MIT January Operational Internship Experience

January 29, 2010

Natasha Bosanac
Charlie De Vivero
Jillian James
Carla Perez-Martinez

Wendy Pino
Andrew Wang
Ezekiel Willett
Kwami Williams

January 29, 2010

January Operational Internship Experience

January Operational Internship Experience (JOIE)

Introduce engineering students to the operational aspects of space flight.

Explore the relationship between design and operations.

Core component of MIT’s Aeronautics and Astronautics CDIO curriculum (Conceive, Design, Implement, Operate).

Topics

- Landing & Recovery
- Transportation
- Shuttle Processing
- Constellation Processing
- External Tank
- Launch Pad
- Ground Operations
- Hypergolic Propellants
- Environmental
- Logistics
- Six Sigma
- Systems Engineering
- Human Factors

Images taken from http://www.nasa.gov

January 29, 2010

January Operational Internship Experience

Page 3

Landing & Recovery

Credit: NASA

January 29, 2010

January Operational Internship Experience

Page 4
Shuttle Landing & Recovery

- Landing capabilities are necessary any time the space shuttle leaves the launch pad.
- Landing at Kennedy Space Center imposes the least operational burden as opposed to alternate landing sites.
 - Deservicing of hypergolic propellant on site
 - Venting of poisonous hydrazine fumes (APU & RCS) on runway
 - No mating/demating to 747 required
- Once the shuttle lands at KSC recovery operations can begin in preparation for next mission.

Credit: NASA

Shuttle Abort: A Necessary Contingency

- If safe landing is not an option...
- Abort Scenarios
 - RSLS, RTLS, TAL, AOA, ATO
- Shuttle has no abort option from T-0 to SRB burnout at 126 seconds after liftoff
- Crew has no means to separate from the vehicle in an abort
- Most desirable TAL sites are in Western Europe
 - Zaragosa Air Base, Spain
 - Moron Air Base, Spain
 - Istres Air Base, France
- However, unlike the landing facility at KSC, the TAL sites are not equipped with the ideal logistics to process the shuttle.
Why Are Aborts A Challenge?

- TAL sites must be equipped with the necessary means to support shuttle recovery
 - Security (now provided by military)
 - Deservicing equipment and power
 - TRACAN or GPS
 - MSLBS
 - Xenon lighting
 - Communications
 - Weather Equipment
 - Mate/Demate device

Servicing commodities at each TAL site add to the immense cost required to transport the shuttle back to KSC, but they are a cheap insurance policy for the life of the crew.

Orion Landing & Recovery

- Design of Ares I calls for a water landing for Orion crew module
 - Landing off the coast of Southern California
 - Service module must be jettisoned over the ocean

- Crew module will have at least 24 hour human sustainability

- CM will be towed from the ocean onto ship
 - Orion crew will remain in the CM until it is onboard recovery ship
Orion LAS & Abort Scenarios

• Orion LAS can be utilized until 120 seconds into flight
 • Also includes SRB burn
• For aborts after LAS separation, the CM and SM would both jettison from the Ares stack
 • Landing in Western Europe
 • Pacific Ocean or landing at Edwards or White Sands (AOA)
 • ATO

Ability for crew to escape Ares stack during SRB burn is substantial safety improvement from shuttle program.

Transportation

Credit: popsci.com
Transportation Infrastructure

• Shuttle is a large and reusable vehicle
 • Complicates remote landing and recovery
 • Configuration with 747 requires ideal flying conditions, short durations
 • Overseas landing requires towing and loading onto ship

• Crew module is lighter with salvageable parts
 • Recovery by swimmers and ship
 • Ground transportation to JSC and KSC

• Reusable SRBs – similar recovery

Credits: slate.com, interspacenews.com

Solid Rocket Boosters
• Manufactured in Utah, heavy propellant
 → modify railcars to have extra wheels
• Entire length too long for tracks to accommodate
 → assembly waits until RPSF and VAB

External Tank
• Manufactured in Alabama in one piece
 → float on a barge
• Meticulous rotation can only occur in the VAB

Hypergolics
• Must drain hypergolics before transporting vehicles
• Special procedures for transporting hypergolics to HMFs

Mobile Launch Pad Crawlers
• Immense weight requires special rock tracks and maintenance

Vehicle component design determines transport mode, which in turn affects facility usage.

