Bluetooth Revolutionizes Wireless Communications

Prototype Image Sensors Offer Diverse Uses

NEW! Join Our Model & Simulation Exchange
Acquire

Analyze

Present

From Across the Room or Across the Globe

Easily acquire, analyze, and present data anywhere in the world by distributing measurement applications and data across the Internet. Use the latest Internet technologies to increase your productivity and share information throughout the enterprise. With the power of National Instruments LabVIEW™ and measurement products, the possibilities are endless.

Discover for Yourself the Power of LabVIEW 6i.

Visit ni.com/info/labview for a free LabVIEW Evaluation CD.
Where Do I Find Process Measurement Control Products Online?

Available 3-Ways! Internet Hard Covered Handbooks CD ROM

Non-Contact Infrared Supermeter™ Multimeter/Thermometer with Switchable Laser Dot/Circle Sighting

HHM290 $345

Online Info at: supermeter.net

Covered by U.S. and Foreign Patents and Pending Applications

Probe Sold Separately

OS530L $395 Basic Unit

Online Info at: infraredthermometers.net

Covered by U.S. and Foreign Patents and Pending Applications

Handheld Infrared Thermometer

CSC32 Series $345 Basic Unit

Online Info at: portablethermometer.com

Covered by U.S. and Foreign Patents and Pending Applications

Compact Benchtop Controller

Model OS540 $85

Online Info at: einfrared.net

Covered by U.S. and Foreign Patents and Pending Applications

Infrared Thermometer

CNI/DPI $295 Basic Unit $95 Hub Unit

Online Info at: eprocessmeter.net

Covered by U.S. and Foreign Patents and Pending Applications

Available with Optional Embedded Web Server

Series Temperature & Process Meters and Controllers

CN3251 $410 Basic Unit

Online Info at: rampsoakcontroller.com

Ramp/Soak Temperature/Process Controller With Fuzzy Logic

Order Online!

Over 100,000 Process Control Products Online!

omega.com

...of course

Easy to Order Fast Delivery!
The CS2010 Wireless Test Set delivers an entirely new level of power, speed and flexibility for power amplifier and digital radio design. Essentially three products in one, the modular CS2010W is an off-the-shelf "virtual" test instrument that offers multi-carrier signal capability at three levels of functionality:

- **CS2010 Vector Signal Generator** RF, IF, baseband, digital output. Performance exceeds any instrument on today’s market - 50 times more memory (4,000MB), 5 times better resolution via 14 bit D/A’s, and 9 dB improvement in dynamic range.

- **CS2010 Vector Signal Analyzer** RF, IF, baseband and digital input. Deliver the deepest acquisition memory available - 4,000MB of seamless 14 bit capture.

- **CS2010 Vector Signal Generator/Analyzer** All the capability of the CS2010 VSA and the CS2010 VSG in one package. By simply adding hardware and software modules, the VSA or VSG can be upgraded to provide multi-path fading, smart antenna testing, bit error rate testing and protocol testing.

Utilizing a unique architecture, the CS2010W offers a completely open test environment with selection of functions (spectrum analysis, oscilloscope, digital pattern generation/analysis), along with a series of digital and RF multi-carrier waveform generation capabilities.

The CS2010W allows you to replace an assembly of stand-alone test instruments with one box that does everything, faster and better. At a price that makes you market-competitive today and grows with your needs in the future.

Whatever level you’re involved at, your test capabilities should match your technology. Let us show you how we can help. Check out the details at www.csidaq.com or call 888-274-5604 for more information.
What You Want, When You Need It!

RATED

#1

AVAILABILITY OF PRODUCT!

www.Digi-Key.com

1-800-DIGI-KEY

For More Information Circle No. 505
AS A KID, TIM DIDN'T
Now that you’re all grown up, you not only want to understand how things work, but how to make them work better. That’s why Vespel® Parts and Shapes are developed with the flexibility to help you meet customer requirements and maybe even make some new discoveries while you’re at it. After all, making things lighter, stronger, faster, and subsequently, more efficient is what Vespel® Forward Engineering is all about. So, if you’re looking to move the industry forward, think Vespel® Parts and Shapes first. Chances are, you’ll find the design process as rewarding as dissecting your dad’s old hi-fi.

To find out what our extensive new line of materials can do for you, go to www.dupont.com/vespel or call 1-800-972-7252. If you can dream it, we can make it.

For More Information Circle No. 551
FEATURES

22 A "Model" of Interactive Engineering
26 Feature Section: Communications Technology
30 InReview
32 Application Briefs

BRIEFS

36 Special Coverage: Sensors
36 Submillimeter-Wave Image Sensor
38 Ultrasonic/Sonic Drill/Corers With Integrated Sensors
39 Normally Closed, Piezoelectrically Actuated Microvalve
40 Magnetostrictively Actuated Valves for Cryosurgical Probes
41 Remote Sensing of Electric Fields in Clouds

44 Electronic Components and Systems
44 Wireless-Communication Headset Subsystem To Enhance Signaling
44 Power Amplifier With 9 to 13 dB of Gain From 65 to 146 GHz
46 Humidity Interlock for Protecting a Cooled Laser Crystal

48 Test and Measurement
48 A Lightweight Ambulatory Physiological Monitoring System
49 Improvements in a Lightning-Measuring Instrument
50 Broad-Band, Noninvasive Radio-Frequency Current Probe

52 Software
52 Web-Based Technology Distributes Lean Models
52 Software Guides Aeroelastic-Systems Design
54 Postprocessing Software for Micromechanics Analysis Code

DEPARTMENTS

12 Commercial Technology Team
14 Reader Forum
16 NASA Patents
18 UpFront
20 Who's Who at NASA
34 Commercialization Opportunities
42 Special Coverage Products: Sensors
67 New on the Market
68 New on Disk
69 New Literature
71 Advertisers Index

SPECIAL SUPPLEMENT

1a - 32a Photonics Tech Briefs
Follows page 24 in selected editions only.
Algor has been developing FEA software since 1978. In 1984 Algor was the first company to offer FEA on PCs, which have evolved into the NT workstations of today. Algor offers the premier FEA software on PC workstations by combining ease-of-use and affordability.

Prices start at just $975 for InCAD DesignPak.

www.FE AinCAD.com - Getting started with InCAD DesignPak for FEA within CAD.
www.Algor.com - Full-featured FEA with Algor and InCADPlus.

*All trademarks may be trademarks or registered trademarks of their respective owners.
This month's Special Coverage on Sensors features new sensor products such as the MDRM magnetic sensor from Baumer Electric, Southington, CT (page 42). The sensor, with analog output, is designed for use as a non-contact mechanical potentiometer in motion control applications. For more sensor innovations, see the special coverage beginning on page 36.

Image courtesy of Baumer Electric.
14 Bit, 100 MS/s A/D and Scope Card

CompuScope 14100
- 14 Bit Resolution
- 100 MS/s A/D Sampling Rate
- 50 MS/s Simultaneous Sampling on 2 Channels
- Up to 1 Billion Points Acquisition Memory
- 50 MHz Bandwidth
- Multi-Card Systems of up to 16 Channels
- Bus Mastering and Scatter-Gather
- SDKs for C/C++, MATLAB & LabVIEW

Compatible With GageScope Software

Applications
- DSL Testing
- Wireless
- RF Signal Recording
- Advanced Imaging
- Ultrasound
- Radar & Lidar

Buy as a Card or a System

Call: 1-800-567-GAGE
www.gage-applied.com/ad/nasa0101.htm

A Tektronix Technology Company

From outside the United States contact: Gage Applied, Inc., Tel: +1-514-633-7447 Fax: +1-514-633-0770, e-mail: prodinfo@gage-applied.com
For More Information Circle No. 542
RGB Spectrum gives you more reasons to choose RGB/Videolink® scan converters

Up to 1600 x 1200 pixel input

Analog NTSC and PAL, S-Video, RGB, Y, P<small>g</small>, P<small>h</small> output

CCIR 601/SMPTE 259M digital video output

Autosync to all computers

Video overlay

Pan & zoom

Full 24-bit color

Visit our web site http://www.rgb.com

Transform computer graphics and other signals to broadcast quality video. RGB Spectrum has a solution for every scan conversion application. We even offer a model with a zoom control so smooth you can continuously pan and zoom while videotaping. With a unique combination of quality and features, the RGB/Videolink line of scan converters is the industry leader in professional video scan conversion.

RGB Spectrum® a visual communications company®

950 Marina Village Parkway
Alameda, CA 94501
Tel: (510) 814-7000
Fax: (510) 814-7026
E-mail: sales@rgb.com

For a complete list of staff e-mail addresses, visit www.abpi.net

NASA Tech Briefs, January 2001
Getting your designs off the ground means working with the laws of motion and gravity. Not an easy task. Luckily, Carpenter can help. You’ll find more than 400 grades of specialty alloys, titanium, impact-resistant ceramics and other advanced materials. Parts-forming technologies that meet your most demanding specs. And a battery of technical experts to conquer any design challenge. More than materials, Carpenter has unmatched manufacturing expertise, extensive distribution, and R&D that never stops. All of which allow you to turn the laws of flight to your advantage. For details, call 1-800-654-6543. Or visit www.cartech.com/aero
NASA Commercial Technology Team

NASA’s R&D efforts produce a robust supply of promising technologies with applications in many industries. A key mechanism in identifying commercial applications for this technology is NASA’s national network of commercial technology organizations. The network includes ten NASA field centers, six Regional Technology Transfer Centers (RTTCs), the National Technology Transfer Center (NTTC), business support organizations, and a full tie-in with the Federal Laboratory Consortium (FLC) for Technology Transfer. Call (609) 687-7737 for the FLC coordinator in your area.

NASA’s Technology Sources

If you need further information about new technologies presented in NASA Tech Briefs, request the Technical Support Package (TSP) indicated at the end of the brief. If a TSP is not available, the Commercial Technology Office at the NASA field center that sponsored the research can provide you with additional information and, if applicable, refer you to the innovator(s). These centers are the source of all NASA-developed technology.

Ames Research Center
Selected technological strengths: Information Technology; Biotechnology; Nanotechnology; Aerospace Operations; Systems; Robotics; Thermal Protection Systems. Contact: Carolina Blake (650) 604-1754 cb@msfc.nasa.gov. For more information, visit http://nctn.hq.nasa.gov.

Dryden Flight Research Center
Selected technological strengths: Aerosdynamics; Aeronautics Flight Testing; Aeropropulsion; Flight Systems; Thermal Testing; Integrated Systems Test and Validation. Contact: Jenny Baer-Riedhart (651) 276-3689 jenny.baer-riedhart@drfc.nasa.gov.

Langley Research Center
Johnson Space Center
Selected technological strengths: Artificial Intelligence and Human Computer Interface; Life Sciences; Human Space Flight Operations; Avionics; Sensors; Communications. Contact: John H. Glenn Research Center at Lewis Field (281) 483-0474 henry.davis1@larc.nasa.gov. For more information, visit http://nctn.hq.nasa.gov.

Kansas City
Johnson Space Center
Selected technological strengths: Aerodynamics; Flight Systems; Materials; Structures; Sensors; Measurements; Information Sciences. Contact: Sam Morello (757) 864-6005 s.a.morello@larc.nasa.gov.

Kennedy Space Center
Selected technological strengths: Fluids and Fluid Systems; Materials Evaluation; Process Engineering; Command and Control, and Monitor Systems; Range Systems; Environmental Engineering and Management. Contact: Jim Albetti (321) 867-6224 Jim.Albetti-1a@msfc.nasa.gov. For more information, visit http://nctn.hq.nasa.gov.

Langley Research Center
Marshall Space Flight Center
Selected technological strengths: Aerospace; Materials; Nanotechnology; Nondestructive Evaluation; Biotechnology; Space Propulsion; Controls and Dynamics; Structures; Microgravity Processing. Contact: Sally Little (256) 544-4266 sally.little@msfc.nasa.gov. For more information, visit http://nctn.hq.nasa.gov.

NASA Program Offices

At NASA Headquarters there are seven major program offices that develop and oversee technology projects of potential interest to industry. The street address for these strategic business units is: NASA Headquarters, 300 E St. SW, Washington, DC 20546.

Ames Research Center
Selected technological strengths: Information Technology; Biotechnology; Nanotechnology; Aerospace Operations; Systems; Robotics; Thermal Protection Systems. Contact: Carolina Blake (650) 604-1754 cb@msfc.nasa.gov. For more information, visit http://nctn.hq.nasa.gov.

Dryden Flight Research Center
Selected technological strengths: Aerosdynamics; Aeronautics Flight Testing; Aeropropulsion; Flight Systems; Thermal Testing; Integrated Systems Test and Validation. Contact: Jenny Baer-Riedhart (651) 276-3689 jenny.baer-riedhart@drfc.nasa.gov.

NASA’s Business Facilitators

NASA has established several organizations whose objectives are to establish joint sponsored research agreements and incubate small start-up companies with significant business promise.

Wayne P. Zeman Lewis Incubator for Technology Cleveland, OH (216) 586-3888

B. Greg Hinkebein Mississippi Enterprise for Technology Stennis Space Center, MS (601) 746-4659

NASA’s Sponsored Commercial Technology Organizations

These organizations were established to provide rapid access to NASA and other federal R&D and foster collaboration between public and private sector organizations. They also can direct you to the appropriate point of contact within the Federal Laboratory Consortium. To reach the Regional Technology Transfer Center nearest you, call (800) 472-6785.

Joseph Allen
National Technology Transfer Center (800) 678-6882

Ken Dozier
Far-West Technology Transfer Center University of Southern California (213) 743-2353

NASA ON-LINE: Go to NASA’s Commercial Technology Network (CTN) on the World Wide Web at http://nctn.hq.nasa.gov to search NASA technology resources, find commercialization opportunities, and learn about NASA’s national network of programs, organizations, and services dedicated to technology transfer and commercialization.

If you are interested in information, applications, and services relating to satellite and aerial data for Earth resources, contact: Dr. Stan Morain, Earth Analysis Center, (605) 277-3622.
Want to make the jump to Fibre…

…but not ready to take the leap?

IF YOU ANSWERED YES, YOU MAY WANT to consider the StorCase Info Station™ 9-bay RAID enclosure. Opt to add our Fibre to SCSI RAID Controller Module, and enjoy the connectivity, throughput and SAN compatibility benefits of Fibre, using your existing SCSI drives.

InfoStation – ready for the future when you are,” comes with all of these standard features…and more:

- 9 removable, Wide Ultra160, SCA drive carriers
- Audible and visual alarms
- Configurable backplane, supports up to 4 host interfaces
- I/O repeater module for multiple hosts and cascading
- N+1, hot-swap, self-monitoring blower and power supplies
- Slots for future, SES, NAS and SAF-TE upgrades
- Programmable User Interface

Shipping 12/1/00, or sooner, our all inclusive, OS-independent, plug-in Fibre to SCSI RAID Controller Module includes:

- Dual 1Gbit/sec FC host, quad U160 device (2x4) configuration
- Supports 1 Gbit/sec FC-AL and FC-SW
- Supports up to 60 devices; up to 24 arrays, 32 LUNs
- Supports RAID 0, 0/1, 1, 3, 4, 5, 10 or JBOD
- Includes 128MB cache memory
- Data transfer rate of over 18,000 IOPS
- (NiMH) cache battery back-up interface
- Online Capacity Expansion (can add devices during I/O activity)

Call a StorCase representative at 1 (800) 337-8421 and find out how you can make the jump and take advantage of what Fibre has to offer without all of the associated costs.

For More Information Circle No. 532
Reader Forum

Reader Forum is dedicated to the thoughts, concerns, questions, and comments of our readers. If you have a comment, a question regarding a technical problem, or an answer to a previously published question, post your letter to Reader Forum on-line at www.nasa-tech.com, or send to: Editor, NASA Tech Briefs, 317 Madison Ave., New York, NY 10017; Fax: 212-986-7864. Please include your name, company (if applicable), address, and e-mail address or phone number.

I have some suggestions for A.A. Pallacios Collins, who asked about a portable device that would register the amount of liquid inside a beer keg for his liquor auditing company (Reader Forum, October 2000). First, if you tip the keg slightly, you can slide a small L-shaped bracket with a load cell under the high side, and read half of the total weight. Second, you can purchase a relatively inexpensive thermometric flat display designed for measuring propane left in gas grill propane tanks. The demarcation line between the fluid and the air generally has a temperature differential.

Henry L. West
West Consulting
hlwest@juno.com

The October 2000 Reader Forum column featured a letter from Norton Pierce discussing electrochemical batteries as an alternative to conventional storage batteries for wheelchair battery chargers. Non-acid-based batteries have been in use since the First World War, in which they were used in Navy submarines. They are also referred to as "Edison Cells" for their inventor. They are nickel metal hydroxide material and can be rapidly charged and discharged without damage. Toyota is now using a similar battery of nickel metal hydride in their hybrid gas-electric vehicle. This is probably the type of battery Mr. Pierce was referring to.

Lloyd A. Buchalter, ME
U.S. Military Academy
West Point, NY
914-938-4976

I work for an electrical connector manufacturer in Manchester, NH. Currently, I am working on a project to design a new high-temperature insulated wire connector for the aerospace industry. An engineer in my office recalls seeing an article in NASA Tech Briefs describing problems associated with wire insulation containing fluorooethylene. The problems dealt with the chemical outgassing corroding the nickel and nickel-plated electrodes. This is a serious problem, and I need to avoid these types of insulation. Can you help me find the text of this article? Thank you.

Andy Zwit
Project Manager
FCI USA
azwit@fciconnect.com

(Editor's Note: Andy, the article you refer to appeared in the October 2000 issue of NASA Tech Briefs. A copy of the article, "A Tale of Corrosion in Sealed Connector Bags," is on its way to you. In the meantime, you can contact the author of the article, Cristi Cristich of Cristek Interconnects at 714-618-2001; e-mail: cristi@cristek.com.)

Your constant FOR TORQUE AND FORCE MEASUREMENT SOLUTIONS

Constants are important in mathematics to discern quantitative and qualitative differences. Companies can be measured by similar values. Lebow Products has a long and successful history for delivering torque and force measurement solutions—from initial R & D through production processes. Our versatility is proven with an 8,000 sensor design library, and development of exciting new products is a testimonial that we're as committed today as we were back in 1955.

1-800-803-1164 www.lebowproducts.com

Lebow Products Inc.
1728 Maplelawn Drive, Troy, Michigan 48084

For More Information Circle No. 403
So fast it should be illegal.

The API NetWorks CS20 sets a new standard for speed, size and capability. With a low-profile 1U form factor, integrated system management and network features, it's simply the most powerful choice for your demanding, compute-intensive applications. Take the CS20 for a test drive and forget about speed limits. Nothing calculates faster or smarter than Alpha technology from API NetWorks. Do the math.

Start your research at
www.api-networks.com
Then give us a call at
978-318-1117

API NetWorks CS20
- Single or dual Alpha 21264 processors running up to 833MHz
- 1U rack-mount form factor: 1.75"H x 17"W x 20"D
- Up to 2GB PC100 RAM with ECC, 4MB DDR L2 cache per CPU
- Integrated dual 10/100 Ethernet and Ultra160 SCSI
- Two 64-bit PCI slots on independent buses
- Easy clustering with remote management and monitoring

Do the math.
Over the past three decades, NASA has granted more than 1000 patent licenses in virtually every area of technology. The agency has a portfolio of 3000 patents and pending applications available now for license by businesses and individuals, including these recently patented inventions:

Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes

(U.S. Patent No. 5,942,894)

Inventors: Russell A. Wincheski, John W. Simpson, James P. Fulton, Shridhar C. Nath, Ronald G. Todhunter, and Min Namkung, Langley Research Center

The inspection of longitudinal welds in metallic tubular structures is a major concern in the nuclear power industry, where critical pressure vessels are typically welded together in longitudinal sections. Corrosive environments can speed degradation of these welds. The invention uses a drive coil sized for longitudinal insertion in a metal tube. It is excited by an AC source which induces eddy currents in the tube wall. A pickup coil, sized for lateral insertion in the tube, is spaced apart from the drive coil along the tube's length. This coil has first and second end planes with a longitudinal axis passing through both. The first is positioned to lie adjacent and perpendicular to the wall of the metal tube. An electrical measurement device such as a voltmeter is coupled to the pickup coil to detect flaw-induced voltage across the first end plane of the pickup coil.

Optical-to-Tactile Translator

(U.S. Patent No. 6,055,048)

Inventors: Maurice L. Langevin and Philip I. Moynihan, Jet Propulsion Laboratory

The inability to fully comprehend near-field surroundings poses a threat to the safety of the sight-impaired and can limit their ability to travel freely. There are two traditional ambulatory aids for them, the cane and the guide dog. But a cane, typically moved along the ground’s surface as the individual walks, can fail to detect obstacles not on the ground, such as those at head level. A guide dog is an expensive alternative, has many of the same drawbacks as the cane, and relegates the user to a passive rather than an active posture in determining obstacles. The present invention uses an optical sensor to translate a near-field image into a digital signal. A processor receives the signal and converts it to a command that is received by an apparatus providing a physical signal to the user, preferably in the form of a series of pin-type contacts that deliver a tactile interpretation of the near-field image. The tactile transmitter communicates the outline to the user by either reproducing the outline on his skin or producing a pattern that is recognized by the user similar to a Braille system.

Gas Sensing Diode and Method of Manufacturing

(U.S. Patent No. 6,027,954)

Inventor: Gary William Hunter, Glenn Research Center

The invention provides a hydrogen and/or hydrocarbon sensor which can be used at elevated temperatures of 425 degrees C and above for prolonged periods of time for use in catalytic combustion control systems or other applications that depend on the presence of hydrogen or hydrocarbons. It is based on a Schottky diode that includes an alpha silicon carbide substrate, an alpha silicon carbide epilayer, a backside contact, and a palladium chrome contact. The epilayer is an n-type carrier, as is the silicon carbide substrate. The epilayer is grown on a commercially available n-type 3.5-degree off-axis polished c-FACE 6H-SiC substrate. The epilayer surface was etched by a dilute hydrofloric solution, rinsed with deionized water, and blown dry with nitrogen prior to the deposition of the palladium chrome film thereon. Approximately 400 angstroms of the palladium chrome alloy are magnetron-sputter deposited onto the G-face of the epilayer to form a palladium microsphere contact, which results in an increased current flow through the diode with a given bias voltage applied to the diode.

For more information on the inventions described here, contact the appropriate NASA Field Center’s Commercial Technology Office. See page 12 for a list of office contacts.
Emhart is a world leader in the design and supply of innovative fastening and assembly technology. From concept through installation, whether you’re manufacturing around the corner or around the globe, Emhart provides cost-effective solutions for assembly applications. Visit us at www.emhart.com
think3, Santa Clara, CA, has released thinkdesign 6.0 3D design software that is designed to increase productivity by incorporating a new graphical user interface that eliminates command-line-driven user interfaces and dialog boxes. Users also have the option of speech-enabled command and control of the system. New 3D functions include Precision Shape Modeling, which allows users to make changes to CAD models very late in the design process and create complex surfaces through intuitive physical definitions of those surfaces. Smart Objects enable users to capture and reuse intelligent design elements, including profiles, solids, and shapes, and to build custom libraries by extracting geometry and design relationships from current or previous projects. Curve, Surface, and Solid Associativity gives designers an integrated, surface-enabled solid modeling environment.

For More Information Circle No. 750

Technology 2000: Innovation on Display

The Technology 2000 show — sponsored by NASA, NASA Tech Briefs, and the Air Force Research Laboratory — was held October 29 to November 2 in Bellevue, WA. Located with Tech 2000 were the Small Business Tech Expo and the National SBIR Conference.

The event featured the presentation of the seventh annual SBIR Technology of the Year Awards, which honors companies that have developed novel new technologies through the Small Business Innovation Research (SBIR) program. Awards were presented in four categories — Industrial and Manufacturing, Sensors and Instrumentation, Aviation, and a miscellaneous or Other category — and a Grand Winner was selected from all categories as the top technology of the year.

The winner of the Industrial and Manufacturing category was QRDC of Chaska, MN (www.qrdc.com), for its Energy-Based Smart Skin Structure that protects cargo and sensor arrays from vibration and acoustic disturbance. The technology was funded by the Ballistic Missile Defense Organization (BMDO). The Sensors and Instrumentation category was won by Applied Optoelectronics, Sugar Land, TX (www.aao-optical.com), for the Interband Cascade Laser. The project, funded by BMDO, is a semiconductor laser that enables coherent light emission over a wide wavelength range in the mid-IR.

Triton Systems of Chelmsford, MA (www.tritonsys.com) won the Other category with its NanoTuf scratch-resistant coating for prescription and sports eyewear. Funded by the US Navy, the coating provides up to four times the abrasion resistance of conventional coatings. The Aviation category winner was ARNAV Systems of Puyallup, WA (www.arnav.com), for a NASA-funded software that combines GPS navigation with LCD cockpit graphical displays and wireless datalinks to provide an air-to-ground and air-to-air real-time weather reporting system for general aviation.

(Above) ARNAV's general aviation weather reporting system, winner of the Aviation category, is displayed by (left to right) Michael Durham of NASA's Langley Research Center, Susan Hamner of ARNAV, Jack Sheehan of NASA Langley, and Carl Ray, Executive Director of NASA's SBIR/STTR Programs at NASA Headquarters, Washington, DC.

The Grand Award was presented to Triton Systems for its Army-funded SmartBond welding technology. The induction heating technique was designed specifically for joining and heating of plastics and composite structures. SmartBond uses ferromagnetic particles called susceptors that absorb RF radiation. When exposed to RF, the susceptors respond by generating heat. Applications for SmartBond range from aerospace to food packaging and cancer cell treatment.

For more information on the SBIR program and the Technology 2000 series conference and exhibition, visit www.T2Kexpo.com.
Tight deadlines for test and measurement equipment? When a drop dead delivery schedule is critical, TestMart—the precision instrumentation industry’s new standard for credibility and reliability—brings you what you need when you need it.

First, make an informed decision. Examine unbiased, detailed specs on over 16,000 products in more than 130 categories on our website. Buy, lease or rent. It’s your choice.

Next, take immediate advantage of our secure, easy-to-use online commerce features to get accurate delivery information. TestMart will tell you when you will get your equipment, confirm that it’s on its way, and then get it to you on time. You can also call toll-free or fax us to make TestMart your first choice for everything test and measurement.

Now, go try it. We’re ready when you are.

www.testmart.com
toll free 1-888-665-2765
For More Information Circle No. 566
Julie Holland, Director, NASA Commercialization Center, California State Polytechnic University

Julie Holland joined Cal Poly Pomona in September 1998 as Director of the NASA Commercialization Center, charged with implementing the University's business incubation program. She previously worked in the business incubation industry, performing feasibility studies, planning programs, and raising funds.

NASA Tech Briefs: What is the purpose of the NASA Commercialization Center at Cal Poly?

Julie Holland: Essentially, it takes the vast amount of technologies and resources that are produced by NASA in the course of its work and makes it available to the private sector, which then can develop new products that will help all of our lives. It specializes in companies that are using NASA technology to develop new products.

