
I.

Exhaustive Versus Randomized Searches for Nonlinear Optimization in
21 st Century Computing: Solar Application

Syamal K. Sen
Department of Mathematical Sciences, Florida Institute of Technology, 150 West

University Boulevard, Melbourne, FL 32901-6975, United States
sksen@fit.edu

and

Gholam Ali Shaykhian
National Aeronautics and Space Administration (NASA), Technical Integration Office
(IT-G), Information Technology (IT) Directorate, Kennedy Space Center, FL 32899,

United States
ali.shaykhian@nasa.gov

Abstract We present a simple multi-dimensional exhaustive search method to obtain, in
a reasonable time, the optimal solution of a nonlinear programming problem. It is more
relevant in the present day non-mainframe computing scenario where an estimated 95%
computing resources remains unutilized and computing speed touches petaflops. While
the processor speed is doubling every 18 months, the band width is doubling every 12
months, and the hard disk space is doubling every 9 months. A randomized search
algorithm or, equivalently, an evolutionary search method is often used instead of an
exhaustive search algorithm. The reason is that a randomized approach is usually
polynomial-time, i.e., fast while an exhaustive.search method is exponential-time i.e.,
slow. We discuss the increasing importance of exhaustive search in optimization with the
steady increase of computing power for solving many real-world problems of reasonable
size. We also discuss the computational error and complexity of the search algorithm
focusing on the fact that no measuring device can usually measure a quantity with an
accuracy greater than 0.005%. We stress the fact that the quality of solution of the
exhaustive search - a deterministic method - is better than that of randomized search. In
21 st century computing environment, exhaustive search cannot be left aside as an
untouchable and it is not always exponential. We also describe a possible application of
these algorithms in improving the efficiency of solar cells - a real hot topic - in the
current energy crisis. These algorithms could be excellent tools in the hands of
experimentalists and could save not only large amount of time needed for experiments
but also could validate the theory against experimental results fast.

1. Introduction

The computing scene has been changing rapidly since 1940's. We have come a long way
since then. The processing speed, executable memory storage, hard disk space, as well as
band width are practically doubling every year. During 1946-53, the computing speed
was about 103 operations per sec, during 1953-59 and 1959-64, it was 5 x 104 and

5xl0 S operations per sec, respectively. During 1964-69 and 1969-75, the computing

speed improved to 106
, 20 x 106 operations per sec, respectively along with the incessant

innovations in silicon technology and architecture. During 1975-2010, the speed went on
doubling. Today it has reached over 100 teraflops (100 x 1012 = 10 14 floating-point

operations per sec) and touched the petaflops (lOIS flops) [1]. During most part of
twentieth century, it was the main-frame (single) computer used by a large number of
users in queues having varying computing resources requirements, which was the
dominant factor. As this century was approaching to a close, the main-frame started
heading toward oblivion. Its place was being occupied by laptop/desktop computers.
Each individual started having his own computer. The dependence on the main frame
slowly vanished. Miniaturization, portability, and internet revolutionized the computing
scene to such an extent that the whole world will come to a halt if the computer halts.
Aircrafts will be grounded, banks will be non-functional, the government departments
will cease to function. Besides, we are now having an estimated over 95% computing
power unutilized and hence a waste unlike that ofthe main-frame days.

This enormous computing power available to us has also affected the importance and
significance of an algorithm which was earlier considered too slow (exponential-time)
and so untouchable. The computer scientists by virtue of their computational complexity
study had suggested the user against using combinatorial! exponential search methods
unless the problem is too small. In essence, they have advised against employing these
algorithms for real-world problems which are often not too small and also not often too
large. In this context, we look back and attempt to take a stock of the situation. We try to
use multi-dimensional exhaustive search and find out to which extent it is capable of
solving many physical problems, mainly optimization problems. We also compare these
search against randomized search to bring out the pros and cons of these two procedures.

In section 2, we state the two types of general nonlinear optimization problems with
simple examples. We describe the exhaustive search method as well as a simple
randomized search algorithm for nonlinear optimization in this section along with their
computational complexities. We consider numerical examples involving simple
nonlinear optimization problems of the second type (a more general one) in section 3
while we discuss possible applications for maximizing the efficiency of a solar cell in
section 4. Section 5 comprises conclusions. .

