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Abstract We present a simple multi-dimensional exhaustive search method to obtain, in 
a reasonable time, the optimal solution of a nonlinear programming problem. It is more 
relevant in the present day non-mainframe computing scenario where an estimated 95% 
computing resources remains unutilized and computing speed touches petaflops. While 
the processor speed is doubling every 18 months, the band width is doubling every 12 
months, and the hard disk space is doubling every 9 months. A randomized search 
algorithm or, equivalently, an evolutionary search method is often used instead of an 
exhaustive search algorithm. The reason is that a randomized approach is usually 
polynomial-time, i.e., fast while an exhaustive.search method is exponential-time i.e., 
slow. We discuss the increasing importance of exhaustive search in optimization with the 
steady increase of computing power for solving many real-world problems of reasonable 
size. We also discuss the computational error and complexity of the search algorithm 
focusing on the fact that no measuring device can usually measure a quantity with an 
accuracy greater than 0.005%. We stress the fact that the quality of solution of the 
exhaustive search - a deterministic method - is better than that of randomized search. In 
21 st century computing environment, exhaustive search cannot be left aside as an 
untouchable and it is not always exponential. We also describe a possible application of 
these algorithms in improving the efficiency of solar cells - a real hot topic - in the 
current energy crisis. These algorithms could be excellent tools in the hands of 
experimentalists and could save not only large amount of time needed for experiments 
but also could validate the theory against experimental results fast. 

1. Introduction 

The computing scene has been changing rapidly since 1940's. We have come a long way 
since then. The processing speed, executable memory storage, hard disk space, as well as 
band width are practically doubling every year. During 1946-53, the computing speed 
was about 103 operations per sec, during 1953-59 and 1959-64, it was 5 x 104 and 



5xl0 S operations per sec, respectively. During 1964-69 and 1969-75, the computing 

speed improved to 106
, 20 x 106 operations per sec, respectively along with the incessant 

innovations in silicon technology and architecture. During 1975-2010, the speed went on 
doubling. Today it has reached over 100 teraflops (100 x 1012 = 10 14 floating-point 

operations per sec) and touched the petaflops (lOIS flops) [1]. During most part of 
twentieth century, it was the main-frame (single) computer used by a large number of 
users in queues having varying computing resources requirements, which was the 
dominant factor. As this century was approaching to a close, the main-frame started 
heading toward oblivion. Its place was being occupied by laptop/desktop computers. 
Each individual started having his own computer. The dependence on the main frame 
slowly vanished. Miniaturization, portability, and internet revolutionized the computing 
scene to such an extent that the whole world will come to a halt if the computer halts. 
Aircrafts will be grounded, banks will be non-functional, the government departments 
will cease to function. Besides, we are now having an estimated over 95% computing 
power unutilized and hence a waste unlike that ofthe main-frame days. 

This enormous computing power available to us has also affected the importance and 
significance of an algorithm which was earlier considered too slow ( exponential-time) 
and so untouchable. The computer scientists by virtue of their computational complexity 
study had suggested the user against using combinatorial! exponential search methods 
unless the problem is too small. In essence, they have advised against employing these 
algorithms for real-world problems which are often not too small and also not often too 
large. In this context, we look back and attempt to take a stock of the situation. We try to 
use multi-dimensional exhaustive search and find out to which extent it is capable of 
solving many physical problems, mainly optimization problems. We also compare these 
search against randomized search to bring out the pros and cons of these two procedures. 

In section 2, we state the two types of general nonlinear optimization problems with 
simple examples. We describe the exhaustive search method as well as a simple 
randomized search algorithm for nonlinear optimization in this section along with their 
computational complexities. We consider numerical examples involving simple 
nonlinear optimization problems of the second type (a more general one) in section 3 
while we discuss possible applications for maximizing the efficiency of a solar cell in 
section 4. Section 5 comprises conclusions. . 