NTB: Does being associated with NASA cause some confusion with potential private-sector business partners?

Holland: One of the things that we often have to explain to an entrepreneur is that we are not an arm or a vehicle to sell their products or services into NASA. In fact, we are outward bound. One of the issues is that not all entrepreneurial companies are technical or have the technical capability to take such technology out of NASA and actually commercialize it, or take a product and get it to market. Part of our role is to first qualify potential entrepreneurs that have that capacity, and then work with the NASA centers to identify technology that makes sense or that fits into the products as conceived by the entrepreneur.

NTB: What are the origins of this project?

Holland: The project started with a five-year strategic plan developed by the University under a new president, Bob Suzuki. One of the six strategies approved was for the University to better leverage its resources into the community. In August 1996, a feasibility study was done to determine whether or not business incubation was a viable project for the University.

This is more than just the NASA Commercialization Center. It is a 52,000 square-foot complex called the Center for Training, Technology, and Incubation. So it is very much part of a master plan to provide a center for technology commercialization that integrates curriculum, student experience, and faculty involvement. Its intention is to be a catalyst for public/private partnerships.

NTB: Now that things are moving forward for the center, is there any potential product or company that stands out as something that's going to have a massive impact?

Holland: Being new, we are just getting started. It takes years for some of these products to develop. We have a core of ten qualified candidates. There are probably four that I can point to that are making the kind of progress that shows they have a strong chance to make it. We are piloting a new program that adapts our commercialization process to the SBIR (Small Business Innovation Research) Phase II candidates. It's a program called NASBO (NASA Alliance for Small Business Opportunities). We're working very closely with NASA Headquarters to look at what the particular needs are for SBIR Phase II winners, and adapt our process so that we can increase the commercialization rate of those technologies. NASA has a fairly good track record that way.

We currently have two SBIR companies: Applied Material Technologies and TAO Systems. The other two that are actively pursuing licenses right now with NASA are Data Institute in the health care area, and Accelerated Performance in the aspect technology field. Both are small, growing companies that are right on the edge of developing new markets in their field.

A full transcript of this interview appears online at www.nasatech.com. Ms. Holland can be reached at jaholland@csupomona.edu.

www.nasitech.com
NASA Tech Briefs, January 2001
What do you need to record? Waveforms – Video – Audio...
Dash 18® handles it all!

- Record waveform data, synchronized video snapshots and audio
- 18 Universal input channels for voltage, thermocouple and bridge
- 15.4” touch-screen display for data viewing and analysis
- Record data directly to 9 GB hard drive at 100 kHz per channel
- Real-time filtering and math functions
- 10/100 BaseT Ethernet interface and 250 MB Zip drive

Optional Printer
For real-time recording or playback from memory, an attachable 10” wide high speed printer is available.

Call, E-mail, Fax, or write to us today for all the details. Web Site: www.astro-med.com/de11

Astro-Med, Inc.
TEST & MEASUREMENT PRODUCT GROUP

Astro-Med is System Certified to ISO-9001
Astro-Med Industrial Park, West Warwick, Rhode Island 02893
Phone: (401) 828-4000 • Toll Free: 1-877-867-9783 • Fax: (401) 822-2430
In Canada Telephone 1-800-565-2216 • E-mail: mtgroup@astromed.com

For More Information Circle No. 525
A "Model" of Interactive Engineering

NASA Tech Briefs' new Model and Simulation Exchange allows you to experiment with interactive models of new technologies.

As an official publication of NASA, NASA Tech Briefs is the primary vehicle for reporting to industry new, commercially significant technologies developed both at NASA and in the commercial sector. We've seen thousands of fascinating innovations since the publication's launch as single-sheet reports in the 1960s. Of the innovations we've covered, none has offered the power to transform NASA Tech Briefs and increase the publication's utility and efficiency to you — until now.

Beginning this month, NASA Tech Briefs is launching the Model and Simulation Exchange (http://nasatech.innovationchain.com) as a supplement to the printed material in the briefs and the Technical Support Packages (TSPs). Developed by Innovation Chain of Waltham, MA — with funding from NASA and DARPA — the Model and Simulation Exchange is a specially constructed library for storing, transferring, and simulating models.

NASA Tech Briefs will use the Exchange to enhance published tech briefs by giving them a Web-based, useful, interactive component. Now, in addition to reading about innovations developed by NASA and its industry partners, you can experiment with models of these innovations and evaluate how they operate under the conditions you define. This capability is intended to slash your time-to-decision. Also, if you contribute articles and models to tell potential licensees about your technical developments, you can speed your time-to-revenue.

Several qualities make the models available in the Model and Simulation Exchange unique and valuable to our readers, technology innovators, technology investors, and even advertisers.

Once you've installed the Excel plug-in, you can visit almost any model and interact with it. The remote servers allow model developers to protect their intellectual property — users see only results, not how the model arrived at those results. Perhaps just as importantly, the model runs on the remote server independent of whether the user has the appropriate applications software running locally.

NASA Tech Briefs' intent is to use the technology to supplement the valuable information contained in the tech briefs, as we've done in two briefs in this issue (page 52). Using the URL references in the briefs, we'll point you directly to appropriate models in the Exchange that you can interact with to learn more about specific technologies and products.

The Model and Simulation Exchange offers potential beyond making the tech briefs interactive. An Intranet or Extranet version could facilitate the sharing of proprietary information with widely dispersed colleagues, customers, and suppliers. It also could eliminate redundant development efforts by providing a centralized resource for the collection and distribution of technical information.

(continued on page 24)
We know some other people who don’t have time to waste looking for the right tool either.

You understand how frustrating searching for the right instrument can be. So does Agilent Technologies. That's why we asked engineers what they wanted from their tools. Before we designed them. Now we give you the most complete range of high-quality general purpose instruments. That way you can buy just the performance you need.

In the interest of time, well always give you the information you need, when you need it. Specs, application information, even pricing. Just call us toll-free, or visit our web site. You can even order online if you like. Or call and talk to another engineer. Just to make sure you get exactly the measurement performance and insight you need. So you’ll have time to focus on your engineering challenges for a change.

www.agilent.com/find/bi
1-800-452-4844*, Ext. 6733

*U.S. list price
©1998 Agilent Technologies AD165001/UNISATB **In Canada, call 1-604-894-4414, Ext 6733

Agilent Technologies
Innovating the HP Way
NASA Tech Briefs and Innovation Chain invite you to move freely around the Model and Simulation Exchange. You will need to register on the site to download the MS Excel plug-in and interact with the models. When you start the download, we strongly recommend that you “run this program from its current location” rather than taking up disk space by saving the installation program to your local hard disk. Once you’ve installed the plug-in, you can visit almost any model and interact with it. The plug-in’s unique capabilities become obvious as soon as you start interacting with a model.

The Model and Simulation Exchange will increase in usefulness and value as you and your colleagues contribute models to it. So whether you are an altruistic engineer looking to help your peers save time, or an executive in search of new ways to market your organization’s expertise and intellectual property, we encourage you to submit models. Initially, the Exchange’s model collection efforts are focused on models that rely on purely algebraic, look-up, or iterative calculations, or models that work with programs you have written.

The technology underpinning the Exchange easily can connect an Excel file to any input/output file-based executables that you’ve written on the Windows platform. While Innovation Chain’s technology does support CAD geometries and other complex data types running on third-party software applications, acquiring licenses and writing the interfaces to all of these applications will take time. To help you get started, templates for a range of model types, as well as directions on how to submit them, are available at http://nasatech.innovationchain.com/howtostart.asp.

The plug-in and underlying technology require a PC running Windows 98 or higher, or Windows NT 4.0 or higher. In addition, the computer should have available on it Microsoft Excel 97 or higher and Internet Explorer 4.01 or higher.

We strongly encourage you to register, install the plug-in, examine some of the models in this emerging site, and contribute to its growth. Feel free to submit a model in coordination with a tech brief, share a model with friends or colleagues, or use the models whenever you find a link to a model that demands further inspection. And most importantly, let us know what you think.
Widest line of data acquisition products...
No compromise selection.
Our free 298-page Product Handbook 2000 features new hardware and software:

The best of PCI offerings
- Analog inputs: 16-64 channels up to 1.25 Mhz throughput for all data acquisition needs
- High-speed analog outputs for waveform generation
- Support gap-free A/D, D/A, and digital I/O
- Extensive Windows® 98, NT, 2000 support...all free
- Simultaneous, full-speed, analog input and output
- Custom-designed PCI Bus master interface for high-speed data transfers

The leader in the USB revolution
- Hot-swappable external connections, no power down, no reboot, all power and data via simple USB connection...also ideal for laptops
- Plug & Play signal conditioning...directly connects with numerous sensors
- 12-, 16-, 24-bit versions...widest selection available
- 500 V isolation provides low-noise measurements, prevents ground loops, and protects your PC
- Autoranging for accurate measurements
- Thermocouple support-temperature sensor provides cold-junction compensation

Free software, fast results!
Our new Data Acquisition Omni CD™ is free with every PCI and USB board. Featuring all the software you need to use our data acquisition boards and develop applications, including: the latest 32-bit WDM drivers for Windows 98, 2000, and NT; Quick DataAcq™ a TestPoint™ evaluation with ready-to-run applications, and other software programs to get you up and running quickly; our full DataAcq SDK™ including a complete function library and executable example programs with source code.

DT2040 Series
High-accuracy 6 1/2 Digit PCI Multimeters
Full function software provides all benchtop features via an easy-to-use interface.
Extensive measurement features include: voltage, current, resistance, inductance, capacitance, as well as sourcing capability and much more.

DATA TRANSLATION
Highly Noise Resistant Signal Conditioning System
Easily connect sensors to your PC via USB - including thermocouples, RTDs, strain gauges, accelerometers, etc.
Features intuitive software application control and an enclosed protective case for optimal performance even under the harshest industrial conditions.

Call us or visit us at the sites below...
Your application is unique. Get the performance you desire. Our frame grabbers have software for every level: free SDKs, drivers, ready-to-run applications, including full application software.

For Machine Vision
- Up to 3 frame grabbers on 1 PCI board to conserve slots
- Lowest per camera cost for simultaneous & multiplexed inputs
- DT-Active Open Layers architecture - easily migrate from one board to another
- High speed scan rates for demanding applications

For Imaging
- Specially designed front end circuitry ensures high accuracy data sampling
- Compatible with wide range of analog & digital cameras
- Supports standard and non-standard video formats in monochrome or color
- High accuracy, low noise, low jitter with our patented Fidelity™ front end

DT Vision Foundry
Software for Machine Vision Applications. Put your industrial inspection application on the fast track with the machine vision software package that takes you from concept to solution.

GLOBAL LAB Image/2
Software for Scientific and General Purpose Imaging Applications. A Windows-based image processing application that provides powerful tools and an easy-to-use programming environment.

Sci-Pak
A low-cost bundled measurement solution for scientific imaging applications—Sci-Pak features GLI/2 Streamline™ plus our new DT3120 frame grabber.

Product Handbook 2000 Vol. 2
Free 298-page updated product catalog featuring new hardware and software, tutorials, and application examples.

www.datatranslation.com info@datx.com
For more information: US/Canada (800) 525-8528
UK (44) (0) 1256 3333 30 info@datx.co.uk
Germany (49) 7142-9531-0 info@datx.de
PHOTONICS Tech Briefs
PHOTONICS SOLUTIONS FOR THE DESIGN ENGINEER

January 2001

Photonics on the Production Line
Photonics West 2001 Preview
New Products — see page 32a

www.ptbemagazine.com
Introducing our new compact diode-pumped solid state laser for UV applications. Designed with the experience gleaned from our more than 500 solid state UV laser systems in the field, the BL6 excels in applications where size and ease of operation are advantages. It’s perfect for wafer marking, plastics and wire marking, and rapid prototyping.

Based on our proven FCbar™ diode-pumped platform, the BL6 utilizes a highly efficient, small footprint head that requires no active cooling, our field replaceable harmonic modules, and our 110V rack mount power supply, assuring years of reliable service. These features also make it an ideal drop-in replacement for ion UV lasers. Call us to find out more about the BL6 and the rest of our solid state UV laser family.
New ICCD Cameras Beat Traditional Tradeoff

(1) Gating <9ns
(2) QE >25%

Roper Scientific's new Princeton Instruments PI•MAXMG intensified CCD cameras utilize novel gating technology, response-tailored photocathodes, low-noise electronics, and cooled detectors to offer the best combination of gate speed and sensitivity available on the market. Moreover, the system's state-of-the-art, fully integrated Programmable Timing Generator (PTGT) and easy-to-use software interface provide flawless control for even the most complex gated experiments. The PI•MAXMG line of cameras is ideal for laser-induced fluorescence, fluorescence-lifetime measurements, and combustion and plasma studies.

Visit our website or call us today for optimum ICCD performance!
Take a look! Introducing the next generation of compact, industrial black and white analog video cameras from Sony. The feature-rich XC-ST70/50/30 cameras are the right choice for a wide variety of industrial, microscopy and machine vision applications.

- High Sensitivity using 2/3", 1/2" or 1/3" CCD with Hyper HAD® technology
- Small, lightweight design
- High shock and vibration resistance
- Simple and flexible trigger shutter function
- All controls outside the camera
- C mount

And that's not all.
Each Sony XC-ST70/50/30 camera includes a limited 3-year warranty,* so you can deliver the quality your customers are looking for.

www.sony.com/videocameras
1-800-472-SONY ext.753

©2000 Sony Electronics Inc. All rights reserved. Reproduction in whole or in part without written permission is prohibited. Sony and Hyper HAD are trademarks of Sony. All specifications are subject to change without notice.

* For details, contact www.sony.com/professional
What are you building?

Passive Components
Active Devices
Characterization Stations
Test & Measurement Systems
Assembly Workcells

Build it with Newport!

From building components to building complete automated manufacturing capability, you can get the tools you need from Newport.

- Automated Laser Diode Test Systems
- Power Meters & Detectors
- Active Beam Stabilization
- Custom and OEM High-Precision Optics
- Fiber-Optic Test Equipment
- Vibration Isolated Workstations
- Laser Diode Controllers

www.newport.com/photonicswest
Meeting the Challenge of Coating Contamination

At 157 nanometers, the source of choice for next-generation microlithography, surface contamination presents unique problems.

The demand for deep-UV optics is growing rapidly, particularly at the 157-nm fluorine excimer laser wavelength. The most important application is obviously microlithography, where chip manufacturers need shorter wavelengths to produce higher-density memory and processor chips. Indeed, although 193-nm ArF-laser-based systems represent the current state of the art in chip production, the 157-nm laser is now widely regarded as the inevitable source of choice in next-generation microlithography steppers. There are also emerging materials processing applications at 157 nm that rely on this wavelength's high photon energy to ablate "difficult" materials. For example, this is the only readily available laser wavelength that can be used to micromachine teflon.

Unfortunately, surface contamination presents unique problems at 157 nm, posing challenges for optics manufacturers and end users. The reason is that most chemical species demonstrate extremely high absorption at this wavelength. Indeed, the term "vacuum UV" arose because of the need to remove air from the optical path in deep-UV systems. In fact, absorption is so strong at 157 nm that even a monolayer of surface contamination (oil, water, or even oxygen) can cause significant losses—up to 15 percent per surface. A microlithography system can contain up to 100 individual optical surfaces, so that a loss of only 2 percent per surface reduces total system transmission by 87 percent.

In addition to the reduced throughput, surface absorption may also lower the lifetime of smaller optics that experience higher fluences. This increases costs to the end user in three ways: the cost of the replacement optic, the cost of down time, and the potential costs caused by introducing more contamination when opening the system for optics replacement.

The end result is that both manufacturers and end users are now faced with eliminating surface contamination at the monolayer level. But fortunately, by following rigorous protocols and practices, this problem can be effectively circumvented without pushing the cost of the optics to an unacceptable level.

Addressing Contamination

The main goals for manufacturers are to produce high-quality (low-transmission-loss) beam-delivery optics with high yields at market-enabling costs. There are really three process stages from the manufacturer's point of view: fabrication, cleaning, and shipping. Surface contamination must be addressed at each stage.

The fluorides used as both substrate and coating materials are chosen for their low losses at 157 nm. Thus, transmission losses are primarily caused by contamination and/or scatter on the surface of the substrate and the outer surface of the coating. The former is the more critical, since there is no way to remove contamination trapped under a coating.

Hydrocarbons, oxygen, and moisture are the typical contaminants present when coating optics. At longer wavelengths, some manufacturers rely on storing the substrates under dry nitrogen. This is not sufficient at 157 nm, however, because, while dry nitrogen is moisture-free, it may contain hydrocarbons as well as particulates that could lead to surface-scatter losses. The optics must be stored under ultrapure nitrogen.

It does not take long exposure to the ambient atmosphere to produce a monolayer of surface contamination, so the substrates are always recleaned immediately prior to coating. At these levels, heating the substrate is not sufficient, and manufacturers such as Alpine Research Optics of Boulder, CO, have developed proprietary in situ cleaning protocols based on the reactive cleaning method described later in this article. The result is a typical surface transmission of ±99.5 percent per coated surface. The goal is then to maintain this transmission even after shipping to the end user, storage on site, and final installation in the beam-delivery system.

In a microlithography system, the entire beam-delivery path is a closed, clean environment. The system is constructed of materials that outgas very
When Your Projects Are Complex...

It's Time To Turn To LightTools.

Create Complex Systems within LightTools
With the speed and convenience of your mouse, LightTools enables a direct, interactive manipulation of your 3D model, letting you define or modify your illumination system. You can refine or iterate the design via direct manipulation of the model with fast OpenGL graphics, editing via dialog boxes, or using a spreadsheet interface that accesses the entire 3D data.

Import Geometry from CAD/CAM Software
LightTools imports data via IGES, STEP and SAT. Its uniquely powerful repair capability configures even the most complex system to meet the extraordinarily high precision requirements of optical simulation.

Specify Complex Optical Characteristics
LightTools handles your optical and material property needs including user materials, surface scattering—importance sampling and BSDF included—spectral and polarization properties, and coatings.

Fast and Accurate Analysis
LightTools' ability to quickly analyze a system may surprise you, especially if you have experience with other 3D optical programs. Efficient analytical tools within LightTools include illuminance, intensity, luminance, encircled energy, spot diagrams and source output analysis, to name only a few.

OPTICAL RESEARCH ASSOCIATES
www.opticalres.com

Corporate Headquarters: 3280 East Foothill Boulevard, Pasadena, CA 91107-3103 (626) 795-9101
Fax: (626) 795-0184 E-mail: service@opticalres.com Web: www.opticalres.com
Midwest Office: Beachwood, OH East Coast Office: Westborough, MA

LightTools and ORA are registered trademarks of Optical Research Associates. OpenGL is a registered trademark of Silicon Graphics, Inc.

For More Information Circle No. 499 or Visit www.nasatech.com/499
slowly; it is important to note that at this level of contamination, all materials outgas to some degree. To maintain clean optics, the system is continuously flushed with a fresh supply of ultrapure inert gas. Thus, once the optics are in use, they are well protected from contamination. Shipping and storage are another matter, however.

The optics industry is already investigating improved shipping methods for 193-nm optics to avoid contamination during transit. But at 157 nm, the problem is so critical that these are unlikely to offer a complete solution. For instance, the most extreme approach to avoiding contamination during shipping would be to place the optics in a sealed stainless-steel container filled with ultrapure inert gas. The optics would remain unopened until installation. Clearly, with shipping costing more than the optics themselves, this is not a cost-effective approach.

The Correct Protocols

But fortunately, if the correct protocols are followed, small amounts of surface contamination can be completely removed from most 157-nm optics at any time. It therefore makes more sense to ship the optics in conventional plastic packaging (see Figure 1), and to remove any contamination just prior to installation. Alternatively, some end users clean the optics immediately after receipt, and store them in a closed cabinet whose environment mimics the pristine microlithography system.

So what are the correct cleaning methods? The most effective protocol is a two-stage process. The first is to perform a methanol wipe, using high-quality lens tissue and nanograde methanol. The second stage is to perform some type of reactive cleaning. This is carried out in a sealed container continuously flushed with an ultrapure combination of inert gas and oxygen. The component is irradiated with either a deep-UV laser or light from a deep-UV discharge lamp. The reactive combination of energetic photons and oxygen removes most types of surface contamination. (Although ozone probably plays some role in this cleaning, the mechanism is still not fully understood.) The oxidized and vaporized contamination is then flushed away by the gas flow.

It is very important, however, to note that reactive cleaning is not a panacea or one-step process, and must only be used after appropriate precleaning. For example, any silicon containing oils or molecules can be removed by methanol. But if reactive cleaning is used on its own, the silicon material will be transformed into hard deposits of silicon dioxide, which absorb and scatter 157-nm radiation, and which are impossible to remove without damaging the surface.

The effectiveness of this two-stage cleaning method is clearly illustrated in Figure 2. This shows spectrophotometer plots of the deep-UV transmission for the same optic after two types of cleaning: methanol wipe only, and methanol wipe followed by reactive cleaning. Although this two-stage method will remove virtually all types of surface contamination, it should also be used in conjunction with a rigorous program of contamination minimization. In this case, an ounce of prevention is truly worth a pound of cure.

Conclusion

The extremely high absorption of most materials in the deep UV presents many practical barriers to cost-effectively utilizing these wavelengths. The unique benefits offered by deep-UV processing, however, in terms of producing smaller devices and features, has spurred tremendous efforts aimed at overcoming these limitations. The techniques developed for fabricating and handling 157-nm optics clearly illustrate the progress that has already been made.

For more information, contact the author of this article, James Doty, Ph.D., Eastern Regional Sales Manager of Alpine Research Optics, 3180 Sterling Circle, Boulder, CO 80301; (303) 444-3420; fax: (303) 444-1686; e-mail: AROcorp@AROcorp.com; www.arocorp.com. This article is based in part on a presentation by Doty at the Sematech International Symposium on 157-nm Lithography, May 11, 2000, Dana Point, CA.

Figure 2. These spectrophotometer traces of the same optic clearly demonstrate the value of reactive cleaning. They show transmission through a 5-mm-thick CaF2 window, AR/AR both surfaces at 157 nm, normal incidence. (A) was recorded after methanol wiping only; (B) was recorded after methanol wiping followed by reactive cleaning.
Align yourself with telecom's most accurate imaging tools.

Indium Gallium Arsenide. The detector material of choice for imaging laser energy in the 1.3 and 1.55 micron C, L and S wavebands used by DWDM telecom lasers. Indigo's PHOENIX™ and MERLIN™ camera families offer imaging solutions based on a combination of high-performance InGaAs detector material and our proprietary ultra-low noise ISC9809 analog signal processor. PHOENIX and MERLIN are excellent choices for laser beam characterization, including outputs from optical fibers, optical components, or diode lasers. Both cameras allow the user to directly illuminate the sensor with laser energy and capture 12- or 14-bit corrected digital images at high frame rates.

FEATURES INCLUDE:
- 320 x 256 pixel snapshot-mode InGaAs Focal Plane Array
- Sensitive in the 0.9-1.68 μm waveband
- Excellent response linearity (<1% nonlinearity)
- Excellent spatial uniformity (<0.2% nonuniformity)
- Adjustable integration times as low as 0.5 microseconds
- Very resistant to laser damage

Indigo Systems. Superior imaging tools for advanced telecom systems.

Indigo SYSTEMS™
Advanced Sensors for Tomorrow's Telecommunications

www.indigosystems.com/lsr-ptb/
PDM Technology Inc., a custom machinery and automation systems integrator, faced the challenge of engineering a manufacturing and versatile test and inspection system to be used in an aerosol can production line by a large consumer products facility in southeast Wisconsin. The system required that it continually adapt to a variety of different product lines, manufacturing variations, and harsh environmental stimuli and yet reduce manual programming and down time.

To meet these requirements, PDM turned to Laser Measurement International (LMI), a noncontact laser measurement manufacturer, for a laser measurement solution. The consumer products company that approached PDM had an existing system in place that utilized a gray-scale vision system to detect defects such as missing caps and cans, inverted caps and cans, folded box flaps, cans on top of a case, or raised cans. When a defect was detected, the system tripped a diverter that conveyed the defective box to a quality control area.

At best, the system detected approximately 99 percent of defects. A problem arose, however, when the packaging-line products differed in cap colors and sizes, which were primarily due to manufacturing variations and not actual defects. The fast vision system was also extremely sensitive to environmental changes and product variables including ambient light levels and cap color. When these slight variations were introduced, the system would malfunction, leading to several hours of down time to make programming changes. Problems incurred when the packaging line itself was changed in size, color, and number of cans per case were increased testing errors from misreadings, extensive manual programming, and excessive down time while setting up.

Enter the L1

To tackle these problems, PDM sought out Laser Measurement International (LMI). PDM had used the
You have a specific challenge to meet. We have a precise solution. As the market leader, with a strong commitment and focus on continued innovation and introduction of high performance optical scanning products, Cambridge Technology is the proven partner for all your positioning requirements.

Contact us today to find the ideal scanner solution for your application.

For More Information Circle No. 484
company's sensors successfully in numerous other applications and looked to them to find a rugged device that would meet this project's need for operation under poor light and environmental conditions while having the capability to easily differentiate product variations and actual defects.

After explaining and analyzing the manufacturer's application and PDM's machine-building requirements, LMI specified the L1 line scanner, a 3D non-contact device capable of producing 60 profiles per second. The key to the L1's use in this application is its insensitivity to environmental and manufacturer changes that hindered the older system. This increased accuracy, along with decreasing down time as a result of eliminating the need to manually reprogram each time a different can-box combination was on line. The 3D system is much easier to program and more reliable than 2D systems, according to PDM.

For setup, the operator selects a pre-programmed product class. The custom defect software from PDM automatically calibrates the inspection system by passing three correct cartons under the sensor. The system then calculates all required parameters and begins actual defect testing on the fourth carton.

The L1 sensor is positioned directly above the open cartons being conveyed to a case sealer. If the measurement results are skewed versus the master parameters, the carton is forced onto a divert er, which reduces down time and prevents damage to the case sealer. The system overall helps prevent cases with missing products from reaching the customer, thus reducing customer complaints, additional paperwork, and reshipments.

SMART MOVE!

Move up to the new OPTex™, the portable compact excimer laser system for scientific and medical applications, available for a very smart price.

- Air cooled, single phase, UV laser
- Self-contained system
- Wall-plug power
- 157nm / 193nm / 248nm / 308nm / 351nm
- Fast repetition rates up to 200Hz
- High pulse energy up to 25mJ
- Worldwide technical support and service

The new OPTex™ with advanced NovaTube® technology is the optimal laser for lab use and off-site applications, including spectroscopy, ablation, biology, clinical medicine, and ionization. Make a smart move by calling Lambda Physik today for more information and a demo.

ISO 9002 Certified, CE Marked

SMART MOVE!