2. The Problems and the Methods

2.1 The problems The nonlinear optimization problems that we will discuss are stated in
two different types.

Type 1 Problem Compute Xi i=I(I)n to maximizej(x l ,x2 ,··,xn) subject to

a i ::; Xi ::; Pi' where a p Pi i = 1(1)n are numerically specified and the function

j(xto X 2 ,··, xJ are explicitly stated in a non-tabular form.

Type 2 Problem Compute Xi

g/x to x2 ,··,xJ::; Yj j = 1(1)m,

i=I(I)n to maximize j(xto x2 ,··,xJ subject to

a i ::; Xi::; Pi i = 1(I)n, where apPi i = 1(1)n and

Yj' j = l(l)m are numerically specified, the functions gj(XI>X2 ,"',xJ j = l(l)m and

f(x l , x 2 ,···, xn) are explicitly provided in a non-tabular form.

Type 2 problem is more general than Type 1 problem. So we will provide the search
methods for Type 2 problem.

2.2 The exhaustive search method The exhaustive search method for both the types of
problems divides/dissects the n-dimensional space defined by a i ::; Xi ::; Pi i = l(1)n ,

i.e., n-dimensional rectangular cuboid (n - dimensional rectangular parallelepiped or
equivalently, n - orthotope) - or simply called cuboid here - into an array of smaller
cuboids. Let hi' i = l(l)n be the length of the i - th side of the smaller cuboid. Then

hi = (Pi - a i) / ki i = l(1)n , where ki is the number of equispaced divisions of the i - th
n

side of the original cuboid. Thus we will have I1 k points, viz.,
i=1 I

(al ,a2 ,"',an),(al +hl ,a2 ,"',an), (a l +2hl ,aZ,···,an), ••• , Cal +klhl,aZ,···,an),

(al,a z +hz ,···,an),(al ,a2 +2h2,···,an), ••• , (a1,a2 +kzh2,···,aJ,

at which we compute the value of the function f. We reject those points and their

corresponding values of the function f at which one or more constraints

gj(xl>x2 ,"',xJ::; Yj j = l(1)m have not been satisfied. We then choose that point out

of the remaining points for which the value of f has become maximum. This point is the

required approximate solution vector. Call it x(1) - the solution at the first iteration. In
order to improve the solution and compute the relative error bounds we repeat the process
by halving the length hi' i.e., by doubling' the number equispaced divisions ki .

Consequently we get the improved vector X(2) - the solution at the second iteration. We
then obtain the relative error II X(2) - X(I) II/II X(2) II in the solution vector X(I). Thus, we

continue the process till we obtain the desired (relative) accuracy, say 0.5 x 10-4
, in the

solution vector X(k) , i.e.

II X(k+l) _X(k) II/II X(k+l) II::; 0.5x10-4.

2.3 The randomized search method The randomized search algorithm for both the
types of problems considers the original cuboid D, generates uniformly distributed p

random points (n - dimensional vectors) III the original domain
D = {Xi I a i ::; Xi ::; Pi i = l(l)n} . It computes the function f at these p points. As in

the exhaustive search method, we reject those points (out of these p points) and their

corresponding values of the function f at which one or more constraints

g/ XI> X 2 , ... , X J ::; r j j = l(l)m have not been ·satisfied. We then choose that point out

of the remaining points for which the value of f has become maximum. This point is the

required approximate solution vector. Call it x(l) - the solution at the first iteration. To
improve the solution and compute the relative error bounds we repeat the process by

dividing the domain D into two domains DI and D2 , where

DI = {Xi I a i :s; Xi :s; fJi 12 i = l(l)n} and D2 = {Xi I fJi 12 < Xi :s; fJi i = l(1)n}. In each

of the two domains, the algorithm generates uniformly distributed p random points in

the same way as is done for the original domain. We reject as before those points (out of
these 2 p points) and their corresponding values of the function f at which one or more

constraints g;C xI' X 2' .. , X J :s; r j j = 1(I)m haVe not been satisfied. We then choose

that point (X(2)) out of the remaining points for which the value of f has become

maximum. Consequently we get the improved vector X(2) - the solution at the second

iteration. We then obtain the relative error II X(2) - X(I) III II X(2) II in the solution vector

X(I). Each one of the domains DI and D2 are again subdivided into two domains

resulting into four domains DI I' D 12 ; D2I , D 22 . For each of the four domains, the

algorithm generates uniformly distributed p random points in each of these four

domains in the same way as is done for the original domain D. Thus we obtain 4 p

points. We reject as before those points (out of these 4 p points) and their corresponding

values of the function f at which one or more constraints

g;CXpX2,··,XJ:S: rj j = 1(1)m have not been satisfied. We then choose that point

(X(3)) out of the remaining points for which the value of f has become maximum.

