fax: 847-381-7053; e-mail: barnant@nic.net; www.barnant.com

Barnant Company
For More Information Circle No. 629

FREE SONEX™ NOISE CONTROL BROCHURE
Reduce the pain of cost of industrial noise with SONEX acoustical products. SONEX acoustical products contain loud noise at its source or absorb overall noise in your facility. SONEX™curtains, SONEX™acoustic panels, and SONEX™modular can be used as barrier walls or enclosures to surround noisy equipment or processes. SONEX panels, wedges, and baffles absorb overall noise and echoes. Call illbruck, inc. at 800-662-0092 for a free brochure on Noise Control, or visit our web site at www.illbruck-sonex.com

illbruck, inc.
For More Information Circle No. 631

STANFORD RESEARCH SYSTEMS 1998-99 CATALOG
The new 1998-1999 Scientific and Engineering Instruments catalog from Stanford Research Systems contains product specifications, prices, and application notes on our full line of instruments. This 200-page catalog also has new product information as well as a current listing of our international representatives. Stanford Research Systems, 1290 D Reamwood Ave., Sunnyvale, CA 94089; Tel: 408-744-9049; Fax: 408-744-9049; email: info@srsys.com; www.srsys.com; srsys/

Stanford Research Systems
For More Information Circle No. 635

For More Information Circle No. 624

TIME & FREQUENCY PRODUCTS
TrueTime’s precision time and frequency product catalog features GPS synchronized clocks in rackmount, board level, and portable configurations. These units are used for computer clock synchronization, telecommunication timing, time code generation, and a wide range of applications requiring precise time and frequency outputs. TrueTime Inc.; Tel: 707-528-1280; Fax: 707-527-6640; e-mail: truetime@truetime.com; www.truetime.com

TrueTime Inc.
For More Information Circle No. 627
NEW INCH & METRIC DRIVE COMPONENT CATALOG SET
Free 1.152-page "Handbook of INCH Drive Components - 787" and 896-page "Handbook of METRIC Drive Components - 777" feature over 62,000 off-the-shelf standardized commercial and precision quality components including over 4,200 new products. Products include gears, belt and chain drives, shaft and shaft accessories, bearings, couplings, universal joints, vibration mounts, gearheads and speed reducers, right-angle drives, brakes and clutches, motors and gearmotors. Stock Drive Products/Sterling Instrument; Tel: 516-328-3300; Fax: 800-737-7436; www.sdp.si.com
Stock Drive Products/Sterling Instrument
For More Information Circle No. 636

INTELLIGENT DATA ACQUISITION
Onboard Intelligence provides Real-Time Processing, Network Access, DSP Commands, Control Loops <1 ms with External Expansion, 19" Industrial Racks, High-Speed 1/O and PCI CUBs.

Call now for your free catalog! Microstar Laboratories, Inc., Tel: 888-MSTARLABS (678-2752) or 425-453-2340; Fax: 425-453-3199; e-mail: info@mstarlabs.com; www.mstarlabs.com
Microstar Laboratories, Inc.
For More Information Circle No. 637

LEVEL, FLOW & PRESSURE SENSORS CATALOG
This new catalog from the fluid sensors people at Gems Sensors Inc. includes a comprehensive line of quality-manufactured liquid level, flow, and pressure sensors. Featured are point and continuous level sensors including conductivity, electro-optic, and ultrasonic level sensors, a full array of flow sensors, our popular SureSite® magnetic gauges, and pressure transducers and switches. The popular Qwik Pik® section is back with hundreds of in-stock products available for same-day shipping. Most products are CE-certified. Gems Sensors Inc., 1 Cowled Rd., Plainville, CT 06062; Tel: 800-921-6070; Fax: 800-793-4500.
Gems Sensors Inc.
For More Information Circle No. 638