Visit us at Photonics West Booth #1122

The Optimal Scientific Laser

OPTex™

Windows® based software for PC control

U.S.A: 954-486-1500 800-Excimer
FAX: 954-486-1501
Germany: 49 551 689380
FAX: 49 551 68691
Japan: 81 45 9397848
FAX 81 45 9397849

e-mail: marketingusa@lambdaphysik.com • www.lambdaphysik.com

Getting a Profile

The Class III three-dimensional L1 scanner is designed for high-density profiles in a variety of configurations. Each scan head has a 120-degree field of vision for optimum measurement, and can be used as a standalone unit or in combination with two or more sensors. When two are used, a full 3D image can be measured.

Capable of 60 profiles per second, the scanner has a resolution of 1/16 inch (1.5875 mm) and a depth of view of 16 in.-22 in. (406-559 mm). Built to NEMA-4 (IP 65) standards and enclosed in an aluminum housing, the sensor can operate from 32-105 °F (0-40 °C).

The L1 scanner uses a measurement principle known as optical laser triangulation. A fixed beam of light is projected from the sensor to the surface to be measured. When the light hits the surface, it scatters in all directions. The sensor collects part of this scattered light and maps out the contour of the scanned article, while also generating a profile. The CCD technology allows the profile to be filtered or otherwise processed for accuracy.

As the relative distance between the sensor and measured surface changes, the position of the image on the detector changes proportionally, making it possible to measure the location of the surface accurately and repeatedly.

For more information on the L1 scanner, contact Laser Measurement International Industrial Sensors Division at 21666 Melrose Ave., Southfield, MI 48075, or call (248) 359-2409; fax (248) 359-3283; e-mail sales@LMInt.com; www.LaserSensors.LMInt.com. For more information on this or other turnkey defect detection systems, contact PDM Technology Inc. at (715) 241-0040, or e-mail sales@OPDMtechnology.com.
We built our reputation by building coatings and filters that surpass the highest performance standards. For example, our patented BlackEye™ Surveillance Filter is guaranteed to keep undercover teams under cover. Our exclusive Hot Mirrors can take the heat without ever changing color. And our BlackLite™ Fluorescence Filters, BARC-11 Broadband AR Coatings and Double-Sided UV/Heat Coatings impress even the toughest critic.

For more information or a quote, call (310) 381-3060 today. ZC&R. Our coatings are built on technology innovation.

- AR Coatings
- Band Pass Color Filters
- Beamsplitters
- Fluorescence Filters
- Heat & Color Coatings
- High Power Laser
- Laser Protection Filters
- Metal & Mirror Coatings
- Surveillance Filters
- Thin Film Polarizers

- Up to 24" Diameter
- Automated Coating
- Automated Cleaning
- High or Low Volume
- MIL-C-675, MIL-M-13508 & MIL-C-48497 Qualified
- Fast delivery

See us at Photonics West, Booth #243
A Photonics Odyssey Showcases the Power of Light

Among the products to be displayed at Photonics West 2001 this month are Coherent's AVIA 4500 and AVIA Ultra lasers (left) and Photonics Industries International's DS series fourth-harmonic UV laser.

If the number 2001 conjures up visions of futuristic science and technology of the kind that enlivened the well-known movie, attendees at SPIE—the International Society of Optical Engineering's Photonics West technical symposia and exhibit at the end of the month won't have to rent the video to catch a glimpse of what's in store for the new millennium. To be held in San Jose's convention center 20-26 January, the event will be built around 2800 research and development papers in 85 conferences showcasing cutting-edge technologies, as well as more than a hundred short courses. The Society expects more than 12,000 attendees from 42 countries, and exhibitors displaying their products in the convention hall look to top 600.

This year's technical program is in four parts: BIOS 2001, the International Biomedical Optics Symposium; LASE 2001, concentrating on High-Power Lasers and Applications; Optoelectronics 2001, focusing on Integrated Optoelectronic Devices; and Electronic Imaging, centering on its Science and Technology. SPIE is continuing its popular "Saturday Night Hot Topics" on 20 January from 7:30 until 9 p.m., with James A. Harrington of Rutgers University moderating a series of discussions of such topics as "Imaging Body Functions and Dysfunctions with NIR Optics," "Cardiovascular Disease," "Biochips," and "New Approach to Optical Imaging of Tumors."

Earlier on Saturday, from 1 p.m. to 5 p.m., and on Sunday from 10:00 a.m. to 4 p.m., three ballrooms in the convention center will display biomedical exhibits. The exhibition halls of the convention center are open from 10:00 a.m. Tuesday, Wednesday, and Thursday to 5:00 p.m. on the first two days and 4:00 p.m. on the final day.

Optoelectronics Considered

Product demonstrations and activities take place in the exhibit-floor "town squares" throughout the three days of the exhibit. Subject matter ranges widely: "Subcompact High-Speed Laser" (Thermo Laser Science), "Recent Innovations in 3D Surface Microscopy" (Veeco Metrology Group), "High-Aspect-Ratio Microstructures and Radiation Detectors" (Lawrence Berkeley National Lab), "266-nm UV Diode-Pumped Solid-State Laser" (Photonics Industries International), "IEEE 1394 and Digital Cameras" (Hamamatsu Corp.), "Asphere Manufacturing for the New Millennium" (QED Technologies), "Photonics CAD in the Fast Lane" (Photon Design), "Just Released-ASAP 7.0 Optical Modeling Software" (Breaux Research Organization), "Diamond Machining/Grinding Systems for Telecommunications, Infrared, and Other Materials" (Precitech), and so forth.

Among other special events is a series of talks by academic and business notables. On Monday, 22 January at 4 p.m., Kenichi Iga of the Tokyo Institute of Technology will address "The Semiconductor Laser in the 21st Century," at the same time Prof. Raymond Y. Chiao of the University of California at Berkeley will talk about "Apparently Faster-than-Light Effects and Negative Group Delays in Optics and Electronics, and their Applications." On Tuesday at 8:30 a.m., Yrjo Neuvo, executive vice president for technology of Nokia Mobile Phones, will tell how "Wireless Salutes Multimedia." At the same time the next day, Larry J. Hornbeck of Texas Instruments will delve into "Digital Cinema: More than a Century after Lumiere." On the 25th, David G. Stork of the Ricoh Research Center and Stanford University will address "The HAL 9000 Computer and the Vision of 2001: A Space Odyssey.

Symposium registration fees include admission to all conference sessions, one proceedings volume, one abstract book, plenaries, panels, poster sessions, receptions, coffee breaks, and exhibits admission. For more information, or to register, contact SPIE at (360) 676-3290; fax: (360) 647-1445; e-mail: pw@spie.org; web: www.spie.org/ info/pw.

early photo of engineer at the National Bureau of Standards (now NIST) conducting measurement experiments.

Aerotech's FiberAlign™ 130 was designed for 24/7 operation to meet the demanding needs of fiber-fiber, fiber-laser diode, and fiber-waveguide alignments.

Features include:
- Direct-drive noncontact linear motor
- 10 nm resolution
- Turnkey drive and control electronics
- Dedicated alignment algorithms
- Advanced open-architecture motion controller

Send for your free copy of Aerotech's new Automation Systems for the Fiber-Optics Industry catalog. For fastest response, order the catalog on our website, or download the pdf version.

Aerotech, Inc.
101 Zeta Drive, Pittsburgh, PA 15238
Tel: 412-963-7470 Fax: 412-963-7459
www.aerotechinc.com

For More Information Circle No. 452
PHOTONICS FILE

Recent photonics briefs published in NASA Tech Briefs

Many photonics-related briefs from NASA's field center laboratories appear in NASA Tech Briefs rather than in the Photonics Tech Briefs supplement. Listed here are some from issues of NASA Tech Briefs just past, edited for brevity and indexed with reference to original publication and the availability of a Technical Support Package on Photonics Tech Briefs' web site.

NASA Tech Briefs September 2000, page 73

Writing Circuit Patterns by Use of Scanning UV Lasers (NPO-20495)

Scanning ultraviolet lasers would be used to expose ultraviolet-sensitive photoresists to form patterns of conductors for electronic circuits, a team at NASA's Jet Propulsion Laboratory proposes. Heretofore, such patterns have been formed by exposing photoresists to collimated ultraviolet or visible light through contact or proximity photomasks. The use of scanning lasers would make it unnecessary to make or use masks, and it would be amenable to rapid fabrication of prototype circuits. In forming a given circuit pattern, the scanning of the laser would be controlled by use of the same plotting data, generated by computer-aided-design software, that would otherwise have been used to plot the photomask for the pattern.

For further information, access the Technical Support Package (TSP) free on-line at www.ptbmagazine.com under the Electronic Components and Systems category.

NASA Tech Briefs October 2000, page 40

Tunable Terahertz Source Based on Near-Infrared Diode Lasers (NPO-20636)

A heterodyne photonic apparatus built around three continuous-wave, near-infrared diode lasers generates electromagnetic radiation at an adjustable, precisely defined frequency in the terahertz range. The apparatus, developed at NASA's Jet Propulsion Laboratory, could serve as a prototype of tunable far-infrared sources and heterodyne up- and down-converters for fiber optic communication systems and for testing infrared systems in general. The overall photonic system can be characterized as a photomixer pumped by a photonic master-oscillator/power-amplifier (MOPA) subsystem. Typically, the system is operated at a power-amplifier output power level of 30 mW, yielding a terahertz output power of about 0.1 microwatt. The frequencies of lasers 1 and 2 are controlled by locking them to different longitudinal modes of a reference cavity in the form of an ultralow-expansion Fabry-Perot etalon.

For further information, access the Technical Support Package (TSP) free on-line at www.ptbmagazine.com under the Test and Measurement category.

NASA Tech Briefs October 2000, page 44

Room-Temperature Infrared Instrument Detects Trace Gases (MSC-22864)

A compact, portable, mid-infrared, laser-based instrument that operates at room temperature has been developed at Johnson Space Center for use in detecting trace concentrations of CO or any of several other gases in air. The instrument utilizes infrared absorption spectroscopy in a sample cell, which either holds an air sample or is exposed to an airflow. The laser beam that interrogates the cell is formed by difference-frequency generation (DFG) in a bulk nonlinear optical medium excited by two laser beams. The pump and signal beams are combined by a dichroic beam splitter and focused by a lens, at nearly normal incidence, into a nonlinear optical medium contained in a periodically poled lithium niobate. Difference-frequency mixing produces an idler beam, the one that is used to probe the sample cell. An off-axis paraboloid mirror collects the idler beam at the output of the cell, and focuses it onto an HgCdTe photodetector. In the output of the photodetector, absorption signals are converted to photovoltaic signals, thereby forming the amplitude modulation. The spectroscopic information, collected by a computer, consists of the photodetector output voltage as a function of the idle frequency of the control voltage.

For further information, access the Technical Support Package (TSP) free on-line at www.ptbmagazine.com under the Test and Measurement category.
YOUR SEARCH IS OVER!
Available for the First Time...
Extended Contact Bearing Linear Stages

When nothing but the best will do, these stages are the ones you need. Our patented precision extended contact ball bearing ways provide the highest possible load capacity and resist damage due to impact or wear. The linear bearing ways are machined directly into the steel plates and honed to provide the highest possible precision. The ball bearings are contacted by an extended curved surface providing greater load capacity and precision. This family of products is offered in steel stages, stainless steel stages and as a slide for OEM positioning applications.

Stainless Steel Stages
- Patented extended contact bearings
- Thin design using only two plates
- High load capacity
- Straightness of travel <2 microns
- Low thermal expansion for unparalleled stability
- Industry standard 1/4-20 (M6) holes on inch (25mm) centers
- Vacuum compatible option
- Micrometer driven
- Lockable

Steel Stages

OEM Slides

For a copy of our new 1999/2000 catalog call (949) 851-5881.

Today! not Tomorrow!

OptoSigma Santa Ana, USA

Sigma Koki Headquarters
Johannes, Japan

Sigma Koki Malaysia

Sigma Koki Koto, Japan

Sigma Koki Shanghai, China

2001 DEERE AVENUE • SANTA ANA • CALIFORNIA • 92705

TEL: (949) 851-5881 • FAX: (949) 851-5058

E-MAIL: sales@optosigma.com • WEB CATALOG: http://www.optosigma.com
Using Laser Rangefinders To Align Two Structures

Distance measurements are updated every few seconds.

John F. Kennedy Space Center, Florida

An optoelectronic system provides information on the relative position and orientation of two structures that are required to be brought together slowly and gently in a prescribed alignment. In the original intended application, the two structures will be the X-33 launch vehicle and a launch mount. With modifications, the system could likely be used for aligning other paired structures; it may be particularly valuable for aligning such large and/or heavy structures as prefabricated sections of bridges, for docking of ships, and possibly even for coupling of railroad cars.

In the original intended application, the X-33 will be backed horizontally out of its processing bay directly onto the launch mount (see Figure 1). The X-33 and the launch mount will then be tilted, as a unit, until the X-33 faces upward.

The X-33 will make contact with the launch mount at four hold-down posts. To prevent damage to the X-33, the angular misalignment between the two structures and the lateral offsets between the nominal contact points on the two structures must be kept within tolerances as the structures are brought together. This means that adjustments will be necessary. The X-33 will be mounted on three air-bearing jacks that will enable the necessary adjustments in all six degrees of freedom: up/down, right/left, backward/forward, roll, pitch, and yaw.

The information provided by the present optoelectronic system will be used to guide the adjustments as the two structures approach. The system (see Figure 2) includes four commercial laser rangefinders fixed to the launch mount. Each laser rangefinder is aimed through one of the hold-down posts at a bull's-eye alignment target on the X-33. Each rangefinder measures the distance between its target and the contact face on the end of its hold-down post. These measurements can be used to calculate pitch, yaw, and front-to-back distance. Information on roll, right/left offset, and up/down offset can be obtained visually by observation of the displacements of the laser spots from the centers of their respective targets.

The rangefinders are controlled and read out digitally via built-in RS-292 interfaces that are, in turn, connected to a laptop computer via RS-292-to-RS-485 protocol converters. The RS-485 protocol includes an addressability feature that makes it possible to connect the rangefinders in a daisy-chain arrangement in which the computer can communicate with any or all rangefinders through a single port. Software that controls the system and displays the rangefinder readings is written in LabView. The distances are displayed to the nearest tenth of an inch (=2.5 mm); they are updated at intervals of about 4 to 5 seconds for a computer containing a Pentium (or equivalent) processor, or about 7 to 8 seconds for a computer containing a '486 (or equivalent) processor. The rangefinder readings can be zeroed by pressing a zero button on the computer screen while holding flat objects against the ends of the hold-down posts.

This work was done by Donald E. Burris and Paul A. Schwindt of Kennedy Space Center and Geoffrey K. Rowe, Robert C. Youngquist, William D. Haskell, and Robert B. Cox of Dynacs Engineering Co., Inc. KSC-12040

Figure 1. Two Structures Must Be Aligned as they approach each other. In this case, the X-33 is backed onto the launch mount and must be aligned with the launch mount at the moment of contact.

Figure 2. Four Laser Rangefinders controlled by a laptop computer measure the distances from the hold-down posts to targets at contact points on the X-33.
Custom Optics and Coatings

Standard Components • Custom Designs • Production Quantities • JIT Delivery

Melles Griot manufactures both standard optical components and custom optics designed to your unique material, surface, and coating requirements. Call us. Our applications engineers will work with you to develop the right optic for your application — in the production volumes you need, on time, and at a competitive price.

Lenses
- Achromatic
- Singlet, doublet, and triplet
- Cylindrical
- Beam expanding and collimating

Filters
- Neutral density
- Colored glass
- Short/long pass
- Interference
- Hot/cold

Mirrors
- High energy laser
- Protected silver
- Broadband UV
- Hot/cold
- Flat, curved, parabolic

Optical Coatings
- Custom design or standard
- Ultrafast
- Antireflective
- High energy
- Hard and durable

Find out more:
Call 1-800-835-2626

MELLES GRIOT

the practical application of light
Mirror Structures Made of Pyrolytic Graphite

Notable characteristics include stiffness, low mass density, and low thermal distortion.

Marshall Space Flight Center, Alabama

Experiments have demonstrated the feasibility of making mirror structures that comprise a thin face plate of chemical-vapor-deposited (CVD) pyrolytic graphite (PG) integrated with a thicker backing plate of CVD PG open-cell foam. The backing plate serves as a stiff structural support for the face plate, on which a precise mirror optical surface can then be formed. Lightweight, highly precise mirrors for telescopes (including telescopes in outer space) and for aiming laser beams could be fabricated following this approach.

Considered on the basis of cost and performance, CVD PG may be the most effective available structural material for precise, lightweight mirrors. CVD PG is produced by thermal decomposition of natural gas, which is available in abundance at low cost. PG is a highly ordered (with respect to molecular structure), high-stiffness phase of carbon that has a very low mass density (2.1 g/cm³), a very low coefficient of thermal expansion (<10⁻⁶ K⁻¹), and an in-molecular-plane thermal conductivity of 372 W/(m-K) (rivaling that of copper). In addition, PG can be polished to high optical quality (a root-mean-square surface roughness <10 Å). The hardness of PG can be tailored to alter the degree of polishability and the cost of polishing.

What has made the fabrication of unitary, all-PG mirror structures possible is the development of a CVD process in which a fully dense PG face plate is deposited directly on a CVD PG foam support. The great advantage afforded by this process is that the structure produced contains no dissimilar materials, so that thermal distortions associated with differential thermal expansion can be expected to be minimal. The process is as applicable to complex, curved mirrors as it is to flat ones. The areal mass densities of CVD PG mirror structures are expected to be <10 kg/m², and may even range as low as 5 kg/m².

In flexure, compression, and thermal-expansion tests, CVD PG foam has been found to exhibit the high stiffness and low thermal expansion required of a lightweight structural-support material for mirrors. The rigidity of CVD PG was further demonstrated during grinding and polishing of mirrors. While the fabrication processes have not yet been optimized, it has been established that lightweight, stiff CVD PG mirror structures can be formed and mirror surfaces can be polished on their face plates, all at relatively low cost.

This work was done by Brian E. Williams and Shawn R. McNeal of Ulframet for Marshall Space Flight Center. The company currently has a patent application pending. For further information, please contact the company at mail@ulframet.com or (881) 899-0236.

MFS-31483
Plan Now to Attend!

The world’s largest cross-disciplinary lasers, optoelectronics, and imaging meeting!

Photronics

Showcasing the Power of Light

20 to 26 January 2001 • San Jose Convention Center • San Jose, California USA

Participate in Conferences and Courses on cutting-edge light-based technologies in these areas:

High-Power Lasers and Applications
Biomedical Optics and Applications
Integrated Optoelectronics Devices
Electronic Imaging/Displays/Cameras/Holography

Also Courses on DWDM and Optical Networking

FREE! 600-Company optics, photonics, and imaging Exhibition
23 to 25 January 2001

Preregister by 9 January 2001
www.spie.org/info/pw/

Register Today!

See full Advance Program on the Web, or contact SPIE.

Sponsored by

www.spie.org/info/pw/ • pw@spie.org • phone 360/676-3290 • fax 360/647-1445
Optical Surfaces Based on Arrays of Microscopic Pillars

Optical properties of some moth-eye structures would be exploited.

NASA's Jet Propulsion Laboratory, Pasadena, California

Surfaces would be textured with dense arrays of pillars characterized by micron and submicron dimensions, according to a proposal, in order to impart desired optical properties to the surfaces. In an important class of potential applications, suitably shaped and dimensioned microscopic pillars would be etched into the surfaces of lenses or photodetectors to suppress reflections and thereby also increase the proportion of light utilized. In another important class of potential applications, surfaces would be so textured in order to obtain both absorption and low reradiation in a wavelength range of interest.

This proposal is an extension of the one reported in “Optical Filters Based on Dense Arrays of Microscopic Pillars” (NPO-20448), NASA Tech Briefs, Vol. 24, No. 5 (May 2000), page 27a. To recapitulate: It has been observed that the eyes of moths reflect almost no light. It has been conjectured that the low-reflection property of moth eyes is attributable to dense arrays of microscopic pillars that exhibit little or no diffraction or scattering because (1) the dimensions and pitches of the pillars are smaller than the shortest wavelength of incident light in the wavelength range of interest and (2) a dense array of pillars provides a gradual transition in the effective index of refraction from open space to a bulk solid material, so that an abrupt index change, which would generate reflections, is not present.

Going beyond the previously reported proposal, the present one calls for exploitation of the fact that a dense array of micropillars at a given temperature can absorb electromagnetic radiation predominantly in one wavelength range while reradiating predominantly in another (usually longer) wavelength range. For example, a baffle in a visible-light telescope could be textured with micropillars shaped and dimensioned to maximize absorption of visible light. At a typical operating temperature, the blackbody radiation from such a baffle would occur predominantly at wavelengths in the infrared region — out of the pass band of the telescope.

For another example, germanium micropillars with a pitch of about 1.5 μm would absorb infrared light at wavelengths in the vicinity of 1.5 μm and would reradiate predominantly at wavelengths >6 μm — the wavelength range that contains the peaks of black-body spectra for temperatures in the cryogenic range. Thus, the micropillar-textured germanium surface would behave somewhat as a radiative diode. It could be used, for example, to absorb solar infrared radiation for heating during the day. It would also help retain the heat during the night because it would reradiate only slightly, even though it would likely be warm in relation to its environment.

Surfaces textured with pyramidal, conical, and rectangular parallelepiped micropillars have been fabricated by use of holography. However, in order to resemble true moth-eye structures more closely and thereby afford more of the benefits of moth-eye structures, micropillars would have to be shaped more like mushrooms (see figure). It would be necessary to use x-ray lithography to fabricate arrays of mushroom-shaped micropillars. The large depth of focus achievable in x-ray lithography would make it possible to generate arrays of precise micropillars on curved surfaces, including concave and convex lens surfaces.

This work was done by Frank Harlley of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com under the Physical Sciences category. NPO-20565
Tailoring Cores of Optical Fibers by a Sol-Gel Method
Core dopants can be tailored for specific photonic applications.

Goddard Space Flight Center, Greenbelt, Maryland

A method of tailoring the cores of optical fibers to obtain optical properties needed for specific photonic applications exploits the sol-gel process. The method is expected to open new avenues of development of fiber-optic sensors for measuring strain, temperature, intensity of ionizing radiation, concentrations of chemicals, and numerous other quantities.

Heretofore, the optically active dopants that constitute the transducer materials of fiber-optic sensors have generally been incorporated into films deposited on the exterior surfaces of optical fibers. In some cases that are particularly relevant to the present development, the exterior films have been doped sol-gels. The operation of such a sensor depends on evanescent-wave coupling of light between core of the fiber and the dopant(s) in the coating film. However, the inherent weakness and large optical loss of evanescent-wave coupling are obstacles to the attainment of adequate sensor response.

If the dopant(s) could be incorporated into the core, the optical coupling would be much stronger and the sensory light could propagate to the detection equipment with very little loss. In addition, given the limit of solubility of the dopants in the sol-gel reaction mixture and the wave-propagation geometry, the optically effective quantity of dopant that could be contained in the bulk of the core would be much greater than the optically effective quantity of dopant that can be contained in an exterior sol-gel sensory film. The net effect of incorporating the dopant into the core would be to make the sensor much more sensitive. The present method exploits this effect.

A fiber-optic sensor fabricated by this method offers an additional advantage (beyond direct vs. evanescent-wave coupling) over a comparable prior-art sensor that comprises an optical fiber coated with a doped sol-gel film. This advantage arises in connection with the fact that to prevent thermal degradation of dopants in the prior art, it is necessary to deposit the sol-gel film first, then diffuse the dopants into the pores of the film. As a result, there is a tendency for the dopants to leach out of the pores of the sol-gel film in some sensor operating environments. In the present method, there is little or no tendency for the dopants to leach out because the dopants are incorporated deep within the sol-gel core, which, in turn, is protected from the environment by the cladding layer of the fiber.

In the present method, the dopants are dissolved and incorporated as ingredients in a sol-gel reaction mixture, which is injected into an initially hollow optical fiber. The sol-gel is then polymerized, forming a monolithic solid core that comprises a porous sol-gel with the dopants occupying its pores (see figure).

One main obstacle that had to be overcome in the development of the present method was the tendency of sol-gels to shrink and crack during polymerization. In fiber-optic sensors, cracks cannot be tolerated because they cause large optical losses. Moreover, the extreme temperatures and pressures...
often used for processing sol gels will cause fatigue and damage to optical fibers and preclude the use of many biochemical dopants. The success of the present method stems from the development of sol-gel formulations that can contain adequate amounts of sensory dopants and can be polymerized while managing the shrinkage in a near-room-temperature process.

The process for fabricating the tetraethyl orthosilicate (TEOS) based sol gels employs a number of agents to reduce the process problems inherent in the condensation-polymerization process. A variety of configurations of sensors is being evaluated, including sensors utilizing intrinsic and extrinsic sol-gels. Fluorescent sensing experiments with sol-gels doped with fluorescence derivatives and calcofluor derivatives are underway. Both substances have a wide variety of potential applications in biochemistry and monitoring of metabolic reactions at the cellular level.

This work was done by Harry C. Shaw and Michele V. Manuel of Goddard Space Flight Center and Melanie N. Ott of Sigma Research and Engineering. For further information, access the Technical Support Package (TSP) free on-line at www.nasa.com under the Materials category.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Goddard Space Flight Center; (301) 286-7351. Refer to GSC-13913.

Nonvolatile Holographic Storage in Doubly Doped LiNbO$_3$

Nonvolatile holograms can be written with red light in the presence of ultraviolet.

NASA’s Jet Propulsion Laboratory, Pasadena, California

Recent research has demonstrated the feasibility of an all-optical method of recording and readout of holograms in photorefractive crystals, with capabilities for both nonvolatile storage and erasure on demand. Heretofore, volatility has been the primary remaining obstacle to the full implementation of holography with these capabilities: In a typical previously developed holographic system of this type, the readout process erases the stored information and amplifies scattered light.

The present method involves a crystal of the photorefractive material lithium niobate doped with iron and manganese, which are present in the form of Fe$^{2+}$ and Fe$^{3+}$ ions and Mn$^{2+}$ and Mn$^{3+}$ ions, respectively. These ions act as deep electron traps, with energy levels between the conduction and valence bands of LiNbO$_3$. The Mn traps are deeper than the Fe traps; this feature renders the doped LiNbO$_3$ crystal phot.
tochromic in addition to photorefractive. The origin and nature of this photochromism are as follows:

Initially, the electrons tend to be in the deeper Mn traps and consequently the crystal is transparent at photon energies for excitation from the Fe$^{2+}$ level to the conduction band (these photon energies correspond to wavelengths centered at 477 nm). If the crystal is illuminated with light at higher photon energies (e.g., ultraviolet light) that can ionize the deeper Mn traps, then the Fe traps become populated and the crystal becomes absorptive over a wide range of visible wavelengths. One can make the crystal revert to transparency by illuminating the Fe traps with visible light that transfers the electrons back to the Mn traps. This photochromism is exploited in the present method.