Consequently we get the improved vector X(3) -:- the solution at the third iteration. We

then obtain the relative error II X(3) - X(2) III II X(3) II in the solution vector X(2). Thus we

continue the successive iterations in the same way as above till we obtain the desired

accuracy, say 0.5 x 10-4
, in the solution vector X(k) , i.e.

II X(k+l) - X(k) III II X(k+I) II:S; 0.5 x 10-4.

The initial number of uniformly distributed r~ndom numbers p depends on the specified

problem and its dimension. The number p should be reasonably large so that the number

of iterations k + 1 is reasonably small compared to p .

3. Numerical Example

We illustrate both the methods usmg a simple two variable nonlinear optimization
problem

2 2
Max f(x i ,x2) = -2xl - x 2 + X I X 2 + 8x I + 3x2 ..

subject to 6xI + 2X2 :s: 20, 2:S; XI :s; 3, 2 ~ x 2 ~ 3 .

In exhaustive search, we arbitrarily choose 11 points on the xI-axIs, VIZ., XI = 2(0.1)3
and 11 points on thex2 -axis, viz., x 2 = 2(0.1)3. These constitute 121 pairs of points viz.,

(2,2), (2,2.1), ... , (3,3). Each pair is simply called a point or a vector in the two

dimensional space. We evaluate the function f (XI' xz) at each of these 121 points.

Reject those points that do not satisfy the inequality 6x I + 2xz ~ 20 and compute the

function value for the remaining points and take the largest function value as our
approximate solution vector X(I) - the first iteration value. Using the following Matlab
commands (in one line) . .

i=l; for xl=2:.1:3, for x2=2:.1:3, f=-2*x1.A2-x2.A2+x1.*x2+8*x1+3*x2; if
(6*xl+2*x2<=20), xx1(i)=x1; xx2(i)=x2; h(i)=f; i=i+l; end; end; end; H=[xxl' xx2'
h']; Hsort=sortrows(H, 3), a=size(Hsort); Hsort(a(l),:)

we get XI' X Z ' and the objective function value as [XI X z f] = [2.5 2.5 15]. Our

X(I) = [2.5 2.5Y, where tdenotes the transpose.

If we now replace .1 in the first line of the Matlab commands by .05 in both the
places then we get [XI X z f) = [2.45 2.65 15.015]. Our X(2) = [2.45 2.65]1.

Ifwe now replace .05 in the first line of the Matlab commands by .025 in both the
places then we get [XI X z f) = [2.475 2.575 15.0163]. Our X(3) = [2.475 2.575Y.

We continue in this way. When we use the corresponding value .00078125 in the
first line of the Matlab commands in both the places then we get
[XI X z f) = [2.4641 2.6078 15.0179]. Thus our xes) = [2.4641 2.6078Y. A true

solution is [XI X z f) = [2.4643 2.6071 15.0179]

However, one needs to compute after each iteration starting from the second iteration
the relative error in the solution vector and proceed until the condition on the relative
error in the solution vector X(k), viz., II X(k+l) - X(k) 11/ II X(k+l) II~ 0.5 x 10-4 is satisfied.

This satisfaction would imply that the solution vector was correct up to at least 4
significant digits.

We are not presenting here an efficient I Matlab code nor are we computing the
relative errors after each iteration for the foregoiilgcomputations. We are just attempting
to show that the algorithm is the simplest and produces the best quality solution. It is,
though exponential, has an important role to play in 21 5t century computing environment
for solving numerous practical problems including those connected with laboratory
experiments. In this century, the processor speed is doubling every 18 months, band
width is doubling every 12 months, and hard disk space is doubling every 9 months.
Currently the processing speed is of the order of teraflops (101Z floating-point operations
per sec) and has touched petaflops (l015 flQating point operations per sec). In fact, the
time for such experiments can be drastically reduced with the aid of such models. There
are certain areas that involve truly large optimization problems for which the exhaustive
search can be tractable only when the bounds a i ~ Xi ~ Pi are very sharp/narrow. While

performing numerical experiments consciously, we do gain significant insight into the
problem and consequently could reduce the size of each bound on an element of the