2. The Problems and the Methods 

2.1 The problems The nonlinear optimization problems that we will discuss are stated in 
two different types. 

Type 1 Problem Compute Xi i=I(I)n to maximizej(x l ,x2 ,··,xn ) subject to 

a i ::; Xi ::; Pi' where a p Pi i = 1(1)n are numerically specified and the function 

j(xto X 2 ,··, xJ are explicitly stated in a non-tabular form. 

Type 2 Problem Compute Xi 

g/x to x2 ,··,xJ::; Yj j = 1(1)m, 

i=I(I)n to maximize j(xto x2 ,··,xJ subject to 

a i ::; Xi::; Pi i = 1(I)n, where apPi i = 1(1)n and 



Yj' j = l(l)m are numerically specified, the functions gj(XI>X2 ,"',xJ j = l(l)m and 

f(x l , x 2 ,···, xn) are explicitly provided in a non-tabular form. 

Type 2 problem is more general than Type 1 problem. So we will provide the search 
methods for Type 2 problem. 

2.2 The exhaustive search method The exhaustive search method for both the types of 
problems divides/dissects the n-dimensional space defined by a i ::; Xi ::; Pi i = l(1)n , 

i.e., n-dimensional rectangular cuboid (n - dimensional rectangular parallelepiped or 
equivalently, n - orthotope ) - or simply called cuboid here - into an array of smaller 
cuboids. Let hi' i = l(l)n be the length of the i - th side of the smaller cuboid. Then 

hi = (Pi - a i ) / ki i = l(1)n , where ki is the number of equispaced divisions of the i - th 
n 

side of the original cuboid. Thus we will have I1 k points, viz., 
i=1 I 

(al ,a2 ,"',an ),(al +hl ,a2 ,"',an ), (a l +2hl ,aZ,···,an ), ••• , Cal +klhl,aZ,···,an ), 

(al,a z +hz ,···,an ),(al ,a2 +2h2,···,an ), ••• , (a1,a2 +kzh2,···,aJ, 

at which we compute the value of the function f. We reject those points and their 

corresponding values of the function f at which one or more constraints 

gj(xl>x2 ,"',xJ::; Yj j = l(1)m have not been satisfied. We then choose that point out 

of the remaining points for which the value of f has become maximum. This point is the 

required approximate solution vector. Call it x(1) - the solution at the first iteration. In 
order to improve the solution and compute the relative error bounds we repeat the process 
by halving the length hi' i.e., by doubling' the number equispaced divisions ki . 

Consequently we get the improved vector X(2) - the solution at the second iteration. We 
then obtain the relative error II X(2) - X(I) II/II X(2) II in the solution vector X(I). Thus, we 

continue the process till we obtain the desired (relative) accuracy, say 0.5 x 10-4
, in the 

solution vector X(k) , i.e. 

II X(k+l) _X(k) II/II X(k+l) II::; 0.5x10-4. 

2.3 The randomized search method The randomized search algorithm for both the 
types of problems considers the original cuboid D, generates uniformly distributed p 

random points (n - dimensional vectors) III the original domain 
D = {Xi I a i ::; Xi ::; Pi i = l(l)n} . It computes the function f at these p points. As in 

the exhaustive search method, we reject those points (out of these p points) and their 

corresponding values of the function f at which one or more constraints 

g/ XI> X 2 , ... , X J ::; r j j = l(l)m have not been ·satisfied. We then choose that point out 

of the remaining points for which the value of f has become maximum. This point is the 



required approximate solution vector. Call it x(l) - the solution at the first iteration. To 
improve the solution and compute the relative error bounds we repeat the process by 

dividing the domain D into two domains DI and D2 , where 

DI = {Xi I a i :s; Xi :s; fJi 12 i = l(l)n} and D2 = {Xi I fJi 12 < Xi :s; fJi i = l(1)n}. In each 

of the two domains, the algorithm generates uniformly distributed p random points in 

the same way as is done for the original domain. We reject as before those points (out of 
these 2 p points) and their corresponding values of the function f at which one or more 

constraints g;C xI' X 2' .. , X J :s; r j j = 1(I)m haVe not been satisfied. We then choose 

that point (X(2)) out of the remaining points for which the value of f has become 

maximum. Consequently we get the improved vector X(2) - the solution at the second 

iteration. We then obtain the relative error II X(2) - X(I) III II X(2) II in the solution vector 