In experiments, a crystal of LiNbO$_3$ doped with Fe and Mn was illuminated by various combinations of (1) unpolarized ultraviolet light (wavelength of 365 nm) from a mercury lamp and (2) interfering beams generated by splitting the 633-nm-wavelength (red) beam from a He/Ne laser. From time to time, one of the He/Ne beams was blocked and the efficiency of diffraction of the remaining beam from the holographic grating formed by the interfering beams was measured.

The figure presents some of the results of the experiments and helps to illustrate the reasoning that led to the conception of the present method. The lower curve shows the evolution of the diffraction efficiency when a holographic grating was recorded with the He/Ne beams only, following a two-hour preexposure to ultraviolet light. The diffraction efficiency increased rapidly, reached a maximum, and thereafter decreased almost to zero. This curve is interpreted as follows:

1. The ultraviolet preexposure excited electrons from the Mn traps and populated the Fe traps homogeneously.
2. Because the Fe$^{2+}$ ions could absorb red light, the interfering He/Ne laser beams recorded a hologram: interference maxima yielded large photo voltaic currents, which built up space-charge fields, which, in turn, induced changes in the index of refraction.
3. However, the Fe$^{2+}$ sites became bleached in the high-intensity regions and hence the currents there decreased. Ultimately, the darker regions also became bleached and all electrons became trapped by the Mn$^{3+}$ ions.
4. The final Mn$^{3+}$ concentration was almost completely spatially homogeneous because (a) the experiment began with a homogeneous concentration of Fe$^{2+}$ and (b) each excited charge carrier was moved in the same direction by approximately the same distance before it became retracted by Mn$^{3+}$ ions, so that (c) the final space-charge field was very small. Thus, the
{

A compact, low-power, low-voltage laser ignition system involves a ceramic target in a combustion chamber (see figure). The laser beam heats the target above the hydrogen/oxygen autoignition temperature. Some of the black-body radiation from the heated target travels back along the optical fiber, is separated from the laser beam, and readout by red light was thereby rendered non-erasing; that is, storage became nonvolatile.

Thus, in the present method, a nonvolatile hologram is recorded by exposing the crystal simultaneously to incoherent ultraviolet light and coherent interfering beams of red light. The hologram can be erased by exposing the crystal to the ultraviolet light only.

This work was done by Karsten Buse, Ali Adibi, and Demetrios Psaltis of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasa-tech.com under the Physical Sciences category.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office Mail Stop 122-116 4800 Oak Grove Drive Pasadena, CA 91109 (818) 354-2240

Refer to NPO-20379, volume and number of this NASA Tech Briefs issue, and the page number.

Lyndon B. Johnson Space Center, Houston, Texas

A prototype laser ignition system has been developed for use in a hydrogen/oxygen-burning spacecraft thruster. The system could readily be adapted to terrestrial applications in which spark, catalytic, or pyrotechnic igniters are now used.

The operations of spark igniters and some previously investigated pulsed laser igniters involve high-voltage transients that give rise to electromagnetic interference. In addition, the previously investigated laser igniters project their beams into combustion chambers via windows, which are susceptible to obscuration by deposition of byproducts of combustion. Moreover, neither spark igniters nor the previously investigated laser igniters are designed to test themselves. In contrast, the present laser ignition system operates at low voltage, does not depend on a transparent window, and incorporates self-testing features.

In the present laser ignition system, the ignition device is basically an optically heated glow plug: The output of a diode laser is delivered, via an optical fiber, to a ceramic target in a combustion chamber (see figure). The laser beam heats the target above the hydrogen/oxygen autoignition temperature. Some of the black-body radiation from the heated target travels back along the optical fiber, is separated from the laser beam by a beam splitter and a laser-blocking filter, and impinges on a photodiode. The output of the photodiode is an indication of the temperature of the target; as such, it provides complete verification of the functionality of the entire optical train from the laser to the target. This self-testing feature can be used alone or in combination for verification of combustion by measurement of pressure in the combustion chamber.

In one version of this system, aspherical lenses are used to couple light (1) between the laser and the beam splitter and (2) between the optical fiber and the beam splitter. In another version, the aspherical lenses and the beam splitter are replaced by a unitary coupling/beam-splitting optic that consists of a hemispherical lens bonded to a 45° polarizing prism. The advantages of the latter version are that there are fewer
The world's leading manufacturer of PM fiber presents...

HOT NOW

PM SOLUTIONS

With the broadest offering of PM products in the telecommunications industry,

Alcoa Fujikura Ltd. delivers fresh PM technology fast! Daily menu items include:

PANDA® jumpers, Fujikura FSM-20PMII splicers, PANDA® PBCs, and PANDA® EDF modules, as well as custom modules built to suite your taste. Come and get 'em! Hot product specs served 24/7 at: www.AFLFiber.com/pandability
Laser Energy Heats the Ceramic Target, and black-body radiation from the target is measured to determine its temperature.

optical components that must be aligned with each other and efficiency is increased because the number of optical surfaces through which light must pass (and thus the amount of light lost in Fresnel surface reflections) is reduced.

This patent-pending device is available for license and can be used as a coupling optic for medical and industrial sensors, nearly lossless power summation and insertion of two diode lasers into a single fiber, read/write optics for optical disk drives, bidirectional fiber-optic communications, and wavelength division multiplexed fiber-optic communication.

In a typical application, this laser ignition system would be part of a closed-loop ignition-control system. A controller would command a laser power supply to operate at a set-point voltage that would correspond to a requested target temperature. The temperature signal from the photodiode would be used as a feedback signal to adjust the power-supply output to reduce any deviation from the requested target temperature.

The system is particularly attractive for use in applications in which there are requirements for one or more of the following characteristics: (1) ignition without contamination, (2) verification of operation of igniters prior to ignition, (3) compactness, (4) low power consumption, (5) low-voltage operation, (5) no accidental ignition, and (6) no electromagnetic interference. Examples of potential applications include jet engines, gas water heaters, furnaces, and industrial processing equipment that exploits high-purity combustion.

This work was done by David B. Duncan of Duncan Technologies, Inc., for Johnson Space Center. For further information on the couple, access www.duncantech.com/tech转让.htm.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Judy Duncan, President DuncanTech 11824 Kemper Road Auburn, CA 95603 Refer to MSC-22872, volume and number of this NASA Tech Briefs issue, and the page number.
Laser & Laser Diode to Fiber Delivery Components

- **Laser To Fiber Coupler**
 - > 60% Coupling Efficiency For SM, PM Fiber
 - Low / High Power Versions Up To 100W
 - 186nm To 3000nm Wavelengths

- **Laser To Fiber Coupler With Adjustable Focus**
 - > 80% Coupling Efficiency For SM, PM Fiber
 - Multimode, Singlemode, And PM Fiber Versions
 - 0.1 Micron Resolution Focus Adjustment

- **Laser To Fiber Coupler With Shutter**
 - > 60% Coupling Efficiency For SM, PM Fiber
 - Up To 3 Watts Optical Power Handling
 - Ideal For Safety Interlocks, Remote Control

- **Laser To Fiber Coupler With TE Cooler**
 - Up To 100 Watts CW Power Handling
 - 0.1°C Temperature Control
 - Singlemode, Multimode, And PM Versions

- **Pigtail Style Collimators/Focusers**
 - > 2 Micron Spot Sizes, Up To 5W Power
 - Up To -60dB Backreflection SMF, PMF, MMF
 - 2.5mm, 4mm And 8mm OD Housing

- **U-Bracket With Removable Optics**
 - As Good As 0.6dB Insertion Loss
 - -25, -40, -50, -60dB Backreflection
 - Use With A/O Modulators, Bulk Optics

- **OEM Laser Diode To Fiber Coupler**
 - 635nm To 1625nm Wavelengths
 - > 20% Coupling Into Singlemode Fiber
 - Low Cost, Rugged And Compact Size

- **Lab Style Laser Diode To Fiber Coupler**
 - 635nm To 1625nm Wavelengths
 - Up To 60% Coupling Efficiency Into SMF, PMF
 - PC Board Mountable, Reusable Optics

- **Laser Diode Power Combiner**
 - Up To 45% Coupling From Each Diode
 - -40, -50, -60dB Backreflection SMF, PMF, MMF
 - Can Combine Equal / Different Wavelengths

- **TE Controlled Laser Diode Housing**
 - 0.01dB Output Stability: SM, PM, MM Fiber
 - Built-In Peltier Temperature Controller
 - 0.1°C Temperature Control

- **Fiber Optic Point Source**
 - ± Lambda/20 Wavefront Distortion
 - Wavelengths From 635 To 1625nm
 - PM Fiber Versions Available

OZ OPTICS LTD., 219 Westbrook Rd, Carp, ON, CANADA, K0A 1L0 Phone: 613-831-0981
Toll Free Phone: 800-361-5415 Fax: 613-836-5089 Email: sales@ozoptics.com WebSite: www.ozoptics.com

For More Information Circle No. 446
Traveling-Wave Photomixer With Angle-Tuned Phase Matching

Relatively high terahertz output power can be generated at nondamaging laser power densities.

NASA's Jet Propulsion Laboratory, Pasadena, California

An experimental traveling-wave photomixing device generates narrow-band electromagnetic radiation at frequencies up to a few terahertz. The device is, potentially, a prototype of terahertz local oscillators for heterodyne instrumentation for submillimeter-wavelength spectrometry and related scientific applications.

Devices that exploit traveling-wave photomixing to generate radio-frequency signals have been developed previously, but not for the terahertz frequency range. Conventional photomixers (that are not based on traveling waves) with terahertz outputs have also been developed previously, but have been limited as follows: In a conventional photomixer, the output power is proportional to the square of the photocurrent, and the bandwidth is limited by the lifetimes of photoexcited charge carriers and by the electrode capacitance. Therefore, such a photomixer must be designed to have (1) a narrow electrode gap for high photocurrent and (2) a small active area for small capacitance in order to obtain adequate bandwidth. Unfortunately, the smallness of the area of such a device limits its power-handling capability and thus its terahertz output power.

The present device is designed to overcome the limitations of conventional photomixers. It exploits a traveling-wave principle to distribute the generation of the terahertz signal over a relatively large area, so that a relatively large amount of power can be handled without exceeding the damage-threshold laser power density. Another essential element of the design is that the illuminated traveling-wave area is occupied by a transmission-line structure, which is not subject to the electrode-capacitance bandwidth limitation.

The device (see figure) consists of a dc-biased coplanar strip line terminated by an antenna fabricated on a low-temperature-grown GaAs film. The active area is illuminated by two laser beams that differ somewhat in frequency and are tilted at an angle with respect to each other in order to generate optical interference fringes that move along the strip line. The heterodyne mixing process generates charge-density waves that oscillate at the difference frequency and that are accompanied by terahertz traveling electromagnetic waves. If the velocity of the optical fringes and the group velocity of the terahertz waves are equalized, then the terahertz waves become coherently superposed and are effectively emitted by the antenna. For a given difference frequency, the angle between the two laser beams is adjusted to obtain the phase and velocity match needed for coherent superposition.

This work was done by Rolf Wyss and Shoji Matsuura of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com or under the Electronic Components and Systems category. NPO-20717

Holographic Circle-to-Point Converter

Fabry-Perot interference fringes are focused to points for efficient detection.

Goddard Space Flight Center, Greenbelt, Maryland

The figure schematically depicts the use of a special-purpose holographic plate to focus light from (1) circular interference fringes generated by a Fabry-Perot etalon to (2) a series of points, each illuminated in a different wavelength interval. This holographic circle-to-point converter was invented to enable efficient utilization of the output light of a Fabry-Perot etalon in an incoherent Doppler lidar system. (The role of the etalon in such a system is to resolve, within a fairly narrow frequency band, the spectrum of light back-scattered by atmospheric particles that have been illuminated by a laser in the system.) If photodetectors are placed at the illuminated points to measure the intensities of light in the various wavelength intervals, then the photodetector outputs can be used to characterize the spectrum of light coming through the Fabry-Perot etalon.

The role of the holographic plate is that of a field lens. As depicted in simplified form in the figure, the holographic plate superficially resembles a...
Fresnel zone lens, but it does not function like one. The annuli in the holographic plate are designed to be registered with the annuli in the interference pattern, wherein successive annuli contain light in successive wavelength intervals. Unlike a Fresnel lens, the hologram in the plate focuses the light from each annulus to a unique off-axis point instead of to the center of the interference pattern.

The hologram can be constructed so that all annuli share a common focal length; that is, all the focal points lie on one plane that is parallel to the plane of the holographic plate. The number and sizes of annuli and the size of the holographic plate can be chosen to satisfy the design requirements for a specific instrument. In the example of the figure, the annuli of the holographic plate have equal areas to take advantage of the fact that equal areas in the circular Fabry-Perot interference pattern correspond to equal wavelength intervals; however, one could just as well use annuli with differing areas if a design called for unequal wavelength intervals.

This work was done by Vibart Stan Scott, Matthew J. McGill, and Marzouk Marzouk of Goddard Space Flight Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Physical Sciences category.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Goddard Space Flight Center; (301) 286-7351. Refer to GSC-13869.
Designing for Optimum Response in a Pushbroom Spectrometer

Image quality may need to be sacrificed to obtain spatial and spectral uniformity.

NASA's Jet Propulsion Laboratory, Pasadena, California

A method of designing a compact pushbroom imaging spectrometer includes explicit consideration and minimization of nonuniformity of spatial and spectral response. It appears that prior to the development of this method, the issue of nonuniformity of response was addressed haphazardly. The major advantage afforded by the present method is that it enables systematic optimization of the smallest possible pushbroom spectrometer within a given class of spectrometer designs.

A pushbroom spectrometer includes a rectangular photodetector array with pixels arranged in columns (parallel to a spatial axis defined by a straight slit) and rows (parallel to the spectral axis). Light enters the spectrometer through the slit. Each point or pixel along the slit corresponds to a point or pixel along one spatial axis in the scene under observation.

Heretofore, designers of pushbroom spectrometers have been concerned with optimizing spot sizes and minimizing distortions. While satisfaction of these design requirements is necessary, it is not sufficient. Even though spectral and spatial distortions might be minimized, there can remain variations in the spectral and spatial response functions that exert detrimental effects similar to those of spectral and spatial distortions. For complete optimization of design, it is necessary to seek a proper balance among all relevant measures of performance, including variations in spectral and spatial responses in addition to the customary measures of spot energy inside a pixel and spectral and spatial distortions.

The present method provides for optimizing design in the sense of choosing design parameters that yield an arbitrarily specified balance among all of the aforementioned measures of performance. The method is based partly on the theoretical observation that spectral and spatial response functions can be controlled through the spectrometer modulation transfer function (MTF) in their respective directions. (In the case of a spectrometer used to view the Earth from above the atmosphere, the effect of the atmosphere can be included, at least in an average way, by inclusion of an atmospheric MTF as a mere multiplicative factor of the spectrometer MTF.)

In this method, an optimization (merit) function is constructed for use with an appropriate previously or subsequently developed optical-design computer program. The merit function contains specific spectral- and spatial-distortion components, spectral- and spatial-uniformity components, and spot-size components with appropriate weights between them. The optimization for uniform spectral response is based on equal-

A Compact Dynson Spectrometer has been designed to cover the wavelength range of 1,000 to 2,500 nm. Version 1 has been optimized with respect to distortion and image quality only. Version 2 has been optimized with respect to uniformity of response in addition to distortion and image quality. The two versions are similar, except that the distance from the lens to the grating is about 10 percent greater in version 2. In version 1, the variation of the spectral and spatial response functions shown negates the high degree of distortion correction achieved in the design and becomes the dominant source of spectral artifacts. In version 2, the spectral and spatial response function variation has been reduced to a very low level, compatible with the high degree of distortion correction achieved by the design.
Laser-Induced Rotation of a Levitated Sample in a Vacuum

Momentum is transferred by absorption of photons off center.

NASA's Jet Propulsion Laboratory, Pasadena, California

A high-power laser beam can be used to apply a torque to a sample of material that is electromagnetically and/or electrostatically levitated in a vacuum. The torque can be used to alter the state of rotation of the sample; this is an important capability because control of the state of rotation (or lack of rotation) can be necessary for processing the sample and/or measuring its properties.

In the usual case of an approximately spherically symmetrical sample, torque is generated by simply aiming the laser beam off center (see figure). It does not matter whether the sample is solid or molten, nor does it matter whether the sample is electrically conductive or non-conductive; this is because the torque-generating mechanism is simply the transfer of momentum to the sample from photons that impinge on the sample along a line that does not pass through the center of mass of the sample. The magnitude of the torque depends on the power of the laser beam, the fraction of incident photons absorbed (reflected photons do not contribute to torque), and the size of the moment arm.

The magnitude of the torque can readily be estimated for the case in which the laser used to apply the torque to a spherical sample of mass \(m \) and radius \(R \) is the same laser used to heat the sample to a steady-state temperature, \(T \). Assuming that the absorption and emission of radiation by the sample is governed by the Stefan-Boltzmann law, the torque (\(\tau \)) is given by

\[
\tau = 4\pi R^2 \sigma a T^4 / c,
\]

where \(\sigma \) is the Stefan-Boltzmann constant, \(c \) is the speed of light, \(a \) is the hemispherical total emissivity of the sample material, \(a \) is the length of the moment arm, and \(c \) is the speed of light. The angular acceleration (\(f \)) of the sample in this case is given by

\[
f = 5aT^4 / mc.
\]

This work was done by Won-Kyu Rhim and Paul-François Paradis of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com under the Physical Sciences category. NPO-20731
New Products

For more information on the products below, go to www.ptbmagazine.com/products.

Product of the Month

Real-Time Microscopic Imaging System
TNP Instruments, Carson, CA, is offering its DUV-250 imaging system, which is called the first to combine microscopic resolution below one-quarter micron with real-time operation. TNP says the DUV-250, designed to fill the gap between visible-light and scanning electron microscopy, is a breakthrough for many high-tech applications, including microcircuitry manufacturing and medical research and testing. The device represents exclusive TNP developments in optical configuration and components and mercury arc-lamp illumination to achieve magnification of 25,000 x. TNP says the DUV-250 typically operates at less than half the cost of traditional laser scanning systems.

Software for Lighting Display Analysis
Lambda Research Corp., Littleton, MA, has released an updated version of TracePro® optomechanical 3-D solid modeling software designed specifically to facilitate lighting and back-light display analysis. A new feature called RepTile® gives TracePro the ability to design and analyze an entire LCD back-light larger than 50 mm in size, a first in the commercial software world. Lambda says RepTile surfaces use a repetitive surface algorithm to create millions of conical bumps, dots, pyramids, Brightness Enhancing Films, and Fresnels on any planar surface.

Fiber Optic Integrating Sphere
Ocean Optics, Dunedin, FL, says that its FOIS-1 fiber optic integrating sphere is a compact, modular sampling optic for spectral analysis of LEDs, lamps, and other emission sources. The unit collects light from a 180° field of view and funnels it to an optical fiber and spectrometer. Users can combine the FOIS-1 with Ocean Optics spectrometers and accessories for a system that measures absolute spectral intensity and color parameters of LEDs. The FOIS-1 is a highly Lambertian 1.5-in. Spectralon® sphere encased in a 2.25×2.25×2.125-in. aluminum housing. A 0.375-in-diameter input port accepts light from 200-1100 nm, and an SMA connector couples an optical fiber from the sphere to a spectrometer.

Fiber Optic Spectrum Analyzer
StellarNet Inc., Oldsmar, FL, offers a fiber optic spectrum analyzer for measuring the frequency and power output from laser diode and LED emission sources or transmission characteristics of optical materials. Several models and resolutions cover ranges in the UV, visible, and near-IR from 200-1600 nm. The SpectraWiz® software for Win 9X/NT provides measurement tools for wavelength peak, FWHM, centroid, spectral density, and transmission characterization displays. Two configurations are available, including the portable EPP2000.

UniSlide® Precision Positioning Equipment

Choose from hundreds of Linear Slides, Rotary Tables, and X-Y Tables. Use them to position, gauge, scan or feed. Move loads from 1 oz. to 400 lbs. from 0.25 to 84". Program powerful motor controllers from your computer. Get your FREE 40 page Catalog and price list today!

Motorized XY table

Call 716.657.6151 or visit www.velmex.com

THEY CAME FROM OUTER SPACE

Exciting new commercial products in medicine, computing, manufacturing, transportation, and other major fields that have applied NASA technology and expertise.

Read all about them in the latest edition of NASA Spinoff, available free online at:

www.nasatech.com/spinoff

(choice of PDF or HTML formats)
For quickest service:
Fax this form to (413) 637-4343
Use the online reader service center at www.nasatech.com (click on "Get More Information...FAST")
Or mail your completed form to
NASA Tech Briefs,
PO Box 5077, Pittsfield, MA 01203-9109.

Name:
Company:
Address:
City/State/Zip:
Phone:
Fax:
e-mail:

Please tell us below how NASA Tech Briefs has helped you solve a problem or been applied to your business/product line.

Do you currently receive NASA Tech Briefs? Yes No
If no, would you like to receive NASA Tech Briefs? Yes No

ARE YOU AN INSIDER?
Subscribe today to receive the INSIDER, a FREE e-mail newsletter from NASA Tech Briefs. The INSIDER features exclusive previews of upcoming articles...late-breaking NASA and industry news...hot products and design ideas...links to online resources...and much more.

I want to be an INSIDER. Send my newsletter to the following e-mail address:

Name
Company

I also want to receive special-focus e-newsletters on the following technology topics: (check all that apply)

- CAD/CAE
- Fiber Optics/Communications
- Lasers
- Test & Measurement
- Optics
- Imaging/Cameras
- Sensors

For fastest service, sign up online at www.nasatech.com. Look for this button at the top of the home page.

FREE NEWSLETTER
Cellular phones have changed the way most of us live and work, but they are just the beginning. With the proliferation of the Internet, and mainstream use of laptop and handheld computers, the methods we use to communicate also are changing at a rapid pace.

Communications Technology

Communications technology today encompasses everything from cell phones and personal digital assistants (PDAs), to networking, the Web, and teleconferencing. But whether you’re scheduling meetings on your handheld computer or collaborating with colleagues via the Internet, communicating still means getting information from point A to point B.

In the new century, when you think about how people communicate, the first word that comes to mind is wireless, whether you’re sending voice or data. According to research firm Allied Business Intelligence, the number of wireless subscribers worldwide rose to 477 million at the end of 1999. But by the end of 2004, that number is expected to jump to 1.1 billion. And with the recent boom in Bluetooth™ technology, wireless communication soon could be virtually ubiquitous.

Wireless at Work

Workers — including engineers — no longer are chained to their desks, or their workstations. In fact, estimates indicate that there are 45 million mobile workers in the US. Where cell phones once were the method of choice for staying in touch with the office, the use of e-mail and the need to transfer and access data have helped to increase the use of wireless data communication.

Mobility is the key, whether engineers are using paper and pen or laptop computers to perform their field work. Wireless handheld devices such as PDAs are no longer just trendy consumer electronics. They are becoming the method of choice for organizations — including NASA, the US Army, the US Navy, hospitals, banks, and airlines — to communicate. By providing easily accessible electronic versions of forms, databases, checklists, calendars, and other critical data, wireless devices give users the ability to get — and stay — connected to their jobs and to each other.

NASA has taken wireless communication to a new level with a “voice over the Internet” solution for communicating with the International Space Station (ISS). CU-SeeMe® Web and Meeting-Point™ video conferencing software products from White Pine Software are providing verbal communication between NASA sites around the country and the ISS via the Internet in real time. The project is tied into the Payload Operations Center at NASA's Marshall Space Flight Center in Huntsville, AL. White Pine’s technology is integrated into a custom web interface that is used as a central communications center for NASA.

Handheld computers are replacing clipboards and pens for data collection, and also are serving as reference manuals for sailors aboard US Navy and Army sub-marines, aircraft carriers, and ships. The military is using wireless data communication devices to capture flight-deck data, fill out requisition forms and crew schedules, and download work orders from a local area network (LAN).

State-of-the-art medical centers such as Cedars-Sinai are using Palm™ handheld computers to wirelessly communicate everything from lab results and patients’ surgical reports to admitting histories and consultation information. Instead of relying on written charts, doctors are able to securely obtain remote access to clinical information that is located on a variety of servers. Physicians also can exchange e-mail with colleagues in the same hospital or around the world to help better diagnose patients.

Getting and Staying Connected

So you use a cellular phone, a PDA, and a laptop computer. How do you connect all of them together to be able to transfer data back and forth among all three? What about wirelessly connecting your laptop to the Internet? A variety of new and potentially revolutionary technologies are making all of this possible.

The Wireless Application Protocol (WAP) is an emerging standard for delivering wireless information and telephone service to mobile phones and other wireless devices. With WAP-enabled devices, you can access your company’s WAP-
supported intranet, and connect to e-mail, databases, or other servers. Companies such as Hewlett-Packard have already introduced WAP-enabled platforms built on their servers that run UNIX and Windows NT. Other vendors, including Cisco Systems and IBM, are rolling out WAP-based products as well.

But there's a catch. The technology is still in its infancy, and compatibility is still a problem. Not all WAP browsers and gateways are compatible, so if companies do not standardize on one WAP phone or use compatible gateways, transferred data won't be readable. There is, however, a WAP 1.1 standard that will be used for product certification so that all vendors can become compatible.

Designers of equipment in the telemedicine, monitoring, industrial controls, and remote data collection industries can now use Connect One's peripheral chip called the iChip Internet Controller to embed Internet connectivity for devices via wireless Global Systems for Mobile (GSM) communications moderns. The chip works with a device's host processor to mediate the connection between the host CPU and the Internet, enabling Internet access via any Internet service provider.

iPlanet®, a Sun-Netscape Alliance, offers its Intelligent Communications Platform, an extensible software platform that delivers communication and collaboration services over combined voice, wired, and wireless networks. This Internet Service Deployment Platform runs on top of a traditional operating system and hardware base. The software provides the ability to deliver existing communication services such as e-mail via wireless protocols to multiple devices. iPlanet's Wireless Server provides the basis for wireless calendaring, messaging, and directory services to WAP-enabled cell phones and laptops.

The Bluetooth Revolution
The result of technical achievements by 3Com, Ericsson, Intel, IBM, Lucent, Microsoft, Motorola, Nokia, and Toshiba, the Bluetooth wireless technology is poised to change the way we stay connected. Bluetooth is a low-cost, low-power, short-range wireless radio technology that links mobile phones, PDAs, laptops, and other portable devices. And while Bluetooth-enabled devices are just beginning to get to market, the applications for the technology are booming.

Let's say you're out of the office and you need to use your mobile computer to access the Web. With Bluetooth, you can surf the Internet, whether you're cordlessly connected through a mobile phone or through a wire-bound connection such as a LAN. Exchange files between two mobile computers without connecting cables. In meetings, you can transfer documents instantly to selected participants and exchange electronic business cards automatically without any wired connection. Automatically synchronize your desktop PC, laptop, PDA, and mobile phone.