I It can be easily seen that the Matlab code used here .computes the function f at half of the points again

and again at each successive iteration. This can be avoided while writing an efficient Matlab code.
Consequently significant computing time can be saved. .

solution vector. Such a reduction will enable the exhaustive search find a solution in an
acceptable time frame. In fact one has, unlike the main-frame computing days, a
complete computer (laptop/desktop) in one's disposal all the time and it is much more
powerful compared to those during the 20th century computing devices.

In randomized search we generate arbitrarily p = 100 uniformly distributed pseudo-

random numbers, simply called random numbers, for each element of the solution vector
x in each of the intervals a i ::; Xi ::; Pi i = 1,2 . The Matlab rand generates a pseudo-

random number ri in [0,1]2. To generate a random number Xi in [apPJ from rp we

compute Xi = (Pi - aJri + a i i = 1,2 .Thus' using Matlab rand, we will generate

100 2 = 10000 pairs of points or, simply points (Xl ,x2). We evaluate the function

I(xl' x2) at each of these 10000 points. Reject those points that do not satisfy the

inequality 6x l + 2X2 ::; 20 and compute the function value for the remaining points and

take the largest function value as our approximate solution vector X(l) - the first iteration
value. Using the following Matlab commands (in one line)

» i=l; for j=l:lOO, for k=l:lOO,' x1=l+rand; x2=1+rand; f=-2*x1. A 2-
x2. A 2+x1.*x2+8*xl+3*x2; if (6*xl+2*x2<=20), xxl(i)=x1; xx2(i)=x2; h(i)=f; i=i+l;
end; end; end; H=[xxl I xx2 ' h']; Hsort=sortrows(H, 3); a=size(Hsort); Hsort(a(l),:)

we get xl' x2 , and the objective function value as [Xl X 2 I] = [1.9970 2 13.9939] .

Our X(l) = [1.9970 2f. It can be seen that the rand command produces different values

every time it is run. This is because of the seed for generation of random numbers, which
would be different for every new run. By executing the foregoing commands for the
second time we have obtained [Xl X 2 ', I] ~ [1.9947 1.9914 13.9806]. Our

X(l) = [1.9947 1.9914f.

However, if we now replace 100 in the first line of the Matlab commands by 200 in
both the places then we get [Xl X 2 f] = [1.9963 1.9920 13.9847]. Our

X(2) = [1.9963 1.9920f. We can see that the solution is not improved. Instead it has

deteriorated in spite of generating more random numbers. Such a behavior is quite
expected when we use rand that generates pseudo-random numbers. However, we may
replace pseudo-random number generator rand by a quasi-random number generator [2-
4] since quasi-random numbers are more uniformly distributed with less discrepancy.

If we replace 100 by 1000 (in both the places in the foregoing first line of the Matlab
codes) which is significantly much larger, then we should expect an improvement in the
solution. The slightly improved solution is [Xl X 2 I] = [1.9996 1.9981 13.9974]

which is far from satisfactory. Also, the computing time to evaluate the function I 10

million times besides checking the validity of the inequality 6x l + 2X2 ::; 20 IS enormous
(over 2 hours) in a 2005 desktop computer.

2 We have not seen Matlab rand producing exactly 0 and exactly I while generating random numbers.

Strictly speaking it generates random numbers in (0,1) . However, for our purpose, this does not pose any

problem,

However, instead of increasing the number of random numbers, one can divide the
domain a i :::; Xi :::; f3i i = 1,2 into sub-domains appropriately (not necessarily as

mentioned in section 2.3). We evaluate the function f(x»x2) at all the 100 pairs of

random points in each of these sub-domains. . Reject those points that do not satisfy the
inequality 6x1 + 2X2 :::; 20 and retain the remaining points and take that point for which

the function value is the largest as our approximate solution in a sub-domain. Having
obtained the point corresponding to the largest function value in each domain, we choose
the largest of aU these values. The vector (point) corresponding to this largest value will
be an approximate optimal solution. One can still further subdivide keeping the required
random numbers unchanged and continue till a desired accuracy is achieved.