X(I). Each one of the domains DI and D2 are again subdivided into two domains 

resulting into four domains DI I' D 12 ; D2I , D 22 . For each of the four domains, the 

algorithm generates uniformly distributed p random points in each of these four 

domains in the same way as is done for the original domain D. Thus we obtain 4 p 

points. We reject as before those points (out of these 4 p points) and their corresponding 

values of the function f at which one or more constraints 

g;CXpX2,··,XJ:S: rj j = 1(1)m have not been satisfied. We then choose that point 

(X(3)) out of the remaining points for which the value of f has become maximum. 

Consequently we get the improved vector X(3) -:- the solution at the third iteration. We 

then obtain the relative error II X(3) - X(2) III II X(3) II in the solution vector X(2). Thus we 

continue the successive iterations in the same way as above till we obtain the desired 

accuracy, say 0.5 x 10-4 
, in the solution vector X(k) , i.e. 

II X(k+l) - X(k) III II X(k+I) II:S; 0.5 x 10-4. 

The initial number of uniformly distributed r~ndom numbers p depends on the specified 

problem and its dimension. The number p should be reasonably large so that the number 

of iterations k + 1 is reasonably small compared to p . 

3. Numerical Example 

We illustrate both the methods usmg a simple two variable nonlinear optimization 
problem 

2 2 
Max f(x i ,x2 ) = -2xl - x 2 + X I X 2 + 8x I + 3x2 .. 

subject to 6xI + 2X2 :s: 20, 2:S; XI :s; 3, 2 ~ x 2 ~ 3 . 

In exhaustive search, we arbitrarily choose 11 points on the xI-axIs, VIZ., XI = 2(0.1)3 
and 11 points on thex2 -axis, viz., x 2 = 2(0.1)3. These constitute 121 pairs of points viz., 

(2,2), (2,2.1), ... , (3,3). Each pair is simply called a point or a vector in the two 



dimensional space. We evaluate the function f (XI' xz) at each of these 121 points. 

Reject those points that do not satisfy the inequality 6x I + 2xz ~ 20 and compute the 

function value for the remaining points and take the largest function value as our 
approximate solution vector X(I) - the first iteration value. Using the following Matlab 
commands (in one line) . . 

i=l; for xl=2:.1:3, for x2=2:.1:3, f=-2*x1.A2-x2.A2+x1.*x2+8*x1+3*x2; if 
(6*xl+2*x2<=20), xx1(i)=x1; xx2(i)=x2; h(i)=f; i=i+l; end; end; end; H=[xxl' xx2' 
h']; Hsort=sortrows(H, 3), a=size(Hsort); Hsort(a(l),:) 

we get XI' X Z ' and the objective function value as [XI X z f] = [2.5 2.5 15]. Our 

X(I) = [2.5 2.5Y, where tdenotes the transpose. 

If we now replace .1 in the first line of the Matlab commands by .05 in both the 
places then we get [XI X z f) = [2.45 2.65 15.015]. Our X(2) = [2.45 2.65]1. 

Ifwe now replace .05 in the first line of the Matlab commands by .025 in both the 
places then we get [XI X z f) = [2.475 2.575 15.0163]. Our X(3) = [2.475 2.575Y. 

We continue in this way. When we use the corresponding value .00078125 in the 
first line of the Matlab commands in both the places then we get 
[XI X z f) = [2.4641 2.6078 15.0179]. Thus our xes) = [2.4641 2.6078Y. A true 

solution is [XI X z f) = [2.4643 2.6071 15.0179] 

However, one needs to compute after each iteration starting from the second iteration 
the relative error in the solution vector and proceed until the condition on the relative 
error in the solution vector X(k), viz., II X(k+l) - X(k) 11/ II X(k+l) II~ 0.5 x 10-4 is satisfied. 

This satisfaction would imply that the solution vector was correct up to at least 4 
significant digits. 