Bluetooth operates in the same 2.45 GHz frequency band worldwide, so your Bluetooth devices will function whether you're in the United States, Asia, Europe,
PXI™
CompactPCI for Measurement and Automation

PXI — is a rugged, flexible solution for building high-performance CompactPCI-based measurement and automation systems.

Superior Integration
The compact size, modular architecture, and easy software integration of PXI saves you space, cost, and development time.

Unlimited Selection
National Instruments provides the widest selection of PXI/CompactPCI products. Choose from:
- Computer-based instruments
- Data acquisition
- Real-time acquisition and control
- Machine vision/inspection
- Motion control

Best of all, you can configure and order your complete PXI system online with the new PXI Configurator at ni.com/pxiconfig.

Get Connected to the Companies Featured in this Article:

Agilent Technologies
www.agilent.com

Allied Business Intelligence
www.alliedworld.com

Bluetooth™ Special Interest Group
www.bluetooth.com

Celerity Systems/L-3 Communications
www.csidaq.com

Cisco Systems
www.cisco.com

Connect One
www.connectone.com

Extended Systems
www.extendsys.com

Hewlett Packard
www.hp.com

IBM Corporation
www.ibm.com

Intel
www.intel.com

iPlanet
www.iplanet.com

Keithley Instruments
www.keithley.com

Mi-Co
www.mi-corporation.com

Palm, Inc.
www.palm.com

White Pine Software
www.wpine.com

or anywhere else on Earth. Since it is a radio-based technology, it does not require line-of-sight between devices for communication.

The ability to connect your cell phone to any mobile computing device is the initial application of Bluetooth. But according to marketing consultant Frost & Sullivan, as the installed base of Bluetooth-enabled devices grows, users will be able to quickly and easily communicate information, and that infrastructure will result in a host of new applications and services.

The Bluetooth Special Interest Group (SIG) now has more than 2,000 manufacturers that have joined to offer Bluetooth-enabled products. While telecommunication and computers were the first industries interested in this new technology, other industries such as automotive, data acquisition, test and measurement, industrial automation, and electronics are looking to incorporate Bluetooth's versatility. SIG has developed the Bluetooth Specification, a de facto standard containing the information required to ensure that diverse devices supporting Bluetooth can communicate with each other worldwide.

Recent additions to the Bluetooth-enabled device market include offerings from Intel, Mi-Co, and Extended Systems, which introduced a software development kit for implementing Bluetooth wireless protocols in handheld devices. Version 1.1 of XTNDAccess™ Blue SDK is used in developing embedded devices such as cellular phones, PDAs, portable office equipment, digital cameras, medical equipment, and industrial automation products.

Mi-Co (Mobile Internet Corporation) has developed a Bluetooth-enabled version of its pen-on-paper solutions, which are a combination of hardware, software, and application services. They include Mi-NotePad™ that enables handheld mobile device users to digitally capture and store handwriting and sketches. Mi-Messages™ lets users transmit this information wirelessly — via standard e-mail applications — to other PDAs, PCs, faxes, and other devices.

Test and measurement instrument manufacturers such as Keithley Instruments, Celerity Systems/L-3, and Agilent Technologies recently introduced Bluetooth test and measurement instruments and peripherals. Intel is shipping Bluetooth hardware and a complete Bluetooth software suite, and they plan to ship mobile computers with the Bluetooth wireless technology later this year.

Agilent's new line for manufacturers and designers of electronic devices includes a standalone Bluetooth communications test set, a spectrum analyzer, and new generator capabilities. According to George Sparks, vice president of Agilent's Wireless Market Solutions Unit, "Bluetooth is the wave of the future. Over 2,000 companies have registered to use the technology, and we can expect a proliferation of Bluetooth devices. Agilent has worked closely with the Bluetooth Special Interest Group on the standard's testing section, which has given us an appreciation for the complexity of Bluetooth testing."

While cellular phones have changed the way most of us live and work, they are just the beginning. The technologies we've covered here, along with the proliferation of the Internet, will continue to change the methods we use to communicate.
MATLAB 6.
The next generation.

Announcing the newest release of the leading technical computing software for engineers and scientists. The new MATLAB 6 product family features more than 30 new and updated products for data acquisition, analysis, algorithm development, and code generation for embedded systems, as well as design of large-scale control, DSP, and communications systems.

The next generation of MATLAB is available now. See what it can do for you.

For product demos and technical information on the new MATLAB 6 family of products, visit www.mathworks.com/ntbr.

Visit www.mathworks.com/ntbr or call 508-647-7040

For More Information Circle No. 512
SmartSketch LE Version 3

Steven S. Ross

Only the name is confusing about SmartSketch LE. This is a 2D drafting program from Intergraph's Process & Building Solutions division. SmartSketch works like many competitors' programs, but it has a bunch of twists that make it special. For instance, it can automatically turn rough sketching into arcs and lines. They are true CAD entities - not collections of tiny polylines that might look like an arc on the screen but not behave that way in the drawing. SmartSketch can also handle true intelligent symbols - a process that is closer to Visio and to Autodesk's Actrix than to a standard CAD program. The symbols' dimensions can be modified on the fly through a spreadsheet or Mathcad-driven calculation. All this makes the pack-

age a delight to use in an industrial setting, where casual, occasional drafters often need to sketch or draft just a few new parts while adding many standard parts and assemblies from a symbol library.

Now, about that name. If this product sounds similar to earlier Intergraph products such as Imagineer and Imagination engineer, it should. Intergraph changed the name after Disney pointed out that it already coined the term "imagineer" for its designers of attractions. This is the lightweight edition of SmartSketch 3.0, which was released late in 1999. It comes at a lightweight price, just $99, whereas SmartSketch lists for $495. You can buy it online, or download a demo free, from http://www.SmartSketch.com/pbs.

Everything behaves the way casual drafters - people who don't sit in front of a CAD terminal eight hours at a stretch - think they should. The symbols connect to each other in logical ways, rotating to fit as needed. As you draw connectors, everything lines up. The symbol modules come with extra drafting and positioning tools unique to their specific discipline, and the icons show up on screen automatically. Symbol dimensions can be driven from the geometry, or can drive the geometry of the drawing.

SmartSketch LE also works well with Microsoft Office and other Windows packages - it is an OLE 2.0 client and server.

Intergraph sells a number of add-on modules for the LE version. You can buy the module for translating to and from AutoCAD (R10 through 2000) DWG and DXF and MicroStation DGN (V4, 5, SE) for $149. If the files you work with contain raster data as well as vector, however, you'll also want the ImageScape LT module for another $99. The CAD translator without ImageScape opens files with raster images inside, but does not translate them into SmartSketch files. ImageScape handles GIF, JPG, bitmap, TIF, and a dozen other formats. Symbols for electrical diagramming (250 component symbols and 200 control symbols) are another $99. The geometric dimensioning and tolerancing module, with 144 weld symbols, is $49 (metric and English templates included). You can publish your designs to the Web with another $49 module. The 2,800 process symbols are a hefty $249.

Thus, if you need more than one or two modules, you'd probably be better off buying the full version of SmartSketch; it comes with the modules built in, and includes hooks for your own VisualBasic and other ActiveX tools, architectural, HVAC, and site planning tools not available as separate modules, and a report generator for bills of materials. The full version also has better isometric drawing tools. You can start with the $99 LE package and upgrade to the full SmartSketch for $396, so you don't lose anything in the process. As we went to press, in fact, the upgrade was only $295.

We used the translation module to move files back and forth between SmartSketch LE and AutoCAD. The translations are near perfect. But there is a trap: As with Autodesk's Actrix itself, smart symbols lose most of their "intelligence" when moved into an AutoCAD DWG file, and AutoCAD DWG "smart" objects (drawn with Mechanical Desktop or Architectural Desktop) lose their intelligence inside SmartSketch. This lack of true compatibility in Autodesk products - and in Visio and MicroStation for that matter - puts a premium on a package that can handle both drafting and symbols. SmartSketch is just that.

Requirements are a Pentium 133 MHz or higher; 64 MB RAM; SVGA or better screen (800 x 600); and Windows 95, 98, NT 4.0, 2000, ME. We tested on an absolute minimum machine - a 133-MHz Windows 95 laptop - and it ran well. But it flew at 733 MHz with 256 MB of RAM under Windows 98 SE. The LE version and all six modules can be downloaded from Intergraph. A demo download of LE itself is free. Support is free through e-mail, or $30 per phone call.

Steve Ross reviews software bimonthly for NASA Tech Briefs. He runs the science writing program at Columbia University's Graduate school of Journalism in New York City, ran an educational and computer graphics software firm in the mid-80s, and has written 18 books and three engineering software packages.
Today's freestylers don't have the patience for year-long development cycles. They want what the pros ride, right now.

Perception understands. To stay the market leader, they cut new model development time by half. With thinkdesign.

Its powerful solid and surface modeling tools let them quickly visualize radically changing surfaces without sacrificing control. (Try forming that nose piece in a solids-only modeler!) As Perception's Charlie Sagraves put it: "Someone finally broke loose to deliver powerful 3D tools that every engineering group can afford to use."

Powerful modeling tools, ease-of-use, and affordability made thinkdesign an easy choice for Perception Kayaks.

For More Information Circle No. 550

800.323.6770 | www.think3.com
Flat-Panel Displays Will Be Astronauts' "Eyes"

Warrior Vision™ flat-panel displays

Interstate Electronics Corp./L-3 Communications Corp.

Anaheim, CA

714-758-0500

www.iechome.com

Scheduled for launch to the International Space Station's Robotic Workstation (RWS) in 2002, the Warrior Vision displays will be used as a visual reference to control the station's sophisticated robot arm. The displays will help astronauts accomplish tasks such as manipulating large payloads and satellites, and assembling projects that are too big to be launched from Earth. Two systems will be located on the space station in the pressurized Lab Module, and one will be in the Cupola, where astronauts can perform maintenance on the station itself.

The displays are active matrix liquid crystal displays with 640 x 480 resolution, and have a mean time between failure rating of 13,000 hours. Each display will be integrated with special software to provide visual feedback from the space station's Remote Manipulator System, Special Purpose Dextrous Manipulator, Mobile Base System, and Artificial Vision Unit.

Ruggedized to accommodate the stresses of launch into space, the displays meet NASA's severe operational, weight, and environmental requirements. "Our displays can be found among the most demanding climates and conditions on Earth," said Steve Jungers, vice president at L-3/IEC, "and now we're in space."

For More Information Circle No. 756

NASA Incorporates CNC System In Facility Retrofit

Heidenhain TNC 426 machine control system

Heidenhain Corp.

Schaumburg, IL

847-490-1191

www.heidenhain.com

The Developmental Machining and Electromechanical Instrumentation Branch (FMX) at NASA's Ames Research Center in Moffett Field, CA, recently retrofitted the department's entire milling centers with new computer numerical control (CNC) technology. According to James Alwyn, chief of the FMX branch, "Machining technology has evolved to a new level in recent years, and we had to be right at the top of it." Up until a few years ago, the department had mills with various controllers on them, from different manufacturers, and the oldest one dated back to 1968.

NASA incorporated Heidenhain's TNC 426 controls, linear scales, touch probes, and remote hand wheels for its multi-axis machines. The system provides a large memory capacity, user-friendly programming features, fast block time processing, and absolute positioning capability. All of these features were important to Alwyn for the precision aircraft model machining performed at the FMX branch. "We do machining here that is unique to most manufacturing operations. I would say mold machining most closely resembles our work, but in a rudimentary way. It is important that we have very advanced programming capabilities and machine control," explained Alwyn.

The retrofit provided improved accuracy, reliability, and speed, making the FMX branch more efficient. As a result, aircraft models make it to their testing home — NASA wind tunnels, labs, or space — more quickly. "When we are able to manufacture a new model aircraft that demonstrates drag reductions by even one or two percent," said Alwyn, "it makes a major difference in real-life fuel economy."

For More Information Circle No. 757
The DEWE-3010 and DEWE-2010 completely redefine what a data acquisition system should be. Not just portable and rugged, but also open-architecture, so you can upgrade the hardware and software long into the future. With modular signal conditioners you can mix and match to create your own system with dozens of fast channels and up to 2048 slow/temperature channels!

Available in both data recording and industrial PC versions, Dewetron PC-based instruments really rock. Plastic boxes just can't compare. New built-in software makes setup and recording easier than ever. With plug-in modules for direct connection of every sensor - strain gages, accelerometers, microvolts/volts/kilovolts, RTD's and thermocouples (9 types), LVDT's, string pots, RPM and TACH signals from engines and turbines, and even more. Plus 1000Vrms isolation, exceptionally low noise, and multiple range/filter selections on each plug-in module!

Please call toll-free at +1 (877) 431-5166, visit our website, or send email to: werock@dewamerica.com

Dewetron, Inc.
Toll-free +1 (877) 431-5166
Tel: +1 (401) 364-9464
Fax: +1 (401) 364-8565
Website: www.dewetron.com

For More Information Circle No. 534
Commercialization Opportunities

Submillimeter-Wave Image Sensor
Sensors of this type could offer new capabilities for analysis of radiation from far-infrared devices, measurement of the radiative properties of materials, molecular-line spectroscopy of astronomical bodies, and possibly imaging of biomaterials for medical applications.
(See page 36.)

Wireless-Communication Headset Subsystem To Enhance Signaling
A special-purpose communications subsystem provides a push-to-talk signal to a communication system as if the individual was directly wired to the system. This interface operates in the 900-MHz industrial, scientific, and medical frequency band.
(See page 44.)

Power Amplifier With 9 to 13 dB of Gain From 65 to 146 GHz
A three-stage power amplifier is capable of operating without tuning over a wide frequency band ranging well above 100 GHz. There is a growing need for these circuits in radar, imaging, scientific instrumentation, and communications.
(See page 44.)

Humidity Interlock for Protecting a Cooled Laser Crystal
This interlock had been developed to prevent damage to an expensive laser crystal that must be maintained at a temperature below ambient during operation. Whenever humidity rises, the interlock turns off power to a thermoelectric cooler on which the crystal is mounted.
(See page 46.)

A Lightweight Ambulatory Physiological Monitoring System
This biomedical instrumentation package features high data quality, ease of operation, minimal time to set up, and comfort and mobility greater than in similar systems.
(See page 48.)

Broad-Band, Noninvasive Radio-Frequency Current Probe
This instrument measures alternating current over a broad frequency band. It could be especially useful for assessing radio-frequency hazards by measuring currents in personnel exposed to radio-frequency electromagnetic fields.
(See page 50.)

Flow-Concentrating Supersonic Gas/Liquid Nozzles
The overall function of these nozzles is to generate concentrated two-phase flows, which are highly effective in cleaning surfaces of tanks, pipes, tubes, machine parts, and structures.
(See page 60.)

Slide-Staining System for Microgravity or Gravity
This conceptual self-contained system would be automated, eliminating routine and tedious processing steps. On Earth, such a system could be useful in remote medical research field stations, field hospitals, and biomedical research facilities.
(See page 64.)
Microway Delivers Custom Linux/UNIX Workstations and Beowulf Clusters for High Performance Technical Computing!

Which Solution is Right for You?

- 833 MHz Dual Alpha UP2000 or 21264DP
- 500 MHz – 1 GHz Pentium III or Quad Xeon
- 500 MHz – 1 GHz Dual or Single Athlon
- Beowulf Cluster
 Distributed Memory Parallel Processing
- Myrinet Gigabit Ethernet or Dolphin WulfKit
 High Speed, Low Latency Backplanes
- RAID

Satisfied customers have purchased Microway products since 1982. Our cost effective Linux solutions have been chosen by universities, government research labs and ISPs worldwide since 1996. Over the years Microway brand systems have become famous for their quality and price/performance. Simultaneously, our Technical Support staff earned a reputation as one of the best in the industry. This means you can count on our experience to configure a UNIX or Linux workstation or Linux Beowulf cluster solution that is ideally suited to your specific problem. This is why Microway was chosen by Los Alamos National Laboratory to maintain and upgrade their 144-node Alpha Avalon cluster. It is also why both the University of Wisconsin and Rockefeller University chose Microway to build their 100-node dual Pentium III clusters. In addition to being an Intel Product Developer and AMD Athlon OEM, Microway is Alpha Processor, Inc.'s Top North American Channel Partner.

"To find a successful supplier of Linux solutions there are three things that you should know: One, the supplier must be proficient in Linux, a master of understanding Linux's superiority; Two, the supplier must have a clear passion for hardware technology; Three, if you found a supplier that knows both Linux and understands hardware solutions, congratulations you have found Microway! When it comes to Linux and high performance, there's only one way, and that's Microway!"

— Bruce Faust, founder of DigitalScape and Carrera Computers

Microway custom configures Linux, NT and UNIX workstations, clusters and servers plus state of the art RAID systems. If you need a quality product that is fine tuned and built to last, from a company that will be around to support you for years to come, Microway is The Number One Choice.

Find out why over 75% of Microway’s sales come from repeat customers. Please call 508-746-7341 for a technical salesperson who speaks your language!

Visit us at microway.com
Submillimeter-Wave Image Sensor

For the first time, it would be possible to perform heterodyne imaging at frequencies >100 GHz.

NASA's Jet Propulsion Laboratory, Pasadena, California

A proposed monolithic planar array of miniature dipole antennas, diodes, and associated input/output circuitry would serve as a prototype of image sensors for submillimeter-wavelength video cameras (see Figure 1). Sensors of this type could be designed to operate as either direct or heterodyne detectors of electromagnetic radiation at frequencies from 300 GHz to 3 THz; as such, they could offer new capabilities for such diverse uses as analysis of submillimeter radiation from far-infrared devices, measurements of the submillimeter-wavelength radiative properties of materials, molecular-line spectroscopy of astronomical bodies and the upper atmosphere of the Earth, and perhaps imaging of biomaterials for medical applications.

The development of the proposed submillimeter-wave image sensor would extend the recent development of a single high-sensitivity, 2.5-THz heterodyne Schottky-diode mixer based on a monolithic membrane diode (MOMED) micromachined in GaAs. The dipole antennas, diodes, and other circuit elements would be formed on a 3-μm-thick, epitaxially grown GaAs membrane grid that would be suspended from a relatively thick GaAs frame (see Figure 2). The antennas would lie within a quarter wavelength of each other (the diffraction limit) in the y axis, and the rows of antennas would be staggered along the x axis for partial filling in of nonoverlapping pixels.

Associated with each antenna would be a Schottky diode for detection and/or down-conversion, plus a low-pass radio-frequency filter transmission line for supplying dc bias and removing and distributing the low-frequency products of detection and/or down-conversion. The filters would be closely coupled high-and-low-impedance transmission lines that would provide open circuits at the input signal frequency near the antenna terminals.

The frame, the membrane grid, and the antennas, diodes, and other circuit elements, would be fabricated simultaneously, all as parts of a monolithic unit, by micromachining from GaAs in a process similar to that used previously to
The situations we endure just to get a measurement.

World's Smallest Triaxial Accelerometer - Model 7269
This triaxial accelerometer weighs 0.4 gm and is small enough to fit in an ear! Measures up to 2000g with outstanding resolution - perfect for motion study.

Microminiature Triaxial ISOTRON® Accelerometer - Model 35A
This microminiature accelerometer is perfect for vibration and shock testing on disk drives, cell phones and similar hand-held electronics.

Stick it in your ear!
That's what we asked race car drivers to do with our new triaxial accelerometer. Our miniature accelerometers and pressure transducers are used throughout the world - in sports, aerospace, automotive, aviation, defense, industrial, marine, medical, electronics and laboratory applications. And we are constantly adding new sensors and features to meet your evolving needs. All of which boils down to this: If you've got a challenge, call the dedicated people of Endevco.

ENDEVCO
www.endevco.com/rd4t
applications@endevco.com
800/982-6732 • 949/661-7231 fax

If it's vibration, pressure or shock, we measure it.

For More Information Circle No. 572
Sensors

fabricate the single 2.5-THz mixer. An important feature of the membrane-grid design is that the antennas would be surrounded mostly by airgaps, which would serve to reduce circuit losses, provide better beam efficiency, and make it impossible for radiation to propagate undesirably in substrate modes.

The otherwise bidirectional dipole antennas would be rendered unidirectional by incorporation of a reflecting ground plane a quarter wavelength back from the membrane surface. Additional intermediate-frequency (IF) and/or dc circuitry could be incorporated on the back of this ground plane, GaAs frame, and/or on the GaAs membrane grid, whichever is more convenient. The circuitry on the GaAs chip could be connected to external dc and IF circuitry through contact pads on the GaAs frame.

This work was done by Peter Siegel of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Components and Systems category.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office JPL
Mail Stop 249-103
4800 Oak Grove Drive
Pasadena, CA 91109
(818) 354-2240
Refer to NPO-20718, volume and number of this NASA Tech Briefs issue, and the page number.

Ultrasonic/Sonic Drill/Corers With Integrated Sensors

Low-reaction-force, misalignment-tolerant corers double as sensory probes.

NASA's Jet Propulsion Laboratory, Pasadena, California

Easy-to-use, low-power-consumption apparatuses capable of drilling to acquire core samples of thick layers of material and/or measuring physical and chemical characteristics of the layers are undergoing development. A major component of an apparatus of this type is an ultrasonic/sonic drill/corer (USDC) with integrated sensors. The USDC includes a hollow drill bit or corer, in which a combination of ultrasonic and sonic vibrations are excited by an electronically driven piezoelectric actuator. The corer can be instrumented with a variety of sensors for both probing the drilled material and acquiring feedback for control of the excitation (see figure). The potential uses of these apparatuses are so numerous that it is not possible to list them all here; a few representative examples include sampling rocks and soil, medical procedures that involve core sampling and/or probing, detecting buried land mines, and even extracting rock cores for use as small bricks.

The USDC advances into the material of interest by means of a hammering action and a resulting chiseling action at the tip of the corer. The combination of ultrasonic vibrations (typically at a frequency of ~20 kHz) and sonic vibrations (typically at a frequency between 60 Hz and 1 kHz) gives rise to a hammering action that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, a negligible amount of axial force is needed to make the USDC advance into the material. Also unlike a conventional twist drill, the USDC operates without need for torsional restraint, and can easily be made to drill into a material at an oblique angle.

In its role as a hammering mechanism, the USDC also acts as a sounding source for geophysical or physiological sonar to examine drilled objects and the surrounding ground or tissue. When the tip of the corer first touches an object, the acoustic impedance (and hence the electrical impedance) of the piezoelectric actuator changes; these impedances can serve as additional sensory quantities for probing the object and/or for feedback control of the excitation.

Unlike a conventional twist drill, the tip of the USDC corer need not be sharp. Because the corer can operate without rotation, the cross section of the corer and thus of the core samples can be square, round, or of any other convenient shape.
Hole for Extraction of Core Samples

- Piezoelectric Power Supply Actuator
- Amplifier
- Control Logic Circuit
- Energy-Storage Capacitors and Associated Circuity
- Computer for Control of Drilling and Analysis of Sensor Readings
- Stepped Horn for Acoustic Coupling
- Gases and Drilling Dust to Vacuum System
- Corer

The **Sensors in the Corer** measure properties of the drilled material.

The corer vibrates transversely as well as longitudinally, causing the formation of a hole somewhat wider than the corer; consequently, unlike a conventional twist drill, the USDC resists jamming and is highly tolerant of misalignment.

At a location away from the tip of the corer, the hollow interior of the corer can be connected to a vacuum system via a tube. This connection can be used to extract drilling dust and gases emitted by the drilled material for analysis. The sensors in the corer can be used to determine various properties as functions of depth. Examples of sensors that could be integrated into the corer include accelerometers, acoustic transducers (in addition to the piezoelectric actuator) to measure mechanical properties, eddy-current sensors to measure electromagnetic properties, fiber-optic probes to examine the newly exposed surface, temperature sensors, and electrodes made of various materials to obtain measures of chemical reactivity.

This work was done by Yoseph Bar-Cohen, Stewart Sherrit, Benjamin Dolgin, Thomas Peterson, Dharmendra Pal, and Jason Kroh of Caltech for NASA’s Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Mach 17er/A utomation category.

NPO-20856

Normally Closed, Piezoelectrically Actuated Microvalve

Care is taken in design and fabrication to ensure a low leak rate.

NASA’s Jet Propulsion Laboratory, Pasadena, California

A normally closed, piezoelectrically actuated microvalve is being developed as a prototype of valves in microfluidic systems and other microelectromechanical systems (MEMS) intended for operation in outer space. Terrestrial MEMS in which such valves could also prove useful include implantable pumps to administer precisely metered medications, controllers for tightly regulating flows of chemicals in semiconductor-manufacturing processes, and flow controllers for environmental and biological monitoring systems.

Like other devices originally intended for use aboard spacecraft, the present microvalve must be designed to withstand the extreme mechanical stresses of launch, to operate reliably over a wide temperature range and in the presence of ionizing radiation, and to operate reliably after a long time in storage or transit under the aforementioned temperature and radiation conditions. Additional requirements with regard to its specific function include an extremely low leak rate and immunity to launch, to operate reliably over a wide temperature range and in the presence of ionizing radiation, and to operate reliably after a long time in storage or transit under the aforementioned temperature and radiation conditions. Additional requirements with regard to its specific function include an extremely low leak rate and immunity to ionizing radiation.
disruption by small contaminant particles that may slip into the gaps between actuated valve sealing surfaces.

The design of this valve (see figure) is based partly on the designs of larger, commercially available diaphragm valves. Although the dimensions of this valve exceed the dimensions of most microelectromechanical devices, one is justified making this valve somewhat larger than a typical microvalve because the leak rate of a valve tends to decrease with increasing sealing area.

The valve begins as three separate parts: the base (which includes the seat), the diaphragm, and the actuator. The base, which is micromachined out of silicon wafer, contains the inlet and the outlet. The seat area on the inner (upper in the figure) surface of the base is textured with two sets of sealing rings: one centered on the inlet, the other centered on the outlet. The diaphragm, also micromachined out of a silicon wafer, features circular corrugations near its outer diameter and a central circular boss that covers both openings in the seat. The actuator consists of a stack of piezoelectric disks in a rigid housing machined out of a silicon wafer. A Ti/Pt/Au layer is evaporatively deposited on the faying surfaces of the three parts, then the parts are heated and pressed together to join the pieces with metal-to-metal diffusion bonds.

To apply a large sealing force on the two openings to ensure that the valve is normally closed, the piezoelectric stack is compressed into a slightly contracted condition during the bonding process. Application of a voltage across the stack causes the stack to contract further; this action lifts the diaphragm away from the seat, thereby creating a narrow channel between the inlet and outlet. The geometry of the seal is expected to impart substantial immunity to disruption by small contaminant particles. The sealing rings are about 20 μm high and are numerous and closely spaced. Because they are many and dense, they still provide a large sealing area despite the valleys between them. At the same time, any small particles that are entrained in the fluid controlled by the valve and that come to rest in the seal area are expected to become trapped in the valleys between the rings, so that they will not disrupt the seal. Also, any single scratch that might occur would likely affect only a limited number of rings and thus be unlikely to create an open path from the inlet to the outlet.