Both the foregoing methods are exponential, the exhaustive search method is
deterministic and produce better solution at every successive iteration unlike the
randomized search. The genetic algorithms/ evolutionary approaches are always based on
the use of a large number of random numbers and are usually polynomial-time. One may
certainly go for such an algorithm for obtaining an optimal solution. We are here
concerned with scientists/engineers/students who are not well-versed with such
algorithms and yet desire to use modeling as an aid to their physicaVchemical
experiments. The foregoing simple procedures needs no formal knowledge on their part
and are easy to program in a high level language such as MatlablMathematica.

4. Application in maximizing solar device efficiency

Solar devices, particularly solar cells, have not yet become sufficiently competitive and
are yet to occupy a significant place among widely used energy sources such as those
from fossil fuel (coal, natural gas, diesel, mineral oil). Fossil fuel is the primary source of
energy for the world It is increasingly becoming more expensive and straining the
economy of most countries of the world while exploration is continuing in obtaining
energy from sources such as the sun and the wind and making it competitive. The energy
produced from the sun and the wind is increasingly enhanced for our use and it is
becoming gradually cheaper. The initial investment is a major hurdle while the later
expenditure in producing energy from the sun (or the wind) is significantly low. A
situation will crop up in not-so-distant future when the increasing cost of the energy from
fossil fuel will be comparable to the decreasing cost of energy from the sun. At that time
the solar energy which is available in abundance and is clean (pollution-free) will
increasingly start replacing the conventional energy produced by fossil fuel. Currently,
many solar energy centers are engaged in maximizing the usage of solar energy available
in abundance. Theoretically one can use up to 40% of the energy obtained from the sun
while currently we are able to utilize around 15 to 20% of the available solar energy.
Hence there is a scope to improve the efficiency of solar devices.

While solar laboratory facilities are increasingly improved and utilized to enhance the
effective availability of solar energy, computer modeling can be added along with these
facilities to determine the best/optimal values of the concerned parameters fast. Thus
such a modeling will cut down the time of experiments with many parameters drastically.
In fact, in an experiment, we change only one parameter and observe its effect on another
parameter while the rest of the parameters are kept fixed/unchanged. This is because we,
the common human beings, are not able to comprehend precisely the effect of

simultaneous change of several parameters in an experiment on other parameters.
Computer modeling, on the other hand, is capable of doing this job fast and accurately for
the experimentalists since the processing speed of the computer has crossed teraflops and
has touched petaflops (10 15 floating-point operations per second) by the end of the first
decade of 21 5t century [1]. This speed is over one thousand folds larger than that during
the last decade of 20th century. We present here two forms of global mathematical models
for the efficiency of solar cells [5, 6]. Both the models conform to those presented in
section 2.1. Hence these can be solved by the exhaustive search method (the simplest
possible method).

Modell: A single multivariate efficiency function model We need to identifY the
parameters and their optimal achievable values that allow us to increase the efficiency to
the maximum possible extent. So far we have identified most of the parameters that
contribute to the efficiency. In other words, the efficiency has been found to be the
function of the following parameters as described in terms of the notations presented
below [5, 6].

Notations

R p = parallel resistance (oc for an ideal device)

R s = series resistance (0 for an ideal device)

J = current density flowing in the device
J sc = short-circuit current

J 0 = reverse saturation current of the diode

- J L = current generated by light

J L = reverse current associated with photo-excitation.

qJ = voltage = forward current device voltage

qJoc = open-circuit voltage

A = area through which current flows
A = ideality factor

A = 1 if the transport process is diffusion
A = 2 if the transport process is recombination

I = total current = JA (This A is the area unlike the foregoing A which
can be identified from the context)

1] = efficiency

E q = semiconductor band gap

ff = fil factor

Prad = total radiation power incident on the cell

The efficiency 1] is a function ofvariables/parameters Jm,qJoc,A,k,T,q,qJm and possibly

JpJ,Jo,R"Rp,absorption,photon energy, also. Some of the foregoing parameters

appear to be related.