FREE! 130-PAGE "OPTICS FOR INDUSTRY" CATALOG
Free 130-page product catalog from Rolyn, world's largest supplier of "Off-the-Shelf" optics. 24-hour delivery of simple or complex lenses, filters, prisms, mirrors, beamsplitters, reticles, objectives, eyepieces, plus thousands of other stock items. Rolyn also supplies custom products and coatings in prototype or production quantities. Rolyn Optics Co., 706 Arrowgrass Circle, Covina, CA 91722-2199; Tel: 626-915-5707; Fax: 626-915-1379.
Rolyn Optics Co.
For More Information Circle No. 639

COOL ELECTRONIC CABINETS
UL-listed Cabinet Coolers are the quiet, low-cost, reliable way to cool and purify electronic control panels, eliminating CFCs, fans, and filters. The compact coolers incorporate a vortex tube to produce cold air from ordinary compressed air. No moving parts assures long life and maintenance-free operation. NEMA 4, 4X, and 12 models available. Literature gives selection data and specifications. EXAIR Corporation, 1250 Century Circle North, Cincinnati, Ohio 45246; Tel: 800-903-9247; Fax: 513-671-3363; e-mail: techhelp@exair.com; www.exair.com
EXAIR Corporation
For More Information Circle No. 640

NEW 1998 DATA ACQUISITION BOARDS SUPPLEMENT CATALOG
New 48-page, 1998 supplement catalog from Datel SYSTEMS offers a wide range of high-performance and general-purpose data acquisition boards. Over 50 new products are offered, including advanced performance boards for PCI, ISA, and VME bus. For additional information or to request a catalog, contact us at 800-235-2755; e-mail: datell@datel.com; www.datel.com
NEW 1998 DATA ACQUISITION BOARDS SUPPLEMENT CATALOG
For More Information Circle No. 642

HIGH-TEMPERATURE INTEGRATED CIRCUITS
HTMOS® Products, high-temperature ICs for high-temperature environments, are featured in a new brochure. Family of components offers significant performance advantages over traditional silicon circuits and operates in temperatures ranging from 250 to 300°C for at least 5 years. Targeted at sensor signal conditioning, data acquisition, and control applications in hostile, high-temperature environments.

Honeywell Solid State Electronics Center
For More Information Circle No. 643

PRESSURE SENSOR & ANALYSIS SYSTEM
Topaq® is a revolutionary Windows-based sensor for tactile pressure measurement and interpretation. The system enables the characterization of how force is disbursed in any process or assembly where two surfaces come into contact. Topaq renders high-definition color maps of pressure distribution and magnitude. Used in conjunction with Pressure5®/Fuji Prescale® pressure indicating films, Sensor Products Inc., 188 Route 10, Suite 307, East Hanover, NJ 07936; Tel: 800-755-2201; Fax: 973-884-1699; e-mail: sales@sensorprod.com; www.sensorprod.com
Sensor Products Inc.
For More Information Circle No. 645

ADVANCED COMPOSITE TRAINING VISIT OUR NEW WEBSITE: WWW. ABaris.COM
The industry leader in advanced composite training since 1985, Abaris Training offers engineering-level courses in design and analysis of composites. We also offer introductory-level courses and practical workshops in fabrication and repair. Abaris Training Resources, Inc.; Tel: 800-638-8441; Fax: 702-857-8599; e-mail: cn@training.abaris.com; www.abaris.com
Abaris Training Resources, Inc.
For More Information Circle No. 646

COMPOSITE MATERIAL PROPERTIES & ENGINEERING DATA
Free engineering and machining information for composite laminates. Amalga Composites has supplied drive shafts, beams, instrument housings, pressure tubing, and vessels for 30 years. Wound composites are stiffer than aluminum, one-fifth the weight of steel, dielectrically strong, non-magnetic, and more resistant than stainless. Quick deliveries for sizes up to 42" diameter or 330" length. Amalga Composites; Tel: 414-453-9555; Fax: 414-453-9561.
Amalga Composites
For More Information Circle No. 647

POSITION TRANSCLUDER SHORT FORM CATALOG
Data Instruments, an ISO 9001 certified manufacturer, offers a new short form catalog for their Position/Displacement Transducer Product Family. Featured are a wide variety of cost-effective, industry-proven linear and rotary potentiometers plus non-contact fast linear displacement transducers. Standard product specifications, features, and applications are included in the catalog. Custom transducers built to your specifications. Data Instruments Inc., 100 Discovery Way, Acton, MA 01720; Tel: 800-333-3282; Fax: 978-263-6060; www.datainstruments.com
Data Instruments Inc.
For More Information Circle No. 644
TEST EQUIPMENT FOR LESS!