Credits: al.com
Shuttle Processing

It All Starts At Landing

Life of Shuttle at KSC

Runway ➔ OPF ➔ VAB ➔ Launch Pad

3..2..1..Liftoff

Runway
- Shuttle processing begins at touch down
- Nose gear failure on early missions due to inability to steer
- Corrected with hydraulic actuator placed on nose gear

Designs that are less expensive in the beginning can become more costly in the lifecycle of the program
On To The OPF

Orbital Processing Facility (OPF)

- Large scale maintenance on the shuttle
- After being rolled in, orbiter is raised on hydraulic jacks
 - Jacks must level orbiter for servicing
- Payload bay doors must be opened
 - Strongbacks maintain structural integrity

Tiles

- Damaged tiles replaced and entire system waterproofed

NASA underestimated the scale of shuttle processing which led to later modifications at the OPF, i.e. service platforms

Integration in VAB

- After OPF, shuttle goes to VAB for stacking with SRBs and ET
- Wait...the vertical stabilizer does not fit
 - Notch in VAB door was cut to allow easy access for the shuttle
- Transition to Constellation
 - Modification of platforms to allow processing of Ares rockets
- KSC was able to use the VAB for three completely separate programs

Design modifications in operations are sometimes necessary for the smooth transition of programs
Once on the pad the shuttle waits for approximately 30 days until launch. It was observed that the frangible nuts were breaking free of their torque over time. Engineers preloaded the nuts with more torque to allow them to loosen once the shuttle reached the pad.

Because components are designed to exceed operational loads, fixes such as this are possible.
Heritage Equipment and Hardware Reuse

Reused Between Flights

Command Module
Solid Rocket Booster

Heritage Equipment

Solid Rocket Booster
Cheaper than developing new technologies

J-2X Upper Stage Engine
Derivative of Saturn V J-2 Engine
Preferred over SSME due to proven success of start-up in space

Use of heritage equipment means:
• Increased reliability
• Existing knowledge base for processing
• Existing facilities
• Decreased burden on schedule

Images taken from www.nasa.gov

Reorganization of Workflow at KSC

Compared with Shuttle, processing of Constellation benefits from:

• Reduction of spare components
 • Off-site production of parts
 – Less burden on KSC facilities
 – Reduces logistics footprint
 • Independent production off-site means spares automatically available

• Reduction of critical path
 • Increased parallelization of AI&P
 – Decreased ground turnaround time
 – Decrease probability of launch delay
 – Reduces need for VAB modifications
 • Examples:
 – 1-piece Ogive
 – Fueling of SM prior to stacking

Images taken from "Orion Production Overview", John Weeks.
Simultaneous Processing of Ares I / Ares V

- Limited buffer time between Ares I and Ares V launch
 - Must simultaneously process both launch vehicles
 - Allocation of human resources may be difficult
 - Implications for Ground Systems

Constellation is easing the burden to its facilities through:

- Customization of critical path facilities
 - Customized High Bays in VAB, and ML's for Ares I or Ares V
 - Eases implementation of launch vehicle-dependent operations
 - Decreases human confusion

- Flexibility of platforms in VAB
 - Evolution of design accommodated through +/- 3 feet adjustment to platform height
 - Only possible once upon installation
 - 18in gap between Ares and platforms bridged with adjustable extensions

External Tank
Assembly Characteristics Related to Performance

- Foam spray pattern
 - Size of foam sprayer
 - Orientation of bolts
- Friction stir welding
- Paint

Quality Control

- Inspection
- Repair
- Detection

On the Launch Pad

- ET and fuel feed lines have different rates of expansion
 - implementation of the boomerang joint

- Cryogenics pumping leads to foam loss
 - visual inspection aided by video surveillance to monitor foam condition

Processing methodologies learned from ET operations can be applied to other space flight components.
Launch Pad

Credit: NASA.gov

January 29, 2010

Operational Internship Experience

Page 25

Structural Design and Maintenance Issues

- Effect of launch pad design on roll-out and operational procedures
- Tubular vs. I-beam/channel designs
- Ramifications of material choices for pads

Design decisions can help curtail lifetime operational costs and decrease the functional requirements of hardware.
Processing Challenges at the Pad

- **Vertical payload loading**
 - Clean room requirements
 - Payload Changeout Room
 - Clean-air purges and work platforms
 - Necessitates PGHM

- **Dealing with cryogenic propellant loading**
 - Design evolution of GOX Vent Duct System

Pad Innovations

- **Return to a clean pad**
 - Utilizing Apollo operational architecture
 - Employing Mobile Launcher design expertise

- **Implementation of Faraday cage**
 - Additional taller lightning masts

- **Emergency egress improvement**
 - Egress design changes

Drawing on knowledge and expertise from the past as well as everyday experiences can help improve design decisions and reduce LCC.
MLP operation lessons drive ML design

- Material science improvements
 - Anti-corrosion, anti-abrasion
 - Use stainless steel despite cost
- Modular structure
 - Easily adaptable tower
- Increase safety
 - Abandoning ordnances for hold down system
- Benefits of Simplicity
 - Swing arm vs. Tilt-up umbilical
 - Weather factors
 - Maintenance factors
 - Reliance on mechanical systems

January 29, 2010
January Operational Internship Experience

Ground Operations

Images taken from http://www.nasa.gov

January 29, 2010
January Operational Internship Experience
Design features of the vehicle directly affect what facilities and commodities are required.