Brief partial sketch of the optimization problem

subject to

a 1 ::; J m ::; /31 (max. possible current density)

a 2 ::;rpoe ::;/32' a 3 ::;A::;/33' a 4 ::;k::;/34' as ::;T::;/3s

a 6 ::;q::;/36' a 7 ::;rpm::;/37

as ::;J::;/3s, a 9 ::;JL ::;/39' aiD ::;Jo ::;/310

0::; rpm - rpoe + (AkT / q) In I (qrpm / AkT) + 11::; 61 (small positive value)

0::; rpoe - (AkT / q) In I (JL / J o) + 11::; 62 (another appropriate small value)

Photon energy versus optical absorption curve provides another inequality
J - rp curve provides yet another inequality

All variables ~ 0 .

Having compiled all the available inequalities,We insert the minimum and maximum
attainable values ai' /3i' These values could be obtained from the laboratory experiments

or from literature depicting experimental results. An evolutionary method may be devised
to solve the optimization problem. This solution will enable us to determine the best
combination of the concerned (attainable) parameter values that will maximize the
efficiency of the solar cell. In fact, since there are numerous possible combinations (as it
is a combinatorial problem), laboratory experimentation to explore all possible
combination is intractable. Through the use of a personal computer which executes over
one billion floating-point operations per second (FLOPS), we should be able to get the
solution (i.e., the desired optimal parameter values) in a matter of minutes. These values
will readily help the laboratory experimentation thus allowing the experimentalists to
save significant time on experimentation taking only two parameters at a time while
keeping others fixed. Unfortunately the actual situation is not as simple as depicted by the
foregoing multi variable efficiency function model. For if it is so, then modeling alone
would have saved the enormous trouble of highly time consuming experimentation.

Some of the critical issues for thin film solar cell models are number of layers, band
discontinuities, band gaps, and charge in deep bulk states as well as in deep interface
states. These need to be appropriately taken care of.

Model 2: Nonlinear programming model involving all possible/available relations We
have seen many relations - equations and inequalities - involving thin film pv devices
including their concerned materials/compounds. The concerned nonlinear program [6] in
a general form can be written as

Maximize efficiency 'l(x\, X 2 ' ... , xn) subject to

Jii ::; or = f(x p X 2 ' ···,xJ::; or = Vi' i = l(l)m

(i.e., all possible equations / inequations so far available to us)

a
j
. ::; x ::; p, j = l(1)n.

. J J

5. Conclusions

We have described two possible models, viz., Model l: A single multivariate efficiency
function model and Model 2: Nonlinear programming model involving all
possible/available relations. The efficiency function in Model 2 is chosen as the function
same as in Model 1 or a better one which is (so far) available or developed. Model 2 is
definitely better than Model 1 in terms of providing realistic values of the parameters that
go to enhance/maximize the efficiency. But computationally it is more involved. If there
is any inconsistency among the relations (equations and inequalities), it would not be
possible to get a solution that satisfies all the relations. In such a situation, it is necessary
to check and correct the mathematical model for the human mistake committed in
modeling. The physical model derived from the material universe is assumed to be
errorless (although it need not be). '

One important computational aspect is that equality relationships in physical
quantities cannot, in general, exist. This is because of the fact that exact physical
quantities cannot be exactly represented nor can these be exactly measured. A measuring
device is not, in general, more accurate than 0.005% [7]. Consequently we represent
almost all equations in terms of inequalities. Even the parameters/variables affecting the
efficiency are expressed in the model in terms of their realistic, possibly narrow, bounds
as has been done in the first model.

The nonlinear program not being able to/produce a solution implies that the nonlinear
program model needs to be correctedlmodifiedbased on determining the contradictory
inequation(s)/bounds in the model as stated earlier. Such a contradiction (inconsistency)
could creep in always due to human mistakes/measuring device errors (accuracy
::; 0.005%).

The later model (Model 2) is certainly not the final model that is the perfect/best one
and that can never be improved. Our increasing knowledge about the physics of the solar
cell will definitely result in a superior cell in course of time. Thus modeling will continue
rather indefinitely in the realm of thin film pv devices. Although the current success of
such a modeling is low in terms of aiding the experimentalists as well as reducing the
cost and time of experiments, a day will come when we are much better informed through
past mistakes/failures. Consequently modeling, we believe, will be the dominant tool in
solar cell efficiency arena. However, the later form of the model (Model 2), we believe, is
completely general. Only the improvement will occur in the efficiency function and all
the two sets of inequalities. While the modeling along with the laboratory experimental
activities helps us to gain increasingly deeper insight, the general model will continue to
improve in its contents but not in its form [5, 6]. In fact, the models proposed are not
static but dynamic in their contents.