Save 10-90% buying reconditioned test equipment, and
10% on NEW. Naptech sells quality reconditioned test
equipment by HP, Tektronix, Fluke, Wavetek, Philips, etc. New from
Leader, LeCroy, Instek, and
Bel Merit. Choose from a wide variety of Test
Equipment, Oscilloscopes, Analyzers, Generators,
Counters, etc. Equipment is guaranteed for one
year and meets or exceeds manufacturers' specifi-
cations. Naptech East Equipment, Inc., Lower Lake,
CA 95457; Tel: 800-336-7723; Fax: 767-995-7151; e-
mail: sales@naptech.com; www.naptech.com

**RUGGED FPD WORKSTATIONS, TERMINALS &
MONITORS CATALOG**

If you need a touchscreen computer, terminal, or monitor for
rugged or COTS applications, you'll want Deeco's new catalog of
systems. Deeco products are specially designed for vehi-
cle-mounting, military vehicles, and sea-going vessels.

We offer a broad range of standard products and cus-
tom engineering for specialized projects. Lucas
Control Systems - Deeco; Tel: 800-976-1154; Fax: 510-
489-3500; 24-Hr FaxBack: 916-431-6574; Federal
Systems Office: 301-854-3490; www.deeco.com

Naptech East Equipment, Inc.
For More Information Circle No. 648

1998 CALIBRATION Standards CATALOG

All-new free 1998 catalog of metrology calibration
standards for surface con-
tamination, critical di-
ensions, film thickness,
surface profiling, rough-
ness, resistivity, and much
more. All important for ISO 9000 certification.
Also, valuable information on calibration science
and VLSI services. VLSI Standards, 3087 North
First St., San Jose, CA 95134; Tel: 408-428-1800; Fax:
408-428-0555.

VLSI Standards
For More Information Circle No. 649

UNIVERSAL INDICATING ISOLATING LOOP-POWERED TRANSMITTER

Love Controls introduces its SCU universal input, indicat-
ing, isolating, loop-powered transmitter. Selectable input
for thermocouples, RTDs, voltage, or current is dis-
played on a 4-1/2-digit LCD display. The loop-pow-
ered output can be programmed as linear or raw,
and scaled anywhere across the input scale. Love
Controls Division, Dyer Instruments, Inc.; PO Box
338, 102 Hwy. 212, Michigan City, IN 46360; Tel:
219-879-8000; Fax: 219-872-9057.

Love Controls Div., Dwyer Instru.
For More Information Circle No. 651

AC & DC MOTOR CONTROL DRIVES

Danfoss Electronic Drives' 216-
page Adjustable Speed Drives cat-
alog features the VLT 5000 Series
adjustable speed drives with inter-
national approvals (UL, cUL,
CE) that incorporate sensorless vector control tech-
nology for fast response (3ms ±1ms). Features
include AC line voltage of 200 to 240VAC ±10%; horsepower range lip to 300
HP with normal overload; and enhanced software
that provides automatic motor adaptation. Catalog
includes full line of drives (AC & DC) and acces-
sories. Danfoss Electronic Drives, Div. of Danfoss
Inc.; Tel: 800-432-6567; Fax: 815-398-2869; Fax Back
338, 102 Hwy. 212, Michigan City, IN 46360; Tel:
916-431-6547; www.danfossdrives.com

Danfoss Electronic Drives
For More Information Circle No. 653

UNIVERSAL INDICATING ISOLATING LOOP-POWERED TRANSMITTER

Love Controls introduces its SCU universal input, indicat-
ing, isolating, loop-powered transmitter. Selectable input
for thermocouples, RTDs, voltage, or current is dis-
played on a 4-1/2-digit LCD display. The loop-pow-
ered output can be programmed as linear or raw,
and scaled anywhere across the input scale. Love
Controls Division, Dyer Instruments, Inc.; PO Box
338, 102 Hwy. 212, Michigan City, IN 46360; Tel:
219-879-8000; Fax: 219-872-9057.