We are not presenting here an efficient I Matlab code nor are we computing the 
relative errors after each iteration for the foregoiilgcomputations. We are just attempting 
to show that the algorithm is the simplest and produces the best quality solution. It is, 
though exponential, has an important role to play in 21 5t century computing environment 
for solving numerous practical problems including those connected with laboratory 
experiments. In this century, the processor speed is doubling every 18 months, band 
width is doubling every 12 months, and hard disk space is doubling every 9 months. 
Currently the processing speed is of the order of teraflops (101Z floating-point operations 
per sec) and has touched petaflops (l015 flQating point operations per sec). In fact, the 
time for such experiments can be drastically reduced with the aid of such models. There 
are certain areas that involve truly large optimization problems for which the exhaustive 
search can be tractable only when the bounds a i ~ Xi ~ Pi are very sharp/narrow. While 

performing numerical experiments consciously, we do gain significant insight into the 
problem and consequently could reduce the size of each bound on an element of the 

I It can be easily seen that the Matlab code used here .computes the function f at half of the points again 

and again at each successive iteration. This can be avoided while writing an efficient Matlab code. 
Consequently significant computing time can be saved. . 



solution vector. Such a reduction will enable the exhaustive search find a solution in an 
acceptable time frame. In fact one has, unlike the main-frame computing days, a 
complete computer (laptop/desktop) in one's disposal all the time and it is much more 
powerful compared to those during the 20th century computing devices. 

In randomized search we generate arbitrarily p = 100 uniformly distributed pseudo-

random numbers, simply called random numbers, for each element of the solution vector 
x in each of the intervals a i ::; Xi ::; Pi i = 1,2 . The Matlab rand generates a pseudo-

random number ri in [0,1]2. To generate a random number Xi in [apPJ from rp we 

compute Xi = (Pi - aJri + a i i = 1,2 .Thus' using Matlab rand, we will generate 

100 2 = 10000 pairs of points or, simply points (Xl ,x2 ). We evaluate the function 

I(xl' x2 ) at each of these 10000 points. Reject those points that do not satisfy the 

inequality 6x l + 2X2 ::; 20 and compute the function value for the remaining points and 

take the largest function value as our approximate solution vector X(l) - the first iteration 
value. Using the following Matlab commands (in one line) 

» i=l; for j=l:lOO, for k=l:lOO,' x1=l+rand; x2=1+rand; f=-2*x1. A 2-
x2. A 2+x1.*x2+8*xl+3*x2; if (6*xl+2*x2<=20), xxl(i)=x1; xx2(i)=x2; h(i)=f; i=i+l; 
end; end; end; H=[xxl I xx2 ' h']; Hsort=sortrows(H, 3); a=size(Hsort); Hsort(a(l),:) 

we get xl' x2 , and the objective function value as [Xl X 2 I] = [1.9970 2 13.9939] . 

Our X(l) = [1.9970 2f. It can be seen that the rand command produces different values 

every time it is run. This is because of the seed for generation of random numbers, which 
would be different for every new run. By executing the foregoing commands for the 
second time we have obtained [Xl X 2 ', I] ~ [1.9947 1.9914 13.9806]. Our 

X(l) = [1.9947 1.9914f. 

However, if we now replace 100 in the first line of the Matlab commands by 200 in 
both the places then we get [Xl X 2 f] = [1.9963 1.9920 13.9847]. Our 

X(2) = [1.9963 1.9920f. We can see that the solution is not improved. Instead it has 

deteriorated in spite of generating more random numbers. Such a behavior is quite 
expected when we use rand that generates pseudo-random numbers. However, we may 
replace pseudo-random number generator rand by a quasi-random number generator [2-
4] since quasi-random numbers are more uniformly distributed with less discrepancy. 

If we replace 100 by 1000 (in both the places in the foregoing first line of the Matlab 
codes) which is significantly much larger, then we should expect an improvement in the 
solution. The slightly improved solution is [Xl X 2 I] = [1.9996 1.9981 13.9974] 

which is far from satisfactory. Also, the computing time to evaluate the function I 10 

million times besides checking the validity of the inequality 6x l + 2X2 ::; 20 IS enormous 
(over 2 hours) in a 2005 desktop computer. 