This work was done by Indrani Chakraborty, William Tang, David Bame, and Tony Tang of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Mechanics category.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to Technology Reporting Office JPL Mail Stop 122-116 4800 Oak Grove Drive Pasadena, CA 91109 (818) 354-2240 Refer to NPO-20782, volume and number of this NASA Tech Briefs issue, and the page number.

Magnetostriictively Actuated Valves for Cryosurgical Probes
Probes could be made smaller and lighter, with better regulation of temperature.

NASA's Jet Propulsion Laboratory, Pasadena, California

In cryosurgical probes of a type now undergoing development, the flow of coolant (typically, liquid nitrogen) would be regulated by magnetostriictively actuated needle valves controlled by use of superconductive electromagnet coils. In comparison with cryosurgical probes now in use, the developmental probes would be smaller and lighter, and would afford better regulation of temperature. This concept is made feasible by two recent advances:

• Research at NASA's Jet Propulsion Laboratory has shown that reliable magnetostriictive cryogenic actuators can be manufactured relatively inexpensively by making actuator elements from commercial-grade magnetostrictive polycrystalline materials through a simple deformation process.

• Solenoids made from high-temperature superconductors, in the size and actuating-current ranges needed for cryosurgical probes, have recently become available in research quantities and are becoming commercially available.
Remote Sensing of Electric Fields in Clouds

Radar and radiometry would provide data on bulk orientation of ice crystals.

NASA's Jet Propulsion Laboratory, Pasadena, California

A proposed method for remote sensing of the electric field in a cloud that contains ice crystals would exploit the relationship between (1) the polarization-dependent radiometric or radar brightness of the cloud and (2) the average or bulk orientation of the crystals as affected by the electric field. The proposed method would complement other methods now used to measure natural electric fields in efforts to forecast lightning. A major advantage of the proposed method is that a few ground-based and/or airborne instruments could quickly survey a fairly large region of the sky.

In a nonelectrified cloud, the average orientation of ice crystals tends to be horizontal because it is aerodynamically stable. On the other hand, atmospheric electric fields, have vertical gradients that tend to electrically polarize the crystals, causing the orientation of their long axes to be aligned vertically. Hence the bulk orientation of ice crystals in a cloud is a balance between the electric and aerodynamic effects.

In the proposed method, one would observe a cloud by use of millimeter-wave-length radar, taking separate simultaneous measurements of the radar reflectivity in horizontal and vertical polarizations. Alternatively, one could measure the millimeter- or submillimeter-wave-length radiometric brightness temperature in both horizontal and vertical polarizations. The reason for doing so is that the bulk radar reflectivity or radiometric brightness temperature of the ice crystals depends on the scattering cross-section of the crystal. Since the long axis of the crystals has a greater cross-section than the short axis, the difference in radar reflectivity or atmospheric brightness at the two polarizations is sensitive to the bulk orientation of the crystals. In principle, it should be possible to invert the measurement data to retrieve information on the bulk orientation of the crystals and thus on the electric field. The main reason for the difficulty of thermal control in a current cryosurgical probe is that the valve that controls the flow of coolant is located near the coolant supply, and not in the probe. The approach taken in the present development effort is to exploit the inherent capability for miniaturization of a magnetostriectively actuated needle valve, placing the valve inside a cryosurgical probe within 1 or 2 cm of the tip. Thus, a small, rapidly controllable valve would be placed close to the location to which the cryogen is required to be delivered, making it possible to achieve better control over the timing and the rate of cooling. Moreover, the placement of the valve near the probe tip would make it possible to use narrower coolant-supply tubes with thinner insulation, so that the probe could be made smaller and lighter.

This work was done by Jennifer Dooley, Christian Lindensmith, and Robert Chave of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Physical Sciences category.

NPO-20895
Special Coverage: Sensors

Turck, Minneapolis, MN, has introduced the Q80 embeddable proximity sensor with a 50-mm sensing range and dual diagnostic indicators, which provide a constant display of operating status. The dual diagnostic indication system consists of two sets of two LED indicators located on the face and front edge of the sensor. The Q80 can sense all types of metals at a single sensing range, including mild steel, stainless steel, copper, brass, and aluminum.

The sensor's Uprox technology provides weld-field immunity, eliminating false sensor triggering, and assuring operation in severe AC and DC weld fields. The sensor is available in 3-wire DC models with stainless steel, copper, brass, and aluminum. All models are made of plastic PBT that meets NEMA standards. The unit's one-piece housing is normally open outputs or normally closed outputs, eliminating false sensor triggering, and assuring operation in severe AC environments with temperatures ranging from -20 to 85°C. It has no moving parts, is fully sealed, and is not affected by contaminants such as dust, water, oil, and cutting fluids. The sensor measures 18 mm in diameter and 30 mm long, making it suitable for restricted-space applications.

For More Information Circle No. 700

The MDRM magnetic sensor from Baumer Electric, Southington, CT, features analog output for use as a non-contact mechanical potentiometer in motion control applications. The sensor has a mechanical rotation range of ±80° and generates a linear voltage signal at its output. It is magnetically controlled by a small rotor positioned in front of the active sensing face and operating with a supply voltage of 5 VDC.

The sensor can be used in harsh environments with temperatures ranging from -20 to 85°C. It has no moving parts, is fully sealed, and is not affected by contaminants such as dust, water, oil, and cutting fluids. The sensor measures 18 mm in diameter and 30 mm long, making it suitable for restricted-space applications.

For More Information Circle No. 706

The SLIS series of scanning linear image sensors from Photon Vision Systems, Cortland, NY, is designed for ultra-high-speed scanning applications. The sensors use electronic shuttering, which allows simultaneous image capture and readout, and makes them suitable for applications that require a strobe light or to capture short-duration events. The sensors incorporate Active Column Sensor™ technology for ultra-low noise video.

Other features include 7 x 7 micron square pixels; resolutions of 2048, 4096, 6144, 8196, and higher; integrated full-frame electronic shuttering; integrated correlated double sampling; and on-chip integration of necessary timing and control circuitry. The sensors also include a 5 VDC power supply, several readout modes, and multiple ports via high-speed PVS-BUS video.

For More Information Circle No. 701

The Pressure and Force Sensors division of PCB Piezotronics, Depew, NY, has introduced the Series 105C ICP® sub-miniature pressure sensors for dynamic pressure measurement. The sensors feature all-welded, stainless steel construction with sensing diaphragms of less than one-tenth of an inch. The units are suitable for mounting in space-restricted locations. Sealed construction protects against contamination and permits use in submerged installations.

The sensors offer a variety of mechanical configurations, electrical connector options, and a choice of dynamic pressure ranges from 100 psi to 30k psi full-scale. Additional features include resolution to 0.005 psi, rise time of 2 microseconds, resonant frequency of 250 kHz, stable quartz sensing crystals, and built-in microelectronic circuitry.

For More Information Circle No. 705

Ono Sokki Technology, Addison, IL, has introduced the GS-503 linear gauge sensor for measuring dimensions, thickness, curvature, eccentricity, displacement, height, depth, flatness, variation, run-out, roundness, distortion, deflection, and load and pressure inspection. It uses linear glass scale technology and measures down to 0.0005" throughout a full 2" measuring range.

The sensor features a response speed of 39.4 feet per second and incorporates a carbon graphite spindle for measuring soft and compressible materials. The spindle also permits heavy lateral loading or side-impact force, and is resistant to extreme temperatures and rust. The sensor comes with a 6-foot signal cable that can be connected directly to an array of displays with various outputs for interfacing to a PC or datalogging system.

For More Information Circle No. 702
Choosing the right solution shouldn’t be.

Mathcad® 2001 is the most powerful tool for applying mathematics available today. Reach solutions, document results, and complete designs the way more engineers and organizations do. Now, Mathcad offers organizations the best price/performance value of any calculation package.

With Mathcad 2001, you get enhanced Web publishing and workgroup collaboration tools, support for HTML and MathML (Mathematical Markup Language), powerful simulation and modeling capabilities, full compatibility with the Microsoft® Office suite, including Excel 2000, support for Visio®, MATLAB®, and AutoCAD®, the new Software Development Kit and much, much more — all with the stability and connectivity that make all your technical projects run faster and smoother, from start to finish.

New Mathcad 2001

Mathcad Professional includes: IBM techexplorer™ Hypermedia Browser 3.0 - Professional Edition, SmartSketch® LE, Volo™View and VisSim LE.

With Mathcad 2001 Premium you get everything above plus Axum® 6, SmartSketch 3.1 and the Solving & Optimization Extension Pack.

Mathcad 2001 runs on Windows 95, 98, 2000 and Windows NT 4.0 or higher.

© 2000-2001 MathSoft, Inc. Mathcad, Mathcad, and Axum are registered trademarks of MathSoft, Inc. AutoCAD is a registered trademark and VoloView is a trademark of Autodesk, Inc. SmartSketch is a registered trademark of Intergraph Corporation. Microsoft, Visio, and Windows are registered trademarks and Windows NT is a trademark of Microsoft Corporation. MATLAB is a registered trademark of The Mathworks, Inc. IBM and IBM techexplorer Hypermedia Browser are trademarks of IBM in the United States and other countries and are used under license. All rights reserved.

MathSoft

For More Information Circle No. 571
Wireless-Communication Headset Subsystem To Enhance Signaling

The user sends a push-to-talk signal through an auxiliary radio link.

John F. Kennedy Space Center, Florida

A special-purpose communications subsystem provides a push-to-talk signal to a communication system as if the individual was directly wired to the system. The subsystem also permits multiple wireless users to operate independently in the same environment. This interface operates in the 900-MHz industrial, scientific, and medical (ISM) frequency band and can be used with many different commercial off-the-shelf (COTS) wireless-communication headsets, without need to modify the headsets or the communications system in use.

COTS wireless-communication headsets operate continuously (transmit and receive), without the need for push-to-talk signaling, and are not designed to provide any special signaling like a push-to-talk signal or external "off hook" "on hook" signals. In the original application for which the present interface was developed, there is only a requirement for push-to-talk signaling to activate and deactivate users participating in launch operations via a COTS communication system. Similar communication systems are in use by Department of Defense agencies, law enforcement and public safety (including 911) call centers, other mission critical communications environments, and even commercial (telemarketing) call centers.

The interface has been prototyped, is in use for launch operations, and includes a push-to-talk unit carried by each headset wearer. This is a low-power auxiliary radio transmitter and is in addition to the radio transmitter of the headset. The interface could, however, be licensed for direct integration into COTS wireless headsets by the manufacturers, and could be expanded to perform a variety of specialized telephony functions, like DTMF (dual-tone multiple frequency) delivery, and on/off hook signals. The interface also includes an auxiliary radio receiver at the base station. When a wearer intends to transmit, the wearer keys the push-to-talk unit. Upon detecting the signal from the auxiliary transmitter, the auxiliary receiver at the base station generates a control signal equivalent to a conventional wired push-to-talk control signal. In the application that was prototyped, the control signal is one that commands the closure of a switch to turn on the audio circuits in the base station.

This work was done by Marc Seibert of Glenn Research Center and Anthony J. Culotta of Boeing for Kennedy Space Center. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com under the Electronic Components and Systems category.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Technology Programs and Commercialization Office, Kennedy Space Center, (407) 867-6373. Refer to KSC-12052.

Power Amplifier With 9 to 13 dB of Gain From 65 to 146 GHz

Circuits like this one are needed for radar, imaging, scientific instrumentation, and communications.

NASA's Jet Propulsion Laboratory, Pasadena, California

A three-stage power amplifier has been developed, capable of operating without tuning, over a wide frequency band ranging well above 100 GHz. The original intended application of this circuit is as a driver amplifier for a passive frequency multiplier that would generate a local-oscillator signal in a submillimeter-wavelength heterodyne receiver. There is also a growing need for amplifier circuits like this one in other applications, including radar, imaging, scientific instrumentation, and communications.

This amplifier features four InP high-electron-mobility transistors in a grounded coplanar waveguide circuit with lumped-element interstage and shunt capacitors. The circuit also features a unique coplanar waveguide power-combining structure in the output stage.

The amplifier operates with a dc power of 400 mW and a 2 V drain bias on each transistor. As illustrated by the graph in...
The industry's most advanced high-resolution DMMs all come with built-in switching mainframes ideal for production testing. This on-board scanner lets you easily begin testing up to 10 measurement points with specified measurement performance. In addition, the 2000-20 version of the 2000 comes with 20 channels.

The 2000 Series DMMs share innovative A/D converter design and unique front-end technology for high repeatability and accuracy. The Model 2010 (7½ digits) has capabilities for high-speed production testing of active and passive components and subassemblies at a breakthrough price. The high performance Models 2001 (7½ digits) and 2002 (8½ digits) deliver exceptional resolution, accuracy, and sensitivity combined with high throughput at thousands less than comparable instruments.

For complete specs on these DMMs, a full-line catalog, or to talk with an Application Engineer, contact Keithley today at 1-888-534-8453.

Visit our website at www.keithley.com

For More Information Circle No. 544
Figure 1. The Three-Stage Transistor Amplifier with coplanar waveguide interconnections exhibits at least 9 dB of gain over 80 GHz of bandwidth and spans three waveguide bands. Experimental (upper graph) and theoretical (lower graph) amplifier gains are shown as a function of frequency. The experimental data were obtained by measuring the amplifier gain in three different waveguide bands: 65 to 115 GHz (DATA3), 85 to 140 GHz (DATA1), and 140 to 220 GHz (DATA2).

Figure 2. The InP Wide-Band Amplifier is shown in this chip photograph.

Humidity Interlock for Protecting a Cooled Laser Crystal

A thermoelectric cooler is disabled when the humidity exceeds a preset level.

NASA's Jet Propulsion Laboratory, Pasadena, California

A humidity interlock has been developed to prevent damage that could be caused by condensation of water on a delicate and expensive laser crystal that must be maintained at a temperature below ambient during operation. The humidity interlock is installed in conjunction with the laser temperature controller system. Whenever the humidity inside the laser housing rises beyond a safe level, the humidity interlock turns off power to a thermoelectric cooler on which the laser crystal is mounted.

The humidity interlock (see figure) consists of (1) a small, inexpensive, commercially available humidity sensor placed inside the laser housing, and (2) a control circuit. The sensor generates a voltage proportional to the local humidity. The sensor output is fed into a conditioning amplifier for conversion into a voltage indicative of the percent relative humidity (RH%). The RH% voltage is compared with a voltage representative of low RH% that is considered acceptable for safe operation of the laser and is designated the trip point. A technician can adjust the trip point by use of a potentiometer in the circuit.

When the RH% inside the housing is below the trip point, a comparator in the circuit activates a relay that closes a switch.
through which current flows to the thermoelectric cooler. When the RH% is above the trip point, the relay switch remains open, disabling the cooler.

Included in the interlock circuit is a two-color light-emitting diode (LED) that shines red or green, depending on whether the humidity is above or below the trip point, respectively. There is also a front-panel display device that indicates either the RH% or the trip point. The circuit includes an override switch that enables the cooler to operate when the humidity exceeds the trip point.

This work was done by Carlos Esproles of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Electronic Components and Systems category.

The Humidity Interlock Circuit includes a relay switch through which power flows to a thermoelectric cooler. The switch is opened when the relative humidity exceeds a trip point.

Looking for Automated Switching?

Is your engineering team always searching about for the right automated switching equipment? We know programmable switching since that's our business. Our switching systems and modules are available from simple 1x2 units to full 512x512 switching arrays spanning DC to 40GHz, and 10uA to 90A. Solid-state, relay and digital products are offered in our extensive rack mounted or VXIbus product lines. High performance and feature loaded, yet cost effective.

The search is over! Check our web-site for the latest, or call for a free catalog.

It's what we do!

Audio - Video - NTSC - RGB - Digital - RF - IF - ATE - Telemetry - Cellular - Microwave
A Lightweight Ambulatory Physiological Monitoring System

Readings of multiple sensors are recorded for subsequent playback and analysis.

Ames Research Center, Moffett Field, California

The Autogenic-Feedback System-2 (AFS-2) is a biomedical instrumentation package that was designed and built at Ames Research Center for use during the September 1992 Spacelab-J (STS-47) mission. The AFS-2 performed successfully during that mission and was rated by members of NASA's Astronaut Office as the best instrument of its kind because of its high data quality, ease of operation, and minimal time for setup and operation. Because of its small size, this system offers comfort and mobility greater than those of other systems developed for the same purpose.

The AFS-2 is a self-contained, battery-powered, ambulatory, physiological monitoring system. It can continuously monitor, display, and record up to nine channels of physiological data for up to twelve hours on a single change of batteries. Sensors and transducers, placed in various locations on the subject (e.g., an astronaut), monitor the physiological signals. A wrist display unit displays the subject's physiological parameters in numerical form. The AFS-2 records all acquired information on a data instrumentation tape by use of a modified nine-channel frequency-modulation data recorder. Researchers can thereafter play back the tape to extract the data and analyze the subject's performance.

By use of various sensors and transducers (see figure), the AFS-2 monitors the following parameters:

- **Blood Volume Pulse (BVP)** — A miniature infrared emitter-detector pair mounted in a ring that is worn on the small finger of the left hand detects changes in blood-vessel volume in the hand.
- **Skin Temperature (TEMP)** — A miniature sensor, mounted in the same ring used for measuring BVP, measures the temperature of the skin.
- **Skin Conductance Level (SCL)** — A pair of electrodes mounted on the left wrist monitors changes in the electrical conductivity of the skin.
- **Respiration (RESP)** — A thin piezoelectric film sandwiched between two flexible rubber housings and strapped across the diaphragm measures both the range and frequency of respiratory cycles.
- **Electrocardiography (ECG)** — Three standard electrodes placed at the AvR, AvL, and AvF chest nodes monitor the electrical impulses of the heart.
- **Acceleration (ACCEL)** — An accelerometer attached to a flexible cotton headband measures the motion of the subject's head along three axes.

The AFS-2 operates in either of two display modes: one for treatment subjects and one for control subjects. In the treatment mode, the wrist display unit displays all indications of system status, malfunctions, and monitored physiological data. In the control mode, only system-status and malfunction indications are visible to the subject.

The data recorder receives the BVP waveform, skin temperature, skin conductance, respiration waveform, ECG waveform, acceleration signals, time and date, specified events, and session timing data and records them on a standard-sized magnetic data instrumentation cassette tape. The cassette can be played through a separate playback unit for subsequent analysis at speeds up to 32 times the speed at which the data were recorded.

The AFS-2 is divided into three general subsystems: the wrist display unit, the belt assembly, and the garment and cable harness assembly. The wrist display unit, fastened to the left sleeve of the AFS-2 garment, includes a small liquid-crystal display device that presents physiological and system-status information to the user. The belt assembly is worn around the waist and over any clothing. The belt assembly comprises belt electronic circuitry

A Human Subject Is Instrumented With Sensors to measure multiple physiological parameters simultaneously.
The new DaqBoard/2000™ series of PCI data acquisition boards are packed with features that other boards can't match, at any price!

- Synchronous scanning of analog input, digital input, & frequency input along with synchronous analog output, digital output, & timer output
- Analog input expansion up to 256 channels, with 30 DBK™ signal conditioning options for direct measurement of thermocouples, RTDs, strain gages, accelerometers, & more
- Digital I/O expandable to over 200 channels, including isolation & relay options
- Pre- & post-triggering on analog input, digital input, frequency or digital pattern
- 100% digital calibration on all ranges
- 16-bit/100-kHz analog waveform & digital pattern generation with infinite waveform/buffer depth
- Drivers for Windows® 95/98/2000/NT included plus support for LabVIEW®, TestPoint®, & DASYLab®
- Out-of-the-Box™ DaqView™ software available for instant setup & acquisition

DaqBoard/2000™ Series Selection Chart

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog inputs (16 bit/200 kHz)</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Analog outputs (16 bit/100 kHz)</td>
<td>4</td>
<td>2</td>
<td>--</td>
<td>4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Frequency/pulse I/O</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>--</td>
</tr>
<tr>
<td>Signal conditioning options</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>5</td>
<td>5</td>
<td>--</td>
</tr>
</tbody>
</table>

P R I C E

- $895
- $595
- $495
- $695
- $295
- $495

Out-of-the-Box™ Software for instant setup & verification

1.888.724.9725

1.440.439.4091

www.iotech.com

WEB QUICK FIND #432*

* Visit iotech.com & enter WEB QUICK FIND # to quickly view product information
Multi-Sensor Data Acquisition

For Portable, Lab, & Distributed Applications

Measure all of your sensors and signals with IOTech's family of portable, lab, and distributed data acquisition solutions. All products have a built-in set of channels, expandable with an extensive offering of signal conditioning options for nearly every sensor type.

Out-of-the-Box™ software makes setup and data collection easy, without having to program. Drivers for all popular programming environments are also provided, including Visual Basic®, C++, LabVIEW®, and DASYLab®

- **Portable**
 - WaveBook™-1-MHz, 12- & 16-bit sampling, expandable up to 72 channels. Fully programmable signal conditioning options for accelerometers, strain gages, & much more. From $2,995
 - WEB QUICK FIND #433*

- **Stand-Alone**
 - LogBook™-100-kHz, 16-bit data logging without requiring a PC at the test site. Uses low-cost PC-Card memory for data storage. Signal conditioning for all transducer types. From $3,495
 - WEB QUICK FIND #435*

- **Distributed**
 - NetScan™-Up to 128 channels of isolated voltage and TC inputs, 32 control outputs–built-in Ethernet port and optional OPC/DDE-server for HMI/SCADA applications. $2,995
 - WEB QUICK FIND #434*
 - MultiScan™-Up to 744 isolated channels of voltage and IC inputs–ideal for low-cost-per-channel data collection systems. From $2,590
 - WEB QUICK FIND #436*

Sensors/Measurements

- Thermocouples
- RTDs
- Accelerometers
- Strain Gages
- Pressure Transducers
- Quadrature Encoders
- Frequency
- Voltage
- Period
- Pulse Counting
- GPS
- Vehicle Bus

Contact Information

www.iotech.com
* Visit iotech.com & enter WEB QUICK FIND # to quickly view product info.

1.888.724.9725
1.440.439.4091

For a complete listing of IOTech worldwide sales offices, see www.iotech.com/contact.html. ©Copyright 2000 IOTech, Inc. Trademarks are the property of their respective holders.
(signal-conditioning amplifiers, an analog-to-digital converter, and a microcontroller), a battery pack, the data recorder, and an interface cable. A modular design distributes the weight of the belt assembly evenly around the waist. The components of the system are interconnected through easily mated and demated connectors; this design feature minimizes the time needed for donning the AFS-2. The battery pack supplies power to all subsystems, including the data recorder. The battery pack features a clip-on design for fast and easy replacement of exhausted batteries. The AFS-2 garment assembly is worn on the upper body and covers the torso and left arm. The garment assembly comprises the garment, the cable harness, the respiration transducer, the accelerometer, and the ring transducer.

This work was done by Patricia Cowings, Scott Jensen, Dave Bergner, and William Toscano of Ames Research Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Test and Measurement category.

This invention has been patented by NASA (U.S. Patent No. 5,694,939). Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Ames Research Center; (650) 604-5104. Refer to ARC-14048-1.

Improvements in a Lightning-Measuring Instrument
John F. Kennedy Space Center, Florida

Some improvements have been made in the instrument described in "Instrument Records Magnetic Fields Generated by Lightning" (KSC-11769) NASA Tech Briefs, Vol. 19, No. 4 (April 1995), page 38. To conserve battery energy, the instrument was made to record the output of only one of three mutually orthogonal loop antennas and to operate in a "sleep" mode except when "awakened" by a lightning strike. Unfortunately, with this energy-conserving strategy, sometimes even a nearby lightning strike could fail to wake the system up on time to record the first strike. The improvements, directed toward overcoming this trigger deficiency, include (1) replacing the "sleep" mode with a mode in which the signals from all three antennas are sampled sequentially at a reduced rate and multiplexed onto one channel and (2) modifying the triggering scheme and the "awake" mode so that once a signal in at least one channel exceeds the trigger threshold, the signals from all three antennas are sampled at a high rate simultaneously on three digitizing channels for 100 μs. Signal samples acquired at the reduced rate for the past 100 μs at the moment of triggering are stored, along with the samples acquired at the full rate for the 100 μs following the moment of triggering.

This work was done by Pedro J. Medelius of Dynacs Engineering, Inc., for Kennedy Space Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Test and Measurement category. KSC-12088
Broad-Band, Noninvasive Radio-Frequency Current Probe

This circuit responds in approximately constant proportion to current over a wide frequency range.

Goddard Space Flight Center, Greenbelt, Maryland

An instrument that noninvasively measures alternating current over a broad frequency band (typically from about 0.3 to about 110 MHz) has been invented. This instrument could be especially useful for assessing radio-frequency hazards by measuring currents in various parts of humans or personnel exposed to radio-frequency electromagnetic fields.

The instrument includes a magnetic pickup coil connected to an active circuit that measures the current induced in the coil by the magnetic field of the current that one seeks to measure. The pickup coil is of a type known in the art as a Rogowsky coil or Rogowsky transformer. As such, the coil is essentially the secondary winding of a transformer with a toroidal core that is placed around the human limb or other object that carries the current that one seeks to measure. The current-carrying object acts, in effect, as the primary winding of the transformer. To avoid the weight, cost, and nonlinearity of a ferrous core, and to minimize the effect of the perturbation of the current to be measured, the coil in this circuit is wound on a nonferrous core.

The active circuit used to measure the current induced in the coil is similar to active-antenna circuits developed previously at NASA for measuring the magnetic components of electromagnetic fields at frequencies up to a few megahertz. The active circuit includes an operational amplifier. The virtual ground at the input terminals of this amplifier is used to present a low impedance to the coil, thereby making the series resistance of the coil circuit much less than the inductive reactance of the coil, even at the low end of the frequency range.

By basic principles of electromagnetism, the voltage induced in the coil is proportional to the frequency and to the current that one seeks to measure, while the inductive reactance of the coil is proportional to the frequency. The current in the coil, which is the current sampled by the amplifier, equals the ratio between the voltage induced in the coil and the total impedance of the coil circuit. Hence, at all frequencies for which the inductive reactance is the dominant component of the impedance of the coil, the coil current sampled by the active circuit is proportional to the current that one seeks to measure.

This work was done by John F. Sutton of Goddard Space Flight Center and Mark J. Hagmann of Florida International University. For further information, access the Technical Support Package (TSP) free online at www.nasatech.com under the Test and Measurement category.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Goddard Space Flight Center; (301) 286-7351. Refer to GSC-13985.
Digital Solid State Recorder

Compact • Ruggedized
50 GB Airborne Data Recorder

80% less weight*
90% less power*
75% less space*
30% less cost*

*Compared to AMPEX DCRsi™ 240

Low power, 50 watts: 28VDC
Compact - 8 lbs; 8.7" x 6" x 3.75"
High Speed: 480Mbits/sec total transfer rate
Modular storage, easy upgrade - 32 PCMCIA cards

For airborne flight test digital data recording
Digital imagery recording for tactical weapons pods such as LANTIRN and TARPS
Integration into high resolution sensor packages for direct digital recording

If it's worth a mission, it's worth a TEAC

www.teac-recorders.com
Tel. 323-727-4866 • Fax: 323-727-4877
e-mail: airborne@teac.com
© 2000 TEAC America, Inc. All trademarks are property of their respective companies.