Constellation requirements are being developed with input from ground operations experts.
- Idea is to reduce long-term logistics footprint and life cycle costs.

Examples from the Shuttle:

<table>
<thead>
<tr>
<th>Design Feature</th>
<th>Commodities & Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOX/LH2 engines</td>
<td>Cryogenic storage</td>
</tr>
<tr>
<td>Hypergolic thrusters</td>
<td>HMF; SCAPE suits</td>
</tr>
<tr>
<td>Solid Rocket Boosters</td>
<td>Special railroads; RPSF</td>
</tr>
<tr>
<td>Thermal tiles</td>
<td>TPSF</td>
</tr>
</tbody>
</table>

Design influences operability & supportability

Ground Ops considerations in Constellation:
- One-piece ogive assembly on Ares I rocket
 - Reduces time spent in the VAB
 - Eliminates complications with assembly

- Mobile launch tower solution, instead of permanent structures built on the launch pad
 - Reduces environmental wear on launch structures
 - Reduces time spent on the pad; the "ship-and-shoot" method
 - Mitigates complications on the critical path

- Less maintenance of flight hardware, since most of the rocket is not reusable
 - Eliminates the need for large warehouse storage of spare parts
 - Less refurbishing operations required
Ground Operations

- Ares V design pushes the capacity limits of current facilities
 - Crawler Transport will be unable to carry the current Ares V design
 - Ares V pushes the operational limits of cranes in the VAB
 - Fully constructed Ares V may not fit inside of the VAB

- LOX & LH2 tanks at launch pad are insufficient for Ares V
 - One solution: truck in fuel constantly
 - Alternative: build larger fuel tanks at the pad

Efficient use of GSE is a factor in reducing life cycle costs and logistics footprint

Images taken from http://www.nasa.gov

January 29, 2010

Hypergolic Propellants

Credit: NASA.gov
Complications with Hypergolic Propellants

- Favorable Performance characteristics
 - Negates need for ignition source
 - Storability
- Health Hazards
 - High toxicity
 - Corrosive characteristics

- Operational complications
 - Increase structural amenities
 - SCAPE and purge operations complications

Performance requirements may lead to unavoidable operational costs.

Category I SCAPE-PHE
Credit: NASA.gov

Life Cycle Challenges

- Facility and processing demands
 - Hypergolic shelf-life
 - Limitation of pressurized tanks
 - Outfit facility with hazard mitigation equipment
 - Quick Disconnect
 - Egress paths
 - Purge and ventilation systems
 - Rotating Service Structure
 - Hypergolic Umbilical System
 - Effect of moisture on OMS/RCS
 - Using Multi-purpose Processing Facility for Constellation
 - Save time at launch pad
 - Operations cost savings

Hypergolic propellant facilities were not expected to handle as much maintenance as they do now.
Environmental Factors in Operations

Issues

KSC coastal location
- Ideal to launch east over Atlantic
- Corrosion from salty air affects structures
- High maintenance costs

Merritt Island Wildlife Refuge
- Bare terrain around pads hosts wildlife
- Animals can damage facilities and shuttle

Weather
- Hurricanes, Lightning
Environmental Factors in Operations

Solutions
- Mobile Launch Pad for Constellation
- Wildlife control
 - Birdstrike
 - Radar monitoring
 - Decoy owls at pad
 - Carrion removal program
- Lightning towers, rollback
- Other considerations
 - Decreasing environmental impact
 - Freon use in ET manufacturing
 - Disposal of hazardous substances
 - Hypergolic fuels
 - Storage of materials

Consider operational environment during the design phase

Logistics

Image taken from PH Logistics Division Training Module 2
Logistics
Main Responsibilities

• On-time delivery of spares.
• Currently handle 200K+ repair parts for shuttle and GSE.

• Spare sources:
 Shuttle | Constellation
 • Vendors | ✓ | ✓
 • Heritage | ✓ | ✓
 • Cannibalization | ✓ | X

• Forecasting necessary spares and timely delivery, within budget
 • Likelihood of failure
 - Delphi method, trade studies
 • Criticality of part
 • Transportation and storage needs
 • Tradeoff between risk and cost

Forecasting is necessary to successfully provide support while minimizing costs.