2 We have not seen Matlab rand producing exactly 0 and exactly I while generating random numbers. 

Strictly speaking it generates random numbers in (0,1) . However, for our purpose, this does not pose any 

problem, 



However, instead of increasing the number of random numbers, one can divide the 
domain a i :::; Xi :::; f3i i = 1,2 into sub-domains appropriately (not necessarily as 

mentioned in section 2.3). We evaluate the function f(x»x2 ) at all the 100 pairs of 

random points in each of these sub-domains. . Reject those points that do not satisfy the 
inequality 6x1 + 2X2 :::; 20 and retain the remaining points and take that point for which 

the function value is the largest as our approximate solution in a sub-domain. Having 
obtained the point corresponding to the largest function value in each domain, we choose 
the largest of aU these values. The vector (point) corresponding to this largest value will 
be an approximate optimal solution. One can still further subdivide keeping the required 
random numbers unchanged and continue till a desired accuracy is achieved. 

Both the foregoing methods are exponential, the exhaustive search method is 
deterministic and produce better solution at every successive iteration unlike the 
randomized search. The genetic algorithms/ evolutionary approaches are always based on 
the use of a large number of random numbers and are usually polynomial-time. One may 
certainly go for such an algorithm for obtaining an optimal solution. We are here 
concerned with scientists/engineers/students who are not well-versed with such 
algorithms and yet desire to use modeling as an aid to their physicaVchemical 
experiments. The foregoing simple procedures needs no formal knowledge on their part 
and are easy to program in a high level language such as MatlablMathematica. 

4. Application in maximizing solar device efficiency 

Solar devices, particularly solar cells, have not yet become sufficiently competitive and 
are yet to occupy a significant place among widely used energy sources such as those 
from fossil fuel (coal, natural gas, diesel, mineral oil). Fossil fuel is the primary source of 
energy for the world It is increasingly becoming more expensive and straining the 
economy of most countries of the world while exploration is continuing in obtaining 
energy from sources such as the sun and the wind and making it competitive. The energy 
produced from the sun and the wind is increasingly enhanced for our use and it is 
becoming gradually cheaper. The initial investment is a major hurdle while the later 
expenditure in producing energy from the sun (or the wind) is significantly low. A 
situation will crop up in not-so-distant future when the increasing cost of the energy from 
fossil fuel will be comparable to the decreasing cost of energy from the sun. At that time 
the solar energy which is available in abundance and is clean (pollution-free) will 
increasingly start replacing the conventional energy produced by fossil fuel. Currently, 
many solar energy centers are engaged in maximizing the usage of solar energy available 
in abundance. Theoretically one can use up to 40% of the energy obtained from the sun 
while currently we are able to utilize around 15 to 20% of the available solar energy. 
Hence there is a scope to improve the efficiency of solar devices. 

While solar laboratory facilities are increasingly improved and utilized to enhance the 
effective availability of solar energy, computer modeling can be added along with these 
facilities to determine the best/optimal values of the concerned parameters fast. Thus 
such a modeling will cut down the time of experiments with many parameters drastically. 
In fact, in an experiment, we change only one parameter and observe its effect on another 
parameter while the rest of the parameters are kept fixed/unchanged. This is because we, 
the common human beings, are not able to comprehend precisely the effect of 



simultaneous change of several parameters in an experiment on other parameters. 
Computer modeling, on the other hand, is capable of doing this job fast and accurately for 
the experimentalists since the processing speed of the computer has crossed teraflops and 
has touched petaflops (10 15 floating-point operations per second) by the end of the first 
decade of 21 5t century [1]. This speed is over one thousand folds larger than that during 
the last decade of 20th century. We present here two forms of global mathematical models 
for the efficiency of solar cells [5, 6]. Both the models conform to those presented in 
section 2.1. Hence these can be solved by the exhaustive search method (the simplest 
possible method). 