Love Controls Div., Dwyer Instru.
For More Information Circle No. 651

AIR MOVERS

Air Amplifiers vent, exhaust, cool, dry, and clean
with no moving parts. Using a small amount of com-
pressed air as a power source, Air Amplifiers move
large volumes of surrounding
air to produce high-
velocity outlet flows. Air
Amplifiers are compact,
durable, portable, and maintenance-free.
Applications include venting fumes, cleaning, dry-
ing, or cooling parts. EXAIR Corporation, 1250
Century Circle North, Cincinnati, OH 45246; Tel:
800-903-9247; Fax: 513-671-3363; e-mail:
techelp@exair.com; http://www.exair.com

EXAIR Corporation
For More Information Circle No. 652

AIR MOVERS

Air Amplifiers vent, exhaust, cool, dry, and clean
with no moving parts. Using a small amount of com-
pressed air as a power source, Air Amplifiers move
large volumes of surrounding
air to produce high-
velocity outlet flows. Air
Amplifiers are compact,
durable, portable, and maintenance-free.
Applications include venting fumes, cleaning, dry-
ing, or cooling parts. EXAIR Corporation, 1250
Century Circle North, Cincinnati, OH 45246; Tel:
800-903-9247; Fax: 513-671-3363; e-mail:
techelp@exair.com; http://www.exair.com

EXAIR Corporation
For More Information Circle No. 652

**Part of the Tech East '98 mega-event coming to Boston's
Hynes Center November 3-5, these two complementary,
concurrent shows sponsored by NASA Tech Briefs offer a
unique forum to present new inventions and products to
America's leading engineers and technology managers.

Technology 2008 focuses on advanced R&D available for
commercial development, partnership and licensing oppor-
tunities, and technology transfer successes.

The New England Design & Manufacturing Expo focuses on
innovative products and services available now to help
engineers meet their design, prototyping, testing, and manu-
facturing challenges.

Oral and poster presentations are sought for these events in the following categories:

Computer-Aided Design &
Engineering
Advanced Manufacturing/ Rapid Prototyping
Materials & Material Processing
Sensors & Instrumentation
Test & Measurement
Motion Control & Positioning
Bio/Medical Innovations*
Environmental Technology*

*Technology 2008 poster presentations only

Poster presentations will illustrate individual technologies/products and their applications;
oral presentations will be in the form of tutorials or short courses.

Questions? Call (212) 490-3999, ext. 244.
For information on other
Tech East '98 presentation opportunities:
Photonics East & Electronic Imaging Intl. — (360) 676-3290;
fax (360) 647-1445; e-mail: pe98@spie.org
Small Business Tech Expo & National SBIR Conference —
(360) 683-5742; fax (360) 683-5391
Continuous Liquid Level Transmitters

- 4-20mA
- 0-5VDC, 0-12VDC and 0-12VDC w/ Hi & Lo
- Alarm Outputs Available.
- All-Plastic or Metallic Types.
- 1/4" Resolution.
- Lengths to 15 Feet.
- Many FM and CSA Listed.

Call toll-free: 800-321-6070

Position Accuracy to ±0.5 arc second!

Inductosyn® transducers provide absolute or incremental position data to ±0.5 arc second (Rotary) or ±40 microinches (Linear). Resolution to 26 bits.

For brochure, call 914/761-2600 or fax 914/761-0405.

Farrand Controls

Division of Ruhe Companies, Inc.