January 29, 2010
January Operational Internship Experience

Logistics
Shuttle Processing Support

Vendor | KSC Facilities | NSLD (USA)

• Vendor Maintenance
 • Expensive
 - Hughes: $6M a year for KU bands
 • Technician and Product Certification
 - Flight Readiness
 • Proprietary claims
 • Vendor holds on to old technology

Image taken from nasa.gov

KSC and NSLD images from PH Logistics Division Training Module 2
Logistics
Storage, Fabrication, Repair

Vendor
KSC Facilities
NSLD (USA)

✧ Ability to retrieve pieces quickly
- Warehouse
 - Highly automated and efficient
 - Part segregation avoids confusion, reduces risk on inventory
- Custom, on-need construction of tiles
- NSLD: parts and repair without contract, no vendor

✧ Challenge: tracking part changes
- COTS items
- Obsolescence
- Certification vs. continuity

Design must foresee change of available components during operations

Logistical Challenges - Shuttle

✧ Access to components requiring maintenance
- Avionics box located in front of filter
 - Difficulty in filter replacement
- Access to wing interior
 - Required for replacement of RCC panels
 - Can cause damage to wing struts
- Engine nozzles
 - Following each flight, must be cleaned and checked

Amend by:
- Considering criticality of hardware and failure rate
- Incorporating logistics into design early

✧ Failure analysis of Avionics
- Difficult to replicate failures
- "Unexplained anomalies" do not solve the problem

Base failure analysis on criticality of component
Transition From Shuttle to Constellation

Primary improvement in Constellation relies on:

Reduction of Logistics Footprint

Goals
- Lower life cycle cost
- Establish flexible and reliable logistics and maintenance infrastructure

Implementation
- Reduction of spares stored at KSC
- Use of "just-in-time" replacements
- Consolidation of facilities, e.g Depot
- Designing ground systems with Ares I and Ares V in mind

Reducing life cycle cost by considering operations, maintenance, support and disposal during design phase will:
- Decrease operations and maintenance cost
- Increase efficiency of logistics
- Minimize supportability implications

Logistical Challenges - Constellation

Facility for encapsulation of Altair
- Should be completed outside of VAB
 - Installation of clean room would be costly
 - Off-line processing favorable
- Option of NRO shared use
 - Transportation implications
 - Sharing may impose unexpected cost, schedule delays and additional risk

Extensive trade studies of facilities will help to minimize logistics footprint

Thermal Vacuum Testing of Orion
- Glenn Research Center
 - Orion dimensions impose limitation on facilities
 - Large distance from KSC

Parallelization of assembly processes may alleviate negative effect of additional testing on schedule
Lean Six Sigma

Lean Six Sigma Strategies

Organization

- Warehouse layout
- Consolidating facilities
- Automated storage
- Arranged workspaces

Organization methods lead to efficiency.
Lean Six Sigma Strategies

Reduce Processing Time

- Support connections made inside facilities
- Physical data interface on MLP
- Conscious of logistics and lifecycle costs
- Information transparency

Reusing Established Resources

- Distributing work
- Combining expertise from ELVs and Shuttle
- Modifying existing facilities

Credits: Orion General Public Overview by John Weeks

Consolidating facilities and resources simplifies operations.
Systems Engineering

Requirements Interacting with Design

Case: Theoretically...

Operational Goals

Conceive

Operate

Implement

Design

Interface Requirements

Functional Requirements
Case: Shuttle Program

Operational Goals

Functional Requirements

Interface Requirements

Operate

Conceive

Implement

1. Late Feedback

2. Propagated changes

3. Requirement turmoil

January 29, 2010

Case: Constellation Program

Plan for disciplined requirement evolution based on active feedback rather than finding problems later.

Operate

Conceive

Implement

1. Participate and Communicate Concerns Early

2. Structured Design Iterations through Trade Studies

Design

January 29, 2010
Testing Incrementally

Apollo’s quick success due to incremental testing

Start with near-proven functionality

Add capabilities reliably

Shuttle introduces many new systems previously uncombined and tackles complexity all at once

Credits: nasa.gov
January 29, 2010
Testing Incrementally

Apollo’s quick success due to incremental testing

Add capabilities reliably

Constellation returns to building from minimal functionality and recognizes the need for decentralized testing

Start with near-proven functionality

Hide complexity for faster integration

Shuttle introduces many new systems previously uncombined and tackles complexity all at once

Complex MEIT, Discover many bugs, Time intensive

Credits: nasa.gov

January 29, 2010

Upgrading Information Technology

Design

Manage

Test

Enforcing a strict “flow-down” requirement hierarchy inhibits and delays communication of operational concerns

January 29, 2010
An efficient IT system is needed for enabling concerns to flow up the requirement hierarchy.
An efficient IT system is needed for enabling concerns to flow up the requirement hierarchy.
An efficient IT system is needed for enabling concerns to flow up the requirement hierarchy. Decentralization requires more IT infrastructure to streamline processes. Modern test control room manages data and unifies interfaces.