For More Information Circle No. 507
Web-Based Technology Distributes Lean Models

Users can share models while protecting intellectual property.

Beam Technologies, Waltham, MA

Everybody creates models. These models are used to understand how products will hold up to the stresses, use, and abuse of real-world deployment; analyze the impact of design decisions on cost; simulate interactions; or evaluate numerous other metrics. Unfortunately, because of the variety of software tools available and the cost of acquiring them, models may not be compatible with the software used by customers and suppliers. Sharing models creates the fear of exposing intellectual property, especially if those sharing the models can understand the source code.

Using an MS-Excel spreadsheet as a "control panel," one can build lean models that allow partners to use a firm's models while, at the same time, preventing them from seeing proprietary calculations. Proper functioning of the "control panel" requires that the user load a Plug-In to Excel. With the Plug-In loaded, the user downloads the control-panel spreadsheet to their desktop and modifies the model's inputs in MS-Excel. The changes prod the Plug-In to transfer the input values to a remote engineering server that launches the model with the user's input values. When the simulation is complete, the results are extracted from the model and returned to the spreadsheet. Since the user never downloads the actual model, they cannot extract intellectual property.

Consider, for example, the manufacturer of car door handles who might want to evaluate numerous materials for suitability. By creating a lean model (Figure 1) and making it available to a range of material suppliers, the manufacturer can determine the effectiveness of a range of materials without sharing the specifics of their door handle model. This model (http://nasatech.innovationchain.com/solution.asp?SN=163), which can be used by registering and installing the MS-Excel Plug-In, uses as Inputs the force in Newtons on the door handle and Young's Modulus (a key material property that indicates how a material responds to stress-strain). As Outputs, the model produces the maximum displacement of the material in millimeters and a visualization of the displacement field. The displacement field can be viewed by right-clicking on the appropriate cell and selecting "Visualize." Because the model is locked and protected, the user can see results but none of the calculations.

For more information on creating or distributing lean models, contact Beam Technologies, 404 Wyman St, Suite 355, Waltham, MA 02451; (781) 890-509; or visit the web site at www.beamtech.com.

Software Guides Aeroelastic-Systems Design

The program dramatically slashes time and cost by eliminating debilitating limitations of current aeroelasticity prediction methods.

Beam Technologies, Inc., Waltham, MA

Accurately and efficiently predicting the unsteady dynamics of coupled, fluid-structure systems significantly reduces the cost of designing, testing, and maintaining fixed-wing aircraft, rotorcraft, and turbo-machinery. It also improves safety. Organizations can realize substantial savings by understanding these dynamics, because aeroelastic loading increases fatigue cycling and reduces vehicle operating life. Further savings come from designing for lower fleet sustainment costs without incurring additional flight-test expenses. For example, aircraft with weapons stores require certification flight tests for each stores configuration. Replacing flight tests with computational simulations could significantly lower acquisition costs.

Accurate methods of predicting aeroelasticity are also essential in non-aerospace applications where fluid-structure interaction relates to efficient product operation and such important issues as noise control. Engineers can use fluid-structure interaction models to design products that accommodate fluid flow and moving boundaries during operations. Examples range from ink-jet printers with vibrating-diaphragm injection systems to nuclear reactors with flexible fuel rods suspended in high-speed coolant flows.

The problem of fluid-structure interaction is characterized by two dynamic

ALGOR's Web Courses give you quality software education at your desktop through webcasting. ALGOR provides a true virtual classroom by producing TV quality sound and picture on the Internet. In fact, the images shown here were extracted from actual Web Course footage. There's no need for teleconferencing; all you need is a computer with a T1, DSL or cable modem Internet connection. Even if you don't have Internet access, you can still learn at your desktop by viewing the VHS video or CD-ROM version of each Web Course broadcast that is included with your registration.

Learn FEA at Your Desktop by Webcasting

Get More Software Education for the Money
Web Courses start at just $350 for four hours of instruction, and you save travel expenses and don't sacrifice productivity. Registering for a Web Course entitles you to the live Internet training session, on-demand Internet replays available after the live session and a CD-ROM or VHS video of the course for later reference.

Learn FEA Faster with Step-by-Step Instruction
Web Courses give you in-depth instruction, not an overview, on a variety of topics such as finite element modeling, CAD/CAE interoperability, FEA and Mechanical Event Simulation software. Full screen graphics, utilizing the latest in broadcast technology, show point-and-click detail as instructors "walk" through the process of FEA. Viewers clearly see ALGOR's software interfaces, menus, visualization and reporting options.

Learn How to Successfully Complete Your Engineering Job over the Internet
FEA models to focus on specific interoperability, modeling or analysis questions you may have. You can work as you learn! Contact an ALGOR account representative for scheduling and pricing information.

Start Your Education Today, Here's How:
Select the Web Course of interest.
Contact your Account Representative for a password.
Download Microsoft Media Player for viewing the Web Course.
Enter the password and watch the Web Course live. Or, view Internet replays or your VHS video or CD-ROM.
Call your Account Representative to schedule a customized Web Course for one or many participants at your company to learn Algor software while working through your engineering problems.
subsystems — fluid and structure — each with its own inertia, sufficiency, and damping. The forces that each exerts on the other couple the subsystems. Engineers are concerned with the temporal dynamics of this coupled system. In the case of a lifting surface, the engineer must determine system stability over a range of such operating conditions as Mach number, altitude, and angle of attack.

Inherent difficulties in the problem leave the engineer with two imperfect ways of modeling the coupled system. The difficulties center on the forcing terms that couple the two systems and how the engineer characterizes and then introduces the terms into the equations that govern the fluid and structure. One modeling approach estimates structural deflection growth rates using linear approximations of the aerodynamic loads. This method follows the lack of modern stability analysis — with approximations to viscous fluid force that limit the scope of application. A second method iteratively marches the model of the fluid and the model of the structure forward in time. This "brute force" approach demands computational resources that can easily become prohibitively expensive.

AeroMechanics is a patent-pending program (http://nasatech.innovationchain.com/solution.asp?SN=186) that predicts and ultimately lets one control the unsteady dynamics of aeroelastic systems. Through a general, curvilinear coordinate transformation, the program achieves exact coupling between the fluid and structure without compromising the effects of viscosity, separation, shocks, and shock-boundary layer interaction. The computational formulation enables a comprehensive approach to the analysis of system dynamics: capturing weak nonlinearities in an eigensystem formulation, strong nonlinearities using the full nonlinear system and dynamic systems methods, and detailed flow dynamics in time-marched simulations of the fully-coupled model.

The eigensystem predicts the stability of the physical system in the presence of weak nonlinearities. The computed eigenvalue of each variable determines its time-dependent behavior — growth, decay, oscillation, oscillatory growth, or oscillatory decay. Therefore, the model can predict the dynamic behavior of the fully-coupled system without iterative time marching, re-meshing, and with no limiting approximations. Time-marched simulations require many CPU hours; even smaller problems like flow over a two-dimensional airfoil require 15 or more CPU hours to predict system dynamics from an initial state to equilibrium. Within minutes, AeroMechanics accurately predicts system stability, enabling a complete exploration of the design early in the process. The computational model has been validated by comparing data from simulations with known, exact solutions and with independent computational data. Maximum relative differences between known, exact solutions and data from the model are consistently small — less than one percent.

This work was done by H. A. Carlson and R. E. Miller of Beam Technologies, Inc. for the Aeroelasticity Branch at NASA's Langley Research Center. For more information, contact Beam Technologies, 404 Wyman St., Suite 355, Waltham, MA 02451; (781) 890-509; or visit the website at www.tekstk.com/beam/index.html.

Postprocessing Software for Micromechanics Analysis Code
John H. Glenn Research Center, Cleveland, Ohio

The Micromechanics Analysis Code Post-Processing (MACPOST) computer program is designed primarily to serve as an improved means of processing the output of the Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program. [MAC/GMC was described in “Comprehensive Micromechanics-Analysis Code (MAC/GMC)” (LEW-16870) NASA Tech Briefs, Vol. 24, No. 6 (June 2000), page 38. To recapitulate MAC/GMC is a comprehensive, user-friendly, efficient program that predicts the elastic and inelastic thermomechanical responses of continuous and discontinuous composite-material structures that have arbitrary internal microstructures and reinforcement shapes and are subjected to complex thermomechanical load histories.]

MACPOST operates within MSC/PATRAN — a commercial package of preprocessing and postprocessing software. MACPOST is written in the Patran Command Language (PCL), which is the programming language embedded in PATRAN. MACPOST establishes a direct link between the analysis capabilities of MAC/GMC and the postprocessing capabilities of MSC/PATRAN. MACPOST enables the graphical display of results of a MAC/GMC analysis in the following ways:

- Contour plots of spatially and/or temporally localized results can be generated. For example, such a plot could indicate the spatial variation of stress or strain over a composite-material unit cell (that is, on a microscopic scale) at a specific time step of the analysis. Alternatively, one can require that local results be displayed at a point where a specified stress or strain on the macroscopic (average or global) level is indicated by the analysis.
- The user can require the generation of two-dimensional (X-Y) plots of such quantities as temporal variations of stress, strain, and/or other specified quantities at the macroscopic or microscopic level (even within individual sub-cells of a composite-material unit cell).
- The user provides input through a series of menus and forms. MACPOST checks for input errors. From the user input, MACPOST automatically carries out the MSC/PATRAN commands needed to generate the desired graphical displays. As a result, a user who is familiar with MAC/GMC but has only minimal knowledge of MSC/PATRAN can obtain useful results.

MACPOST enables the user to examine the MAC/GMC output more thoroughly. For example, by examining X-Y plots of results on the macroscopic scale, the user can identify spatial and/or temporal regions of particular interest; for example, the time when a stress-vs-strain plot becomes nonlinear. Through the contour-plot option, the user can examine graphically the variation of such quantities such as effective stress over the unit cell at the point of interest. By examining the contour plots, the user can determine what microscopic effects (for example, matrix-material stresses reaching the yield point) caused the trend observed in the macroscopic results.

This program was written by Robert K. Goldberg and Steven M. Arnold of Glenn Research Center and Brett A. Bednarz of Ohio Aerospace Institute. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Software category.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Commercial Technology Office, Attn: Steve Fedor, Mail Stop 4-8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-16945.
Don't Take Chances with your Designs

Will it overheat? Will the stresses be too high? Will it break? If you are designing your models without using analysis, you could be risking a potential part failure - without even realizing it. Don't take unnecessary chances with your design. Use COSMOS/ throughout the design cycle to help identify potential problems before it's too late.

No matter what you are designing, from the most complex assembly to the simplest part, COSMOS/ can improve the quality and performance of your models. COSMOS/ offers a full range of powerful design analysis tools, including dynamic and nonlinear analysis, optimization, motion simulation, fluid dynamics, and electromagnetics. Created with non-specialists in mind, COSMOS/ combines affordability, ease-of-use and high-end features with built-in accuracy tools and blindingly fast solvers.

For more information on how COSMOS/™ gets your designs on target, give us a call today at: 1-800-469-7287. Or visit us on the web at www.cosmosm.com.
Better Packaging for Miniature Immersible Diagnostic Systems

Protective films could be broken on command to expose sensors.

NASA's Jet Propulsion Laboratory, Pasadena, California

A method of packaging now under development would afford improved protection and functionality for miniature immersible diagnostic systems (MIDS). The method involves covering a MIDS with a thin hermetic film that, if necessary, can be broken on command to expose one or more sensor(s) in the MIDS to the environment to be sensed. MIDS are members of a growing class of advanced microelectromechanical systems (MEMS) that have been and are being developed for use primarily as biosensors, including (but not limited to) chemical and temperature. Conceptually, MIDS are designed to be fully immersed in water to sense water-borne toxicity or biohazards, or in bodily fluids (e.g., in the gastrointestinal tract) to gather information on patients' health. In addition, the basic MIDS concept will likely be extended to the development of miniature immersible systems for delivering drugs and/or acquiring liquid samples.

Some MIDS are designed to be permanently encapsulated for protection, and yet able to function without direct contact between their environments and delicate sensor components; a body-temperature sensor is an example of this kind of MIDS. Other MIDS (e.g., those for detecting water-borne biohazards) must be at least partly immersed in order to function; therefore, their operational lifetimes can be limited and the onset of operation cannot be delayed. The present developmental method would make it possible to delay the onset of operation; in other words, a delicate MIDS could be kept sealed against hostile surroundings until commanded to expose itself to the surroundings to perform its sensory function.

The figure schematically illustrates a conceptual MIDS packaged according to the present developmental method. The MIDS would include a microfluidic sample-preparation device that would acquire one or more sample(s) of the ambient liquid to one or more sensor(s). The sensor outputs would be processed and telemetered to an external hand-held receiving unit or portable computer. The entire exterior surface of the MIDS would be protected by a thin polymer film. The portion of the film covering the inlet to the sample-preparation device would be delineated by an underlying electric-heating wire or other actuator. Upon command, the actuator would melt, tear, and/or otherwise disrupt the film to allow the surrounding liquid to enter the inlet.

Thus far, films of an amorphous fluoropolymer with thicknesses of 0.8±0.2 pm have been applied to silicon substrates and analyzed with respect to adhesion, protective properties, amenability to patterning, and amenability to disruption on command. Experiments have shown that disruption on command is more difficult than had been anticipated. It may be possible to overcome this difficulty through a combination of patterning and increasing actuation force.

This work was done by Gisela Lin, Kevin King, and H. L. Kim of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Materials category. NPO-20954
Demands more from your Ion Gauge Controller

- 1000 Torr to UHV range
- 0.3% controller accuracy
- Bayard-Alpert gauge compatible
- Pressure vs. time curves
- 4 analog input/output ports
- RS-232 interface
- 8 process control channels (opt)
- GPIB and Web interfaces (opt)

$1495 (U.S. list)

The IGC100 is much more than a conventional ion gauge controller. Not only does it monitor pressure from up to two ionization gauges, two convection enhanced Pirani gauges and four capacitance manometers, but it also has many useful features that have never been available before in a controller.

We've added a touchscreen display that can show pressure vs. time curves so you can closely monitor the behavior of your chamber. Also included are eight process control channels and four analog I/O ports for automated system control.

The IGC100 is accurate to 0.3% and we offer NIST traceable gauge calibration at a very reasonable price.

Best of all, the IGC100 is fully web-ready! All you need is a computer, your favorite browser and a network connection, and you can access your controller from anywhere in the world.

Stanford Research Systems
Phone: (408) 744-9040 • Fax: (408) 744-9049 • email: info@thinkSRS.com • www.thinkSRS.com

For More Information Circle No. 586
Lightweight Composite-Material Tanks for Cryogenic Liquids

Liner and composite wrap materials can be chosen to suit specific applications.

Marshall Space Flight Center, Alabama

A lightweight composite-material tank suitable for the storage and transport of liquid oxygen and other cryogenic liquids has been developed. The tank includes a metallic liner compatible with liquid oxygen, a graphite/epoxy overwrap, an insulating layer of lightweight polyurethane foam, an aromatic polyamide/epoxy overwrap for resistance to abrasion and impact, and one or two lightweight fittings or bosses. Tanks of this type have been made with diameters ranging from 6 to 36 in. (15 to 91 cm) and lengths ranging from 1 to 4 ft (30 to 122 cm).

Fabrication of such a tank begins with the formation of a eutectic-salt mandrel in the desired size and shape of the interior tank volume. The eutectic salt must be chosen so that the mandrel will withstand the temperature of curing at a subsequent stage of fabrication described below.

The salt mandrel is fitted with two lightweight bosses as follows: First, a thin-walled aluminum boss is machined and plated with a thin coat of nickel. Next, a graphite/epoxy composite boss is cast and fit over the aluminum boss. The salt mandrel is sealed and later coated with nickel by electroforming. The nickel layer bonds with the boss end fittings and, together with the end fittings, encloses and defines the interior tank volume; that is, the nickel layer becomes the metallic tank liner. The thickness of the nickel layer is typically 5 mils (≈0.13 mm), but the layer can easily be deposited to a different thickness as needed for a specific application.

Optionally, the bosses could be machined from pure aluminum and aluminum or poly(tetrafluoroethylene) could be used as the liner material in place of nickel. An aluminum liner could be deposited by wire arc spraying or vacuum deposition; a poly(tetrafluoroethylene) liner could be deposited by flame spraying or powder coating. An aluminum or poly(tetrafluoroethylene) liner is preferable to a nickel one if the fluid to be contained is highly concentrated hydrogen peroxide.

The metal-coated mandrel is wrapped with multiple layers of graphite fibers impregnated with an epoxy resin that, preferably, is compatible with liquid oxygen. In an application in which there is a risk of corrosion at the interface between the metallic liner and the graphite/epoxy, a fine layer of glass/epoxy could be wrapped around the metallic liner first. The overwrap structure can be filament-wound, manually laid with fabric, or a combination of both. The wrapped workpiece is cured in an autoclave or an oven, typically at a temperature of ≈100 °F (≈38 °C) and pressure of ≈100 psi (≈689 kPa). After the cure, the salt mandrel can be washed out from within by use of water; alternatively, the mandrel can be left in place temporarily.
The polyurethane foam is sprayed over the workpiece, then machined to the desired wall thickness and profile. The aromatic polyamide/epoxy composite is wrapped over the foam, then cured. A very thin rubberized coat can also be sprayed or brushed on the cured aromatic polyamide/epoxy overwrap for additional protection against abrasion.

Improved Formulation and Deposition of Ablative Insulation

This formulation performs better and is not harmful to the environment.

Marshall Space Flight Center, Alabama

The term "Marshall Convergent Coating-1" ("MCC-1") denotes an improved formulation and a concomitantly improved method of spray deposition of a cork-and-glass-filled epoxy ablative thermal-insulation material. MCC-1 has been used on the space shuttle solid rocket booster and on some Air Force and commercial rockets, and at least one aircraft manufacturer has expressed interest in commercial applications of MCC-1.

MCC-1 was developed to replace an older formulation and spray deposition process that entailed four major disadvantages: (1) hazardous solvents were used; (2) the older process was a batch process and, as such, was limited by a pot life; (3) it was necessary to sand each substrate prior to spray deposition of the material; and (4) the material tended to come off during flight and/or splashdown.

In comparison with the older formulation and process, MCC-1 is environmentally friendly because it does not involve the use of any solvents. The MCC-1 process is a continuous (albeit interruptible) rather than a batch process: the ingredients are mixed only during spray deposition. The system of equipment used in MCC-1 for the space shuttle includes the following:

- A spray-cell with environmental control system;
- A robot that moves the CST™ nozzle; and
- A turntable on which the substrate to be coated is placed.

The epoxy adhesive is atomized in a flow of air and sprayed by use of the nozzle. The ground cork and glass microspheres are delivered via an eductor air line, mixed in a cyclonic mixer, then injected into the adhesive spray plume outside the nozzle. The composition of the sprayed and deposited material is controlled by regulating the rates of flow of the individual ingredients. The pattern of deposition of the material on the substrate is controlled by regulating the speed of the turntable. Once the spraying process has been completed, the deposited material is cured by gradually heating it to a temperature between 112 and 200 °F (between 44 and 93 °C) and holding it at that temperature for at least 9 hours.

In comparison with the older batch process, the mix-and-spray-on-demand MCC-1 process generates significantly less waste and thus necessitates less cleanup. Unlike in the older process, it is not necessary to sand the substrate prior to spraying. The flatwise tensile strength of the MCC-1 deposited material is superior to that of the material deposited by the older process. In addition, thus far, little or no falloff of MCC-1 material in flight or splashdown has been observed.

This work was done by Carl N. Lester of Marshall Space Flight Center and Samir V. Patel formerly of USBL. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Materials category. MFS-31295

This work was done by Thomas K. DeLay of Marshall Space Flight Center.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to Sammy Nabors, MSFC Commercialization Assistance Lead, at (256) 544-5226 or sammy.nabors@msfc.nasa.gov. Refer to MFS-31379.
Flows-Concentrating Supersonic Gas/Liquid Nozzles

In comparison with prior supersonic cleaning nozzles, these are more effective.

John F. Kennedy Space Center, Florida

Flow-concentrating supersonic gas/liquid nozzles have been invented for use in cleaning and in verifying the cleanliness of tanks, pipes, tubes, machine parts, and structures. The overall function of these nozzles is to generate concentrated two-phase flows, the mechanical action of which is highly effective in cleaning surfaces.

Previously, cleaning processes of the type to which these nozzles apply have involved flushing with solvents, spraying liquids at high pressure through nozzles, and the use of supersonic DeLaval nozzles. Solvent flushes use large volumes of chemicals to dissolve contaminants. High-pressure liquid sprays consume smaller quantities of solvents than solvent flushes, but the volumes are still substantial. Cleaning processes that involve supersonic DeLaval nozzles are the best of this type for minimum solvent usage, but the basic design and principle of operation of DeLaval nozzles leave room for improvement.

A nozzle of the present type includes a supply tube, a straight, precisely bored tubular section, and a flow-directing insert. The insert is placed inside the tubular section. The supply tube (omitted from the figure) is welded to the upstream end of the tubular section.

The gas/liquid mixture to be used for cleaning is pumped through the supply tube and into the tubular section; it is initially directed radially outward by the insert. The flow is thus compressed by the insert until it reaches the largest diameter of the insert, where it reaches the speed of sound. As the flow continues, it is allowed to expand and accelerate to supersonic speed. The flow leaves the nozzle with a radially inward component of velocity; in other words, the flow converges upon itself and thus becomes more concentrated. This concentration greatly increases the ability of the flow to remove contaminants.

A nozzle of this type operates with a much smaller volumetric rate of flow of solvent than does a comparable nozzle used in a high-pressure liquid spray. Unlike a solvent flush, it is not necessary to use a powerful solvent when cleaning with a nozzle of this type: instead, the cleaning process relies on the mechanical action of the jet generated by the nozzle.

In comparison with a DeLaval nozzle, a nozzle of this type is much more effective in removing contaminants. The flow from a nozzle of any of the types used previously (including high-pressure-liquid nozzles and DeLaval supersonic nozzles) spreads out and is weakened after it leaves the nozzle. In contrast, the flow from a nozzle of the present type reaches its greatest concentration a short distance downstream of the nozzle outlet, so that the intensity of the jet is greater than that from a DeLaval nozzle fed at the same pressure and flow rate. Yet another advantage of this design is that it eliminates the very difficult internal machining needed to fabricate a DeLaval nozzle.

This work was done by Raoul E. Caimi and Eric A. Thaxton of Kennedy Space Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com under the Mechanics category. KSC-11883
Advanced Rigid/Inflatable Spacecraft Habitation Module
This module is especially well suited to long spaceflight.
Lyndon B. Johnson Space Center, Houston, Texas

A large, lightweight, economical, easy-to-manufacture human-habitation module that is well suited to long-term use in outer space has been developed. Modules like this one have potential for commercial applications, including the provision of human habitats for the commercialization of outer space and for shelter against such hostile environments as frigid polar regions, high altitude (airborne or on mountains), and underwater. For government purposes, a module like this one can serve as a “TransHab” (a human-habitation module for transit from the surface of the Earth to low orbit around the Earth), or as a habitation or laboratory module on the International Space Station, the surface of Mars, or the surface of the Moon. Indeed a module like this one could eventually be used as a free-flying laboratory in which to conduct long-duration outer space research.

The volume of the module is 500 m³ (approximately twice that of the space shuttle payload bay) and can easily be increased. The module is a hybrid of an inflatable shell with a hard central structural core—an advanced structure that exploits the packaging and mass efficiencies of its inflatable structure, and the advantage of preintegration afforded by a hard-structured habitat.

Heretofore, human-habitat modules have included such hard, metallic structures as those of the Skylab, Mir, and other missions. Unfortunately, the designs of these modules have been constrained by considerations of weight and cost. They have also been subject to volume constraints: Because each such habitat module was built from a metallic primary structure, its usable volume was limited because a payload must fit within a specified launch rocket. Hence, whenever mission requirements dictated the need for a large usable volume that exceeded the capability of existing launch rockets, a common solution was to design new launch rockets and facilities. This solution significantly increased the cost associated with unique missions and gave rise to large financial investments in single-use vehicles. Moreover, to counteract the inherent tendency of large structures toward dynamic-load-amplification and buckling failure modes, it was necessary to make these structures even heavier. The resulting increases in weight drove launch-rocket requirements and further exacerbated the problems of the development and costs of new launch rockets.

The present advanced rigid/inflatable hybrid spacecraft habitation module is the product of an attempt to overcome the disadvantages of prior designs. This module contains a fully closed regenerative life-support system, wherein all air and water are reused. Other features of the module include thermal control; crew accommodations; protection against ionizing radiation; avionics; electronic circuitry for command, communications, and control; guidance and navigation equipment; protection against meteoroids and orbital debris (M/OD protection); and an airlock for entry and exit by the human inhabitants. All of the equipment systems that implement these sensors for your demanding or routine measurement requirements are manufactured in our ISO 9001 certified facility and backed by our Total Customer Satisfaction guarantee. For technical assistance, call toll free at 800-828-8840 or use our 24-hour SensorLine at 716-684-0001. We also invite you to visit us on-line at www.pcb.com.

For More Information Circle No. 437
features are stored on lightweight, removable structural shelves, which, collectively, constitute a major structural component of a central structural core.

Prior to launch, an inflatable shell, with an attached M/OD protection, is collapsed and folded around the central structural core. The entire structure is then ready to be strapped onto a lightweight composite carrier that is, for present purposes, held in the space-shuttle payload bay by payload-retention latches. The space shuttle then transports the module to low orbit around the Earth. Once in orbit, the module is removed from the payload bay and its inflatable shell with M/OD protection inflated to full volume. Once the shell is fully inflated, the various systems and subsystems (e.g., food, crew accommodations, avionics, and the like) that have been stored on the lightweight structural shelves are repositioned to the internal configuration required for a Mars TransHab, the International Space Station, or other application.

As the advanced rigid/inflatable hybrid module has been described thus far, it can readily be seen to offer advantages, over older modules, of lighter weight, larger volume, greater ease of fabrication, and associated lower cost; these advantages are expected to ensure the leading role of modules like this one in long-duration spaceflight. It also offers the additional advantage of reconfigurability. Moreover, notwithstanding its inflatability, the shell is sufficiently thick and stiff that it would maintain its inflated shape in the event of a sudden depressurization.

This work was done by William C. Schneider, Horatio M. De La Fuente, Gregg Edeen, Kriss J. Kennedy, James Lester, Linda Hess, Chin Lin, and Richard H. Malecki of Johnson Space Center and Shalini Gupta of Lockheed Martin.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Johnson Space Center, (281) 483-0837. Refer to MSC-22900.