Modell: A single multivariate efficiency function model We need to identifY the 
parameters and their optimal achievable values that allow us to increase the efficiency to 
the maximum possible extent. So far we have identified most of the parameters that 
contribute to the efficiency. In other words, the efficiency has been found to be the 
function of the following parameters as described in terms of the notations presented 
below [5, 6]. 

Notations 

R p = parallel resistance (oc for an ideal device) 

R s = series resistance (0 for an ideal device) 

J = current density flowing in the device 
J sc = short-circuit current 

J 0 = reverse saturation current of the diode 

- J L = current generated by light 

J L = reverse current associated with photo-excitation. 

qJ = voltage = forward current device voltage 

qJoc = open-circuit voltage 

A = area through which current flows 
A = ideality factor 

A = 1 if the transport process is diffusion 
A = 2 if the transport process is recombination 

I = total current = JA (This A is the area unlike the foregoing A which 
can be identified from the context) 

1] = efficiency 

E q = semiconductor band gap 

ff = fil factor 

Prad = total radiation power incident on the cell 

The efficiency 1] is a function ofvariables/parameters Jm,qJoc,A,k,T,q,qJm and possibly 

JpJ,Jo,R"Rp,absorption,photon energy, also. Some of the foregoing parameters 

appear to be related. 



Brief partial sketch of the optimization problem 

subject to 

a 1 ::; J m ::; /31 (max. possible current density) 

a 2 ::;rpoe ::;/32' a 3 ::;A::;/33' a 4 ::;k::;/34' as ::;T::;/3s 

a 6 ::;q::;/36' a 7 ::;rpm::;/37 

as ::;J::;/3s, a 9 ::;JL ::;/39' aiD ::;Jo ::;/310 

0::; rpm - rpoe + (AkT / q) In I (qrpm / AkT) + 11::; 61 (small positive value) 

0::; rpoe - (AkT / q) In I (JL / J o) + 11::; 62 (another appropriate small value) 

Photon energy versus optical absorption curve provides another inequality 
J - rp curve provides yet another inequality 

All variables ~ 0 . 

Having compiled all the available inequalities,We insert the minimum and maximum 
attainable values ai' /3i' These values could be obtained from the laboratory experiments 

or from literature depicting experimental results. An evolutionary method may be devised 
to solve the optimization problem. This solution will enable us to determine the best 
combination of the concerned (attainable) parameter values that will maximize the 
efficiency of the solar cell. In fact, since there are numerous possible combinations (as it 
is a combinatorial problem), laboratory experimentation to explore all possible 
combination is intractable. Through the use of a personal computer which executes over 
one billion floating-point operations per second (FLOPS), we should be able to get the 
solution (i.e., the desired optimal parameter values) in a matter of minutes. These values 
will readily help the laboratory experimentation thus allowing the experimentalists to 
save significant time on experimentation taking only two parameters at a time while 
keeping others fixed. Unfortunately the actual situation is not as simple as depicted by the 
foregoing multi variable efficiency function model. For if it is so, then modeling alone 
would have saved the enormous trouble of highly time consuming experimentation. 

Some of the critical issues for thin film solar cell models are number of layers, band 
discontinuities, band gaps, and charge in deep bulk states as well as in deep interface 
states. These need to be appropriately taken care of. 

Model 2: Nonlinear programming model involving all possible/available relations We 
have seen many relations - equations and inequalities - involving thin film pv devices 
including their concerned materials/compounds. The concerned nonlinear program [6] in 
a general form can be written as 



Maximize efficiency 'l(x\, X 2 ' ... , xn ) subject to 

Jii ::; or = f(x p X 2 ' ···,xJ::; or = Vi' i = l(l)m 

( i.e., all possible equations / inequations so far available to us) 

a
j
. ::; x ::; p, j = l(1)n. 