New technology and upgraded integrative tests deliver more sensor data.
Human Factors in Design Concepts

Considerations:
- Ergonomics
- Anthropometrics
- Intuitive operation

Astronaut

HDU (Habitat Demonstration Unit)

Assembly Facilities:
- Platform height
- Adjustability

Ares 1-X Platform

Altair Lunar Lander

Images taken from www.nasa.gov

January 29, 2010

Human Input and Automation

Survey SME (subject matter experts) using Delphi Method
- Anonymity
- Non-leading questions
- Task duration estimates for median, 95%, and minimum

Automation in warehouses
- Shelf Robot
 - Fast & accurate retrieval and delivery of items
- Trackless Transport Robots
 - Great for high-traffic, low-priority item transportation
 - Critical-path space components can be delayed

Training
- Operators of equipment must practice operations procedures

Maintain human involvement in monitoring autonomous operations and develop feedback loop

Image taken from www.spectrum.com

January 29, 2010
Reduce costs by adapting old technologies and by customizing COTS equipment

Intuitive design of displays allows for smooth operation
Emergency Egress Systems

Basket

Shuttle

Launch Pad

Safety Trigger

Constellation

M-113

Bunker

Considerations:
- Medical condition of astronauts
- Reliability
- Speed of exit
- Maintenance of system
- Safety of destination

Images taken from www.nasa.gov

Summary

January 29, 2010

January Operational Internship Experience

Page 69
Design Lessons Learned

- Learn from the experts (SME)
- Design with flexibility in mind
- Consider human factors
 - Accessibility of replaceable and high failure rate components
- Incorporate redundancies and abort systems to reduce risk
- Implications of logistic capacities & facilities (i.e. factor logistics into design trades)
- Compatibility, re-usability & disposability
- Standardization & commonality
- Consideration of environment and use of hazardous materials

January 29, 2010

Operational Lessons from the Experts

- Hardware fit check
- Inclusion of test equipment in operational planning
- Track parts while limiting overwhelming documentation
- Benefits of DES trade studies
- Lean Eng. (Six Sigma & 5S)
 - Efficiency of manufacture, assembly and maintenance
 - Just-in-time delivery
 - Optimize online/offline pathways
As future engineers, we will remember how design and operations are interrelated.

 Responsible for maintenance costs
 Dictates necessary support equipment and facilities

Minimize lifecycle costs
Ensure feasibility

Operations should be considered throughout the design process

Acknowledgements

- Massachusetts Space Grant for its generous support
- Ms. Raji Patel & Dr. Jeffrey Hoffman
- Thank you to all these personnel and more:
 - Wanda Petty, Elizabeth Kline, Robert Holl, Michelle Dailey, Andrew Knutson, Sarah Schilling, Michael Turner, Michael Hartnett, Jeffrey Skaja, Ahmad Declase, Alicia Mendoza, Kevin Panik, Kelly Corridan, Seth Berkowitz, Robert Libbey, Jim Thomas, Lamar Russell, Troy Heron, Janet Parker, Terry Kenney, Anne Gavarosac, Frank Ochoa-Gonzales, John Weeks, Michael Vinje, Steve Clarke, Debra Kral, Dave Shelton, Kirk Logsdon, Tim Honeycutt, Tammy, Stephanie Sowards, Scott Colloredo, Tracy Gill, Norm Tokarz, Charles Shelton, Sasha Sims, Jessica Parsons, Paul Mogan, Ronnie Rodriguez, Linda Trocine, Prentice Washington, John Moss, Joe Madden, Mike Stelzer, Jeremy Parsons, Cliff, Gregory Clements, Pat Simpkins, Robert Mueller, Alfredo Menendez, Ralonda Farrant, Curtis Williams, Timothy McKelvey, Albert Folensbee, Rolando Nieves, Jeffrey Crowder, Karen Mendoza, Roger Mathews, Patricia, Julie Peacock, Harold Turner, Jim Shaver...

- Special thanks to Ms. Helen Kane