99 Wall Street, Valhalla, NY 10595

For More Information Circle No. 441

DEHUMIDIFY

SUPER DRY 5-30%
- Ceramics - Museum pieces
- Semiconductors - Pharmaceuticals
- Chemical powders - Precision molds, parts

AUTO DRY 30-50%
- Compact discs - Magnetic tapes, discs
- Film, photographs, stamps - Precious metals
- Wrist watches - Mechanical, electromechanical parts
- Cameras, lenses, optical instruments

Economical, efficient, and affordable.
Sizes from 153/4 x 171/4 x 15 to 48 x 72 x 26

Patented, innovative process eliminates desiccant replacement.

CUI STACK

800-275-4899

Fax: (503)643-6129

On top of it.

For More Information Circle No. 584

ELECTRICAL CONDUCTIVE ADHESIVES

Designed to Your Specifications

- High conductivity
- Thermal shock resistant
- Durable, high strength bonds
- Water and chemical resistant
- Convenient packaging
- Long storage stability without refrigeration
- Repairability

Master Bond Inc.

Adhesives, Sealants & Coatings

Call or write:

Master Bond Inc.

154 Hobart Street
Hackensack, NJ 07601

201-343-8983

For More Information Circle No. 583

80/20 Inc.

The Industrial Erector Set

For the Full Story...

www.8020.net

(219)248-8030 • FAX 248-8029

1701 South 400 East • Columbia City, IN 46725

www.8020inc.com

item products, inc.

800-333-4932

www.item-products.com

Dream It, Design It, Build It... With item. High strength aluminum profiles and accessories for the ultimate structural system.

Why Weld? Use stock, modular framing to build projects quickly.

Bases • Workstations • Guards
Get Free 148 page catalog.

Yamaguchi America, Inc.

Mini-Tec Bloomfield, NY

Call: 800-642-6446

In NYS: 716 657-6151

THE TECHNOLOGY CONNECTION

To Advertise

Call (800) 944-NASA
NASA HAS PARTNERED WITH THOUSANDS OF COMPANIES TO DEVELOP NEW PRODUCTS. EXAMPLE: AN ELECTRONIC DIPSTICK, WHICH GIVES MOTORISTS A VISUAL INDICATION OF FLUID LEVELS, WAS ADAPTED FROM A TECHNOLOGY DEVELOPED FOR THE SPACE SHUTTLE PROGRAM.

LEARN HOW YOU CAN TAP INTO THE MOST FORMIDABLE, CUTTING-EDGE TECHNOLOGY EVER DEVELOPED. VISIT OUR WEB SITE, OR CALL THE NATIONAL TECHNOLOGY TRANSFER CENTER, AND PUT NASA'S 11,000 SCIENTISTS AND ENGINEERS TO WORK FOR YOU.
Launching a satellite has never been easy. The people at The Aerospace Corporation know that. So they rely on a powerful data analysis and visualization software package called IDL to make it a little easier.

The Aerospace Corporation's business involves designing and testing the most powerful, safest and environmentally sound propulsion systems for satellite launches.

A special team, led by Dr. Andy McIlroy, uses IDL, the Interactive Data Language, for combustion data analysis. IDL allows them to quickly manipulate and display data. It allows them to test ignition methods and develop combustion formulas with minimal environmental impact. And they can share their work between Windows, Unix and Power Macintosh machines because of IDL's unique cross-platform design.

"At The Aerospace Corporation, we use IDL software because of its flexibility and ability to run on lots of different devices in our lab. The data processing capabilities let me see what's happening in ways I need to," Dr. McIlroy says.

Thousands of other people also use IDL to turn their data into useful information. People like Dr. Amir Najmi, of Johns Hopkins University Applied Physics Lab, who is developing optimal processing methods for electromagnetic and acoustic data. "Once I have an idea," says Najmi, "I can quickly prototype that idea and see the results almost instantly."

Find out how IDL can help you improve your analysis and make better decisions from your data. Contact us today for a free demo CD. You can also request Engineering Test & Analysis Application Profiles, which details the many interesting applications of IDL.

Contact us today for information on IDL software and to receive a free demo CD.