Parabolic Membrane-Thickness Variation for Inflatable Mirror

The inflated mirror would closely approximate the desired surface figure.

NASA's Jet Propulsion Laboratory, Pasadena, California

According to a proposal, membranes to be used in inflatable focusing mirrors (see Figure 1) would be designed and fabricated with parabolic radial variations of thickness. More specifically, for a mirror membrane with a diameter D, the thickness (t) at a given radial distance (r) from the optical axis would be given by

\[t = t_r(1 + Au^2) \]

where \(t_r \) is the thickness at the center, \(A \) is a parameter described below, and \(u = \frac{r}{D} \). The reason for this proposal is that by suitable choice of \(A \), one could ensure that upon inflation, the membrane would assume a shape that closely approximates a paraboloid — the shape required for focusing in many applications.

Past investigations of membrane mir-
Figure 1. Two Membranes would be joined at an outer circular edge of diameter D, and the space between them would be pressurized. The upper membrane would be transparent and would serve as a window. The lower membrane would be coated with a reflective material and would serve as a focusing mirror.

Optical Axis

Window Membrane

Tensioning Web

Mirror Membrane

Inflation Pressure

Applied to This Volume

The proposal is justified by a mathematical derivation that starts with the classical equation for the axial deflection $[z(u)]$ of an initially flat, elastic, thin plate (that is, membrane) of thickness $t(u)$ that is subjected to a differential pressure and restrained by a ring as described above. The problem is to find $t(u)$ such that $z(u)$ would approximate the desired paraboloidal form to the desired degree of precision. The solution involves a numerical integration that leads to the conclusion that a parabolic radial variation of thickness with $A = 0.42$ would yield the desired inflated shape, regardless of the values of inflation pressure, deflection at the center, and focal ratio of the inflated membrane mirror.

A membrane according to the proposal could be fabricated most conveniently by either of two techniques. One way would be to cast or otherwise form a membrane polymer on a convex spherical mold with a large radius of curvature that yields an acceptably close approximation to the desired shape. The other way would be to adapt a technique that has been used before to make astronomical mirrors: This technique is based on the fact that the height of a liquid on a horizontal, flat, steadily rotating table varies parabolically with radius from the axis of rotation. The table would be covered with a flat disk of glass or other smooth material, a dike to contain liquid would be placed around the periphery of the disk, the required amount of monomeric liquid would be poured onto the disk, and the disk would be set into rotation at the speed necessary to make the thickness of the liquid at the planned outer diameter of the membrane equal to 1.42 times the thickness at the axis of rotation (see Figure 2). The monomer would be polymerized as the table continued to rotate, thereby locking in the parabolic radial variation with thickness.

This work was done by Aden Meinel and Marjorie Meinel of Galtech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.nasaotech.com under the Mechanics category. NPO-20952

Figure 2. A Rotating Table would be used to form a monomeric liquid to the required parabolic radial variation of thickness, then the liquid would be polymerized. For clarity, the thickness is exaggerated in this view.

Note: Not drawn to scale.
Bio-Medical

Slide-Staining System for Microgravity or Gravity

Much of the cell-staining process would be automated.

Lyndon B. Johnson Space Center, Houston, Texas

The centrifuge-operated slide stainer (CUSS) is a conceptual self-contained system that could be attractive for use in a variety of histological and cytological procedures in both microgravity and normal Earth gravity. The CUSS was conceived specifically for use in staining blood smears on glass slides in order to enable differential white-cell counts (DWCCs) on astronauts during spaceflight. (The differential white-cell count is a standard technique for distinguishing between a healthy condition and any of a number of viral or bacterial infections.) In addition to overcoming microgravitational obstacles to the staining process, the CUSS would do most of the routine and tedious processing steps that heretofore, have been performed manually in conventional terrestrial preparation of blood samples. On Earth, the COSS could be useful at remote medical research field stations, military field hospitals, and biomedical research facilities.

In a terrestrial setting, preparation of a sample of blood for a DWCC involves (1) smearing blood on a glass slide, (2) fixing the cells in the smear to the surface of the slide, (3) staining the cells with a histochemical stain, and then (4) washing the slide in a clean buffer solution. After step 4, the smear is viewed under a microscope and the DWCC is made according to morphological criteria. While it is fairly easy to handle the fixative, dye, and buffer solutions under normal Earth gravitation, the difficulties of handling these or any liquids in microgravity makes it impractical to perform DWCCs in spaceflight. Several prior cell-staining apparatuses have been developed for use in microgravity, but have proved inadequate for various reasons.

The design of the COSS would not only largely automate the staining process but would also eliminate the liquid-handling difficulties through the elimination of microgravity: as the term “centrifuge-operated” suggests, the COSS would be mounted in a standard laboratory centrifuge and would be operated only during operation of the centrifuge. The COSS (see figure) would comprise a cell-staining apparatus within a sealed shell. All the required fixer, buffer, and staining solutions would be contained in disposable cartridges that would be sequentially emptied into a staining chamber by centrifugal force. The sequential emptying of cartridges would be triggered by the timed removal of retaining pins from weighted plungers.

Air displaced from the staining chamber would be vented to the space previously occupied by each cartridge plunger. After the sample had been exposed to each solution, that solution would be drained from the staining chamber, into a disposable waste container, by activation of a one-way valve at the base of the staining chamber. Air displaced by draining would be vented back to the staining chamber. After each draining, the one-way valve to the waste chamber would be closed to enable filling the chamber with the next solution. During operation, air would be vented within the centrifuge via a gravity-operated ring seal valve; this valve would be open during a centripetal acceleration greater than normal Earth gravitation and would close upon return to microgravity once the centrifuge stopped spinning.

The COSS could be operated relatively easily, with minimal training and minimal human intervention. The only action required of the operator would be to place a blood-smear slide into the staining chamber, sealing the COSS shell, placing the COSS in the centrifuge, and switching on the centrifuge. The COSS would contain a microprocessor that would control the releases of solutions into, and draining of the solutions from, the staining chamber at the designated times.

Because the COSS would operate as a sealed unit, there would be minimal risk of escape of solutions. The waste container and the cartridges containing the solutions could be disposable. The remainder of the COSS could be reused. The volumes of the solutions could be kept to a minimum because the hypergravitational effect of centrifugation would cause the solutions to spread over the slide as intact liquid sheets without air bubbles. Minimization of volumes of solutions is desirable aboard spacecraft for minimizing the mass of material that must be lofted and the amount of
Pick any three:

1. □ Distribute Innovations Free
2. □ Earn Money Faster
3. □ Increase Chances of Success

HOW IT WORKS:

1. Distribute Innovations Free
 - Visitors find your model or simulation and click "Interact". When it appears in a simple Excel interface, they enter their own parameters.

2. Earn Money Faster
 - Remote Innovation Chain Task Servers run the necessary engineering tools.

3. Increase Chances of Success
 - Custom solutions are rushed to visitors' desktops. You collect leads and attract potential investors.

Introducing the FREE online distribution channel for real-time technology transfer — NASA Tech Briefs Model and Simulation Exchange.

Having trouble communicating complex data in a meaningful way? Or finding the right audience for your innovations?

Frustrated by long sales cycles? And ineffective distribution channels for technology transfer?

Then post your latest breakthroughs on NASA Tech Briefs Model and Simulation Exchange — powered by Innovation Chain.

This new interactive supplement to NASA Tech Briefs magazine gives you FREE exposure to over 400,000 potential users, investors, and licensees of your technology. Because we publish your model or simulation within targeted categories, it's easy to find. And since we provide your contact information, so are you. Yet your innovations are fully secure because you choose what users see and what they don't.

There's simply no better or easier way to showcase your innovations and shorten the time it takes to generate revenue.

Submit your most exciting technical developments today to http://nasatech.innovationchain.com/first.asp. And take advantage of this FREE online, real-time resource. Get on the fast track to success.
The Centrifuge-Operated Slide Stainer is depicted here in a simplified, partially schematic cross section.

LITERATURE & WEB SITE SPOTLIGHT

QUALITY COMPONENTS, MATERIALS & TOOLS

Packed with products for engineering design, R&D, prototypes and modeling, and production. Large or small quantities — always in stock. Miniature fasteners, specialty components, fluid and motion control devices, select materials, and precision tools. Ask for a free catalog at www.smallparts.com, or call 800-220-4242.

Small Parts, Inc.
For More Information Circle No. 626 or visit www.nasatech.com/626

CONVERTERS & REPEATERS

A catalog describes DGH’s complete line of analog to digital converters, digital to analog converters, and RS-232/RS-485 converters and repeaters. These products communicate in ASCII or MODBUS via RS-232 or RS-485. New products include DIN-100 series of DIN-RAIL mounted products, 1781 and WRC4 series of single-point discrete I/O modules. DGH Corporation, PO Box 5038, Manchester, NH 03108; Tel: 603-622-0452; Fax: 603-622-0487.

DGH Corporation
For More Information Circle No. 629

ELECTRONIC COMPONENTS DISTRIBUTOR

Mouser Electronics provides complete product & pricing data for over 107,000 components from 200+ leading suppliers: AMP, Kemet, Phoenix Contact, Seiko, STMicroelectronics, Murata, Nichicon, Vishay, and more. Our web site offers secure online ordering, downloadable catalog, data sheets, search capabilities, and much more. Mouser Electronics, A TTI, Inc. Company, 958 N. Main St., Mansfield, TX 76063; Tel: 800-346-6873 or 817-483-6828; Fax: 817-483-6899; e-mail: catalog@mouser.com; www.mouser.com

Mouser Electronics
For More Information Circle No. 627

DATA ACQUISITION CATALOG

Iotech’s Data Acquisition & Instrumentation Catalog. This free 320-page catalog features our complete line of products pictured for the first time in full color. New products include an Ethernet-based recorder, plug-in PCI board, and temperature and voltage instruments. A wide range of data acquisition systems and signal conditioning options, as well as IEEE 488 instruments and controllers are also featured. Iotech, Inc.; Tel: 440-439-4091; Fax: 440-439-4093; e-mail: sales@iotech.com; www.iotech.com

Iotech, Inc.
For More Information Circle No. 628

MEASUREMENT & AUTOMATION CATALOG 2001

The National Instruments Measurement and Automation Catalog 2001 is the leading resource for engineers and scientists seeking the most effective customer-defined measurement and automation solutions. The catalog details the complete line of NI products with comprehensive tutorials, product specifications, and selection advice, all designed to help engineers and scientists develop integrated networked measurement and automation applications. Call for a FREE 2001 catalog or find it online at www.ni.com/info/catalog. National Instruments; Tel: 800-483-5488; Fax: 512-683-9506; e-mail: info@ni.com; www.ni.com/info/catalog

National Instruments
For More Information Circle No. 631
Computer Enclosure
Rittal Corp., Springfield, OH, offers the Optipanel enclosure for computer components such as flat panels. The enclosure provides a 3.9" installation depth for commonly used front panels and plates; other installation depths include 1.97" or 5.9". Users can configure an Optipanel with an operator panel housing, rear wall, and a keyboard housing. All housings are aluminum extrusions with corner inserts and gasketing trim strips. Retaining clamps with sliding cage nuts provide the ability to install standard operator interface panels. The enclosure can be mounted on stationary pedestals or mobile bases. Circle No. 713

Universal Indicator
The DP3410 universal wall-mounted indicator from OMEGA Engineering, Stamford, CT, is a 6-digit industrial display indicator that measures and indicates temperature, pressure, flow, level, and other process variables. The unit provides a retransmission output and two alarm relays. An RS-485 digital communications connection can be added as an option. The indicator features an LED display, NEMA-4X wall/pipe mounted weatherproof enclosure, transmitter power supply, and analog, relay, and logic outputs. Circle No. 714

Clear Epoxy
Master Bond, Hackensack, NJ, has introduced the EP30-3 high-temperature, optically clear, low-viscosity epoxy adhesive, sealant, and encapsulant. The two-component system has a service operating temperature range of -60 to 435°F. The epoxy adheres to metals, glass, ceramics, wood, vulcanized rubber, and plastics. It resists chemicals, water, oil, fuels, and many organic solvents. The epoxy has a pot life of 12 to 18 hours and is 100 percent reactive. Circle No. 715

Polyethylene Films
DeWAL Industries, Saugus, MA, offers Uni-Pore™ porous polyethylene films with ultrahigh molecular weight for industrial and laboratory uses. The filtration and venting films provide controlled flow capabilities and high tensile strength. It is resistant to chemicals and particulate build-up, and is self-lubricating. The films are available in pore sizes from 2.5 to 50 microns and are FDA-compliant for food, drug, and medical applications. Circle No. 716

Digital Oscilloscope
The HH972 handheld digital storage oscilloscope and in-circuit component curve tracer from Allison Technology Corp., Rosenberg, TX, provides two test instruments in one package. The oscilloscope mode features full auto-ranging, and the curve tracer mode displays I/V curves for in-circuit component testing. The instrument offers 5-MHz bandwidth, 9V battery or AC wall power, a back-lit LCD display, and keypad control. Other features include display of amplitude, time, and resistor value; test leads; and an optional stand with rechargeable battery. Circle No. 717
Call for Proposals

The U.S. Department of Energy (DOE) Small Business Innovation Research (SBIR) program is providing funding for Environmental Technologies for Soils, Subsurface Sediments & Groundwater, Atmospheric Measurement Technology, and Carbon Cycle Measurements of the Atmosphere and the Biosphere. Grant proposals are desired in the following areas:

- Characterization of Cloud Particles
- Characterization of Organics in Aerosols
- Trace Gas Measurements
- Radiometric Instrumentation
- Sensors for Carbon Cycle Measurements
- Fiber Optic, Solid-State Chemical and Silicon Sensors
- Biosensors

The detailed DOE-SBIR solicitation is available at the web site http://sbir.er.doe.gov/sbir or by calling 301-903-5707. Qualified U.S. small businesses are encouraged to apply. The closing date is February 20, 2001.

Digitizing Software

Renishaw, Hoffman Estates, IL, has released Tracecut Version 23 digitizing software that includes an optional surfacing module capable of creating CAD surfaces for export to any system in IGES or STL formats. Other features include 2.5D profiling, modeling capabilities, and a module for turbine blade tip refurbishment. The TraceSurf module allows seamless transfer of digitized data to CAD systems using a triangulation wizard, and enables data trimming to remove extraneous areas of data, line construction, curve fitting, surface fitting, and the ability to reverse surfaces. It also can scan an object in different orientations, then merge the data to create a single model. **Circle No. 710**

Multiphysics Modeling

FEMLAB Version 2.0 multiphysics modeling software from COMSOL, Burlington, MA, allows users to create and analyze models in full 3D, and includes 3D primitive objects such as blocks, spheres, ellipsoids, cones, and cylinders. Commands such as extrude, revolve, and embed allow users to build 3D objects from their 2D counterparts. A new 3D Delaunay-based mesh generator allows users to control mesh size globally or selectively by subdomain, face, edge, or vertex. The software also can automatically create an animation that displays frames of a movie to illustrate dynamic effects. **Circle No. 711**

Simulation Software

MSC.Software, Costa Mesa, CA, offers MSC.visualNastran Desktop 2001 simulation software that includes MSC.visualNastran FEA for SolidWorks (which couples solutions based on FEA technology with a CAD integrated interface) and MSC.visualNastran 4D and Motion for SolidWorks. The new products enable SolidWorks users to simulate tests before a physical prototype is made. Features include the ability to integrate MATLAB and Simulink products from The MathWorks, an iterative FEA solver, interference and proximity detection, and automatic rigid assembly mating for FEA that enables an entire assembly to be connected rigidly together. **Circle No. 709**

Assembly Design

Design for Assembly (DFA) Version 9.0 from Boothroyd Dewhurst, Wakefield, RI, features new tools that enable engineers to estimate assembly times and costs for their designs, investigate new design ideas, and select a product design from given alternatives. The software guides users through a systematic analysis of product designs, consolidating parts and eliminating assembly difficulties. A new user interface incorporates pictorial images of assembly operations and redesign suggestions. Users can define parts and assemblies by reusing design data created in PDM and CAD modeling software. **Circle No. 708**
New LITERATURE

Digital I/O Devices
ACCES I/O Products, San Diego, CA, offers a 46-page catalog of REMOTE ACCES distributed intelligent I/O units. The sensor-to-computer interface units are used with digital and analog signal devices that are remote from a host computer. Digital I/O pods, analog input and output pods, accessories, serial communication cards for PCs, and other products are included. Circle No. 720

Flow Meters
A 120-page catalog of more than 100 flow meters and 10,000 related products is available from FloCat, Kenosha, WI. Flow metering technologies described in the catalog include magnetic, thermal mass, ultrasonic, vortex shedding, variable area, positive displacement, and differential pressure flow. Also included are flow switches and readout devices for electronic integration. Circle No. 721

Springs and Rings
Smalley Steel Ring, Wheeling, IL, offers a catalog of Spirawave Wave Springs that features more than 1,000 springs in diameters from 3/8" to 16". Special designs are available up to 84" in diameter. The springs reduce spring height by 50% and maintain the deflection of a coil spring. Part listings, custom ordering information, and applications are included. Circle No. 722

Connector Products
The Brad Harrison® and mPm™ Designer’s Guide from Woodhead Connectivity, Northbrook, IL, is a 300-page catalog of connectors, multi-ports, and related products. More than 5,500 products are featured, including cord sets, DIN connectors, and matching receptacles. The mPm molded DIN connectors and molded Brad Harrison connectors can plug into multi-port interconnection systems for a plug-and-play input and output wiring solution. Circle No. 723

Controls and Gages
Dwyer Instruments, Michigan City, IN, has released its 2001 catalog of controls and gages that features more than 3,500 instruments including data loggers, humidity transmitters, flow meters, pressure control and temperature instruments, and air velocity and combustion instruments. Also featured are 40 new products, as well as reference materials such as air velocity flow charts and gas conversion curves. Circle No. 724

Compression Limiters
A 12-page catalog from the Inserts and Tubular Products Divisions of Spirol International Corp., Danielson, CT, features compression limiters that protect plastic components of an assembly from compressive loads generated by bolt tightening. Standard inch and metric limiters are available in split seam and solid knurled types. Hole design, tightening torque, mating component materials, and the use of O-rings also are featured. Circle No. 725

Improve Many Production Operations With New Efficiency!

Seal Master Corporation - Inflatable Seals

Input Solutions for the Electronics Industry
Cirque Corporation’s Glidepoint® technology has a reputation for quality and durability in the electronics industry for input and navigation solutions.

Cirque’s latest innovation, Hidden Touch Surface™ continues this reputation. It works through solid surfaces and is easily integrated into a variety of electronic devices including kiosks and financial keyboards. To learn more about Hidden Touch Surface and other Glidepoint solutions, please contact Cirque’s sales team today.

Phone: 801-467-1100, Fax: 801-467-0208
www.cirque.com or sales@cirque.com

For More Information Circle No. 427
FREE INFORMATION REQUEST FORM

For quickest service:
Fax this form to (413) 637-4343
Use the online reader service center at www.nasatech.com (click on “Get More Information...FAST”)
Or mail your completed form to NASA Tech Briefs, PO Box 5077, Pittsfield, MA 01203-9109.

Name: __
Company: __
Address: ___
City/State/Zip: _____________________________________
Phone: ___
Fax: __
e-mail: __

Please tell us below how NASA Tech Briefs has helped you solve a problem or been applied to your business/product line. __

Do you currently receive NASA Tech Briefs? □ Yes □ No
If no, would you like to receive NASA Tech Briefs? □ Yes □ No

ARE YOU AN INSIDER?
Subscribe today to receive the INSIDER, a FREE e-mail newsletter from NASA Tech Briefs. The INSIDER features exclusive previews of upcoming articles...late-breaking NASA and industry news...hot products and design ideas...links to online resources...and much more.

☐ I want to be an INSIDER. Send my newsletter to the following e-mail address: __

Name __
Company __

I also want to receive special-focus e-newsletters on the following technology topics: (check all that apply)
☐ CAD/CAE ☐ Fiber Optics/Communications
☐ Lasers ☐ Test & Measurement
☐ Optics ☐ Imaging/Cameras
☐ Sensors

For fastest service, sign up online at www.nasatech.com. Look for this button at the top of the home page.

Circle the numbers below to receive more information about products and services featured in this issue.

401 402 403 404 405 406 407 408 409 410
411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430
431 432 433 434 435 436 437 438 439 440
441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460
461 462 463 464 465 466 467 468 469 470
471 472 473 474 475 476 477 478 479 480
481 482 483 484 485 486 487 488 489 490
491 492 493 494 495 496 497 498 499 500
501 502 503 504 505 506 507 508 509 510
511 512 513 514 515 516 517 518 519 520
521 522 523 524 525 526 527 528 529 530
531 532 533 534 535 536 537 538 539 540
541 542 543 544 545 546 547 548 549 550
551 552 553 554 555 556 557 558 559 560
561 562 563 564 565 566 567 568 569 570
571 572 573 574 575 576 577 578 579 580
581 582 583 584 585 586 587 588 589 590
591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610
611 612 613 614 615 616 617 618 619 620
621 622 623 624 625 626 627 628 629 630
631 632 633 634 635 636 637 638 639 640
641 642 643 644 645 646 647 648 649 650
651 652 653 654 655 656 657 658 659 660
661 662 663 664 665 666 667 668 669 670
671 672 673 674 675 676 677 678 679 680
681 682 683 684 685 686 687 688 689 690
691 692 693 694 695 696 697 698 699 700
701 702 703 704 705 706 707 708 709 710
711 712 713 714 715 716 717 718 719 720
721 722 723 724 725 726 727 728 729 730
731 732 733 734 735 736 737 738 739 740
741 742 743 744 745 746 747 748 749 750
751 752 753 754 755 756 757 758 759 760
761 762 763 764 765 766 767 768 769 770
771 772 773 774 775 776 777 778 779 780
781 782 783 784 785 786 787 788 789 790
791 792 793 794 795 796 797 798 799 800
801 802 803 804 805 806 807 808 809 810
811 812 813 814 815 816 817 818 819 820
821 822 823 824 825 826 827 828 829 830
831 832 833 834 835 836 837 838 839 840
STAY ON THE CUTTING EDGE
Renew or get your own copy of NASA Tech Briefs. You can qualify at our website: www.nasatech.com/subscribe or Fax this form to 856-786-0861

Please print
Reader ID Number 000

Name ________________________________
Title __________________________________
Company __________________________________
Address _______________________________
City/St/Zip ____________________________
Phone ________________________________
Fax ________________________________
e-mail ________________________________

Home delivery (possible only if all items above are completed.)
Street ________________________________
City/St/Zip ____________________________

Signature ___ Date ________________________

Check one of the following:
☐ New Subscription
☐ Renewal
☐ Change of address

For Change of Address and/or Renewal you must provide the 11-digit Reader ID Number from your mailing label.

You can also mail this form to:
NASA Tech Briefs
P.O. Box 10523
Riverton, NJ 08076-9023

Do you wish to receive (continue to receive) NASA Tech Briefs?
☐ Yes ☐ No

Which of the following best describes your industry or service? (check one)
E ☐ Electronics S ☐ Computers
X ☐ Communications O ☐ Automotive
T ☐ Transportation M ☐ Materials/Chemicals
P ☐ Power/Energy B ☐ Bio/Medical
J ☐ Consumer Product Manufacturing Q ☐ Industrial Machinery & Equip.
A ☐ Aerospace G ☐ Government
D ☐ Defense R ☐ Research Lab
U ☐ University Z ☐ Other (specify): ________________

Your engineering responsibility is:
☐ A ☐ Manage Engineering Department ☐ D ☐ Member of a Project Team
☐ B ☐ Manage a Project Team ☐ E ☐ Other (specify) ________________
☐ C ☐ Manage a Project

Your job functions are:
(please check all that apply)
A ☐ Management
B ☐ Engineering
C ☐ Sales
D ☐ Field Service
E ☐ Other (specify) ________________

In which of the following categories do you recommend, specify, or authorize the purchase of products? (check all that apply)
01 ☐ Electronics
02 ☐ Photonics
03 ☐ Computers/Peripherals
04 ☐ Software
05 ☐ Mechanical Components
06 ☐ Materials
07 ☐ None of the above

Products you recommend, specify, or authorize for purchase: (check all that apply)
01 ☐ ICs & semiconductors
30 ☐ Connectors/interconnections/packaging/enclosures
02 ☐ Board-level products
14 ☐ Sensors/transducers/detectors
15 ☐ Optical components
20 ☐ Fiber optics
30 ☐ Motion control/positioning equipment
31 ☐ Power transmission/motors & drives
42 ☐ Rapid prototyping and tooling
13 ☐ Metals
28 ☐ Plastics & ceramics
27 ☐ Composites
43 ☐ Coatings
80 ☐ None of the above

How many engineers and scientists work at this address? (check one)
A ☐ 1 ☐ 100-249
B ☐ 2-5 ☐ 250-499
C ☐ 6-19 ☐ 500-999
D ☐ 20-49 ☐ 1000
E ☐ 50-99

To which of the following publications do you subscribe? (check all that apply)
01 ☐ Cadalyst
02 ☐ Cadence
10 ☐ Machine Design
11 ☐ Mechanical Engineering
12 ☐ Product Design & Development
13 ☐ Sensors
14 ☐ Test & Measurement World
15 ☐ Laser Focus World
16 ☐ Photonics Spectra
17 ☐ None of the above

Would you like to receive a free e-mail newsletter from NASA Tech Briefs?
☐ Yes ☐ No

Your e-mail address
You may receive renewal reminders via e-mail. Do you want to receive other business-to-business third party e-mail offers from NASA Tech Briefs?
☐ Yes ☐ No
impossible things

introducing MSC.visualNastran

Keeping up with the demands of consumers may sometimes seem impossible. How do you make products light and durable? Strong and inexpensive? MSC simulation shows you the way.

That's MSC.visualNastran. Affordable, breakthrough simulation on the PC platform. FEA, motion, and animation at your fingertips. Now you can ensure that your designs work for developing better products—and better profits.

www.mscsoftware.com/vn

Which product is right for you? Motion, FEA, animation.... Find out—and get a free CD in 48 hours: www.mscsoftware.com/vn.

For More Information Circle No. 555
The Language of Data Visualization

Why waste time starting from scratch? You can create robust applications in far less time using IDL® than it takes in traditional languages. A few lines of IDL can do the job of hundreds of lines of C or Fortran, without losing flexibility or performance. And the same IDL code runs on Windows®, UNIX®, Linux and Macintosh®.

IDL handles data, even large images and multi-dimensional data, with ease. Read and write virtually any formatted, unformatted, or binary data. Interactively render 3D images with IDL’s object-oriented graphic system. Spin or fly through a surface. Shade and illuminate with multiple light sources. Combine volume rendering with vector and polygonal visualizations.

IDL also offers a multitude of map projections and a high-resolution map database, complete with continent, coastline and other geographic information.

Try IDL FREE!
Go to www.ResearchSystems.com/idlntb
For More Information Circle No. 562