. J J 

5. Conclusions 

We have described two possible models, viz., Model l: A single multivariate efficiency 
function model and Model 2: Nonlinear programming model involving all 
possible/available relations. The efficiency function in Model 2 is chosen as the function 
same as in Model 1 or a better one which is (so far) available or developed. Model 2 is 
definitely better than Model 1 in terms of providing realistic values of the parameters that 
go to enhance/maximize the efficiency. But computationally it is more involved. If there 
is any inconsistency among the relations (equations and inequalities), it would not be 
possible to get a solution that satisfies all the relations. In such a situation, it is necessary 
to check and correct the mathematical model for the human mistake committed in 
modeling. The physical model derived from the material universe is assumed to be 
errorless (although it need not be). ' 

One important computational aspect is that equality relationships in physical 
quantities cannot, in general, exist. This is because of the fact that exact physical 
quantities cannot be exactly represented nor can these be exactly measured. A measuring 
device is not, in general, more accurate than 0.005% [7]. Consequently we represent 
almost all equations in terms of inequalities. Even the parameters/variables affecting the 
efficiency are expressed in the model in terms of their realistic, possibly narrow, bounds 
as has been done in the first model. 

The nonlinear program not being able to/produce a solution implies that the nonlinear 
program model needs to be correctedlmodifiedbased on determining the contradictory 
inequation(s)/bounds in the model as stated earlier. Such a contradiction (inconsistency) 
could creep in always due to human mistakes/measuring device errors (accuracy 
::; 0.005%). 

The later model (Model 2) is certainly not the final model that is the perfect/best one 
and that can never be improved. Our increasing knowledge about the physics of the solar 
cell will definitely result in a superior cell in course of time. Thus modeling will continue 
rather indefinitely in the realm of thin film pv devices. Although the current success of 
such a modeling is low in terms of aiding the experimentalists as well as reducing the 
cost and time of experiments, a day will come when we are much better informed through 
past mistakes/failures. Consequently modeling, we believe, will be the dominant tool in 
solar cell efficiency arena. However, the later form of the model (Model 2), we believe, is 
completely general. Only the improvement will occur in the efficiency function and all 
the two sets of inequalities. While the modeling along with the laboratory experimental 
activities helps us to gain increasingly deeper insight, the general model will continue to 
improve in its contents but not in its form [5, 6]. In fact, the models proposed are not 
static but dynamic in their contents. 



The foregoing two models are essentially the ories which can be solved using the 
methods described in section 2. Specifically, the best method is the exhaustive search 
described in section 2.2. It can be seen that the way we have presented the method 
involves computation of the function(s) at the same points again and again. Hence the 
presented exhaustive search is crude and can be made more efficient by omitting the 
concerned repetitions. Such omissions need some additional programming effort and is 
recommended definitely for reasonably large problems. However, for not too large a 
problem,the exhaustive search described in $ection 2.2 is not only too easy to be readily 
coded but also will produce the required optimal solution in an acceptable time frame. 

Many models have been proposed in literature [8-28]. All these have varying degree 
of advantages and scope and are tractable. The exhaustive search for both Models 1 and 
2, on the other hand, is the most easily followed and simplest for coding in, say, Matlab 
by scientists/engineers/students who do not have formal programming knowledge. It is 
capable of producing the most accurate solution within the precision of computation, but 
it is exponential-time and intractable if the posed modeling problem is very large. A 
randomized algorithm based on the usage of quasi-random numbers will not be able to 
produce as good a solution as the one produced by the exhaustive search. Further we will 
not be able to deterministically/precisely ascertain, within reasonably narrow bounds, the 
quality (relative error bounds) of the solution in a randomized algorithm, 
probabilistically, this can be determined though. 

However, due to the availability of enormous computing power touching petaflops [1] 
in the current (first) decade of 21 st century (see also sections 1 and 3), the exponential
time exhaustive search is not altogether untouchable if the posed real-world modeling 
problem is not very large. In fact we do have many small as well as large real-world 
problems for which we have not tried exhaustive . search consciously possibly thinking 
about its combinatorial computational (exponential) complexity. Now it is slowly 
entering into the realm of computation not only because of ever increasing computing 
power [7] but also because of (i) availability of individual computer (lap-top/desktop) 
and (ii) non-utilization of an estimated 95% computing resources (power) unlike main
frame era in mid-/late 20th century. 
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