The foregoing two models are essentially the ories which can be solved using the
methods described in section 2. Specifically, the best method is the exhaustive search
described in section 2.2. It can be seen that the way we have presented the method
involves computation of the function(s) at the same points again and again. Hence the
presented exhaustive search is crude and can be made more efficient by omitting the
concerned repetitions. Such omissions need some additional programming effort and is
recommended definitely for reasonably large problems. However, for not too large a
problem,the exhaustive search described in $ection 2.2 is not only too easy to be readily
coded but also will produce the required optimal solution in an acceptable time frame.

Many models have been proposed in literature [8-28]. All these have varying degree
of advantages and scope and are tractable. The exhaustive search for both Models 1 and
2, on the other hand, is the most easily followed and simplest for coding in, say, Matlab
by scientists/engineers/students who do not have formal programming knowledge. It is
capable of producing the most accurate solution within the precision of computation, but
it is exponential-time and intractable if the posed modeling problem is very large. A
randomized algorithm based on the usage of quasi-random numbers will not be able to
produce as good a solution as the one produced by the exhaustive search. Further we will
not be able to deterministically/precisely ascertain, within reasonably narrow bounds, the
quality (relative error bounds) of the solution in a randomized algorithm,
probabilistically, this can be determined though.

However, due to the availability of enormous computing power touching petaflops [1]
in the current (first) decade of 21 st century (see also sections 1 and 3), the exponential
time exhaustive search is not altogether untouchable if the posed real-world modeling
problem is not very large. In fact we do have many small as well as large real-world
problems for which we have not tried exhaustive . search consciously possibly thinking
about its combinatorial computational (exponential) complexity. Now it is slowly
entering into the realm of computation not only because of ever increasing computing
power [7] but also because of (i) availability of individual computer (lap-top/desktop)
and (ii) non-utilization of an estimated 95% computing resources (power) unlike main
frame era in mid-/late 20th century.

References

1. Chidanand Rajghatta (2007). The Times of India, INN, India hosts world's fourth
fastest supercomputer, The Times of India Daily News Paper, reported on November 13,
2007 at 2143 hours Indian Standard Time from Washington.
2. S.K. Sen, T. Samanta and A. Reese (2006). Quasi- versus pseudo-random generators:
discrepancy, complexity and integration-error based comparison, International Journal of
Innovative Computing, Information and Control, 2, No.3, pp. 621-651, June 2006.
3. V. Lakshmikantham, S.K. Sen, and T. Samanta (2005). Comparing random number
generators using Monte Carlo integration,· International Journal of Innovative
Computing, Information and Control, 1, No.2, pp. 143-165, June 2005.
4. S.K. Sen and G.A. Shaykhian (2007). Scope of various random number generators in
ant system approach for TSP Paper AC2007-458, 2007 ASEE (American Society for

Engineering Education) Proc. Annual Conference & Exposition, Hilton Howaii Village,
Honolulu, Howaii, June 24-27, 2007, 1-25.
5. S.K. Sen(2007). Efficiency of solar cell: scope of modeling in experimental
environment (an invited talk), Fifth International Conference on Dynamic Systems and
Applications (mat 30-June 02, 2007), Atlanta; Georgia (supported by Florida Solar
Energy Center award/grant # 211064).
6. S.K. Sen (2009). How modeling can attract experimentalists to improve solar cell's
efficiency: Divide-and-conquer approach, Nonlinear Analysis, 10.10 16/j .na.2008.1 0.058,
October, 2008, 71 (2009), 196-211.
7. V. Lakshmikantham and S.K. Sen (2005): Computational Error and Complexity in
Science and Engineering, Elsevier, Amsterdam.
8. Schwarz, R., Gray J., Turner, G. Kanani, D., and Ullal, H. (1984). Numerical modeling
of p - I - n hydrogenated thin film silicon cells, Conference Record, 17th IEEE

Photovoltaic Specialists Conference, Kissimmee, Florida, May, 1984,369-373.
9. Dimmer, B., Dittrich, H., Menner, R., and Schock, H.W. (1987). Performance and
optimization of heterojunctions based on Cu(Ga,In)Se2, Conference Record, 19th IEEE
Photovoltaic Specialists Conference, New Orleans, May 1987, 1454-1460.
10. Basore, P.(1990). Numerical modeling of textured silicon solar cells using PC-ID,
IEEE Trans. Elecron Devices, 37,2,337.
11. Gray, J.L. (1991). ADEPT: A general purpose device simulator for modeling solar
cells in one, two and three dimensions, Conference Record, 22nd IEEE Photovoltaic
Specialists Conference, Las Vegas, NV, 1991,436-438 .

. 12. Lee, YJ. and Gray, J.L. (1993). Numerical modeling of poly crystalline CdTe and
CIS solar cells, Conference Record, 23rd IEEE Photovoltaic Specialists Conference,
Luisville, May 1993, 586-591.
13. Lee, YJ. and Gray J.L. (1994). Numerical modeling of the temperature and
illumination intensity dependent performance of CIS solar cells, Proceedings of the 1ih
European Photovoltaic Solar Energy Conference, Amsterdam, April 1994, 1561'-1564.
14. Gray, J.L. (1996). Interpretation of capacitance-voltage characteristics in thin film
solar cells using a detailed numerical model, C01iference Record, 25th IEEE Photovoltaic
SpeCialists Conference, Washington D.C., April 1996, 905-908.
15. Niemegeers, A. and Burgelman, M. (1996). Numerical modeling of ac-characteristics
of CdTe and CIS solar cells, Conference Record, 25th IEEE Photovoltaic Specialists
Conference, Washington D.C., April 1996, 901-904.
16. Clugston, D. and basore, P. (1997). peID version 5: 32-bit solar cell modeling on
personal computers, Conference Record, 26th IEEE Photovoltaic Specialists Conference,
Anaheim,
17. Burgelman, M., Nollet, P., Degrave, S. and Beier, J. (2000). Modeling the crossover
of the I-V characteristics of thin film CdTe solar cells, Conference Record, 28th IEEE
Photovoltaic Specialists Conference, Anchorage, September 2000,551-554.
18. Fahrenbruch, A. (2000). Modeling results for CdS/CdTe solar cells, Technical
Report, March 2000, Colorado State University.
19. Burgelman, M., Nollet, P., Degrave, S.(2000). Modeling polycrystalline
semiconductor solar cells, Thin Solid Films, 361-362, 527-532.

20. Grasso, c., Ernst, K., Konenkamp, R. Burgelman, M., Lux-Steiner, M-C. (2001).
Photoelectrical characterization and modeling of the eta-solar cell, Proceedings of the
17''' European Photovoltaic Conference, Munich; October 2001, 211-214.
21. Klenk, R. (2001). Characterization and modeling of chalcopyrite solar cells, Thin
Solid Films, 387, 135-140.
22. Dullweber, T., Hanna, G., Rau, U. and Schock, H.W. (2001). A new approach to
high-efficiency solar cells by band gap grading in Cu(In, Ga)Se2 chalcopyrite
semiconductors, Solar Energy Materials and Solar Cells, 67, 145-150.
23. Fahrenbruch, A. (2002). Comparison of experimental data with AMPS modeling of
the effects of CdS layer thickness on the CdS/CdTe solar cell, Conference Record, 29th
IEEE Photovoltaic Specialists Conference, New ,Orleans, May 2002,551-554.
24. Huang, C.H., Li, S.S. and Anderson, T.J. (2002). Device modeling and simulation of
CIS- based solar cells, Conference Record, 29th IEEE Photovoltaic Specialists
Conference, New Orleans, May 2002,748-751.
25. Burgelman, M. and Grasso, C.(2003). Flatband solar cells: a model for solid-state
nano-structured solar cells, Presented at the 3rd World Conference of Photovoltaic Energy
Conversion, Osaka, May 2003.
26. Gloeckler, M., Fahrenbruch, A.L. and Sites, J.R. (2003). Numerical modeling of
CIGS and CdTe solar cells: Setting the baseline, 3rd World Conference of Photovoltaic
Energy Conversion, Osaka, May 2003.
27. Bube, R. H. (1998). Photovoltaic Materials, Imperial College Press, London.
28. Burgelman, M. Verschraegen, J., Degrave, S., and Nollet, P. (2004). Modeling thin
film pv devices, Prog. Photovolt: Res. Appl. 12, 143-153.

