
mu uuuu ui iiui iiui mil uui lull lull um uui uuii uu uii mi

(12) United States Patent
Rushby et al.

(54) FORMAL METHODS FOR TEST CASE
GENERATION

(75) Inventors: John Rushby, Redwood City, CA (US);
Leonardo Mendonga De Moura,
Fremont, CA (US); Gregoire Hamon,
Saint Len la Foret (FR)

(73) Assignee: SRI International, Menlo Park, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 794 days.

(21) Appl. No.: 10/889,266

(22) Filed:	 Jul. 12, 2004

(65)	 Prior Publication Data

US 2006/0010428 Al	 Jan. 12, 2006

(51) Int. Cl.
G06F 17/10	 (2006.01)

(52) U.S. Cl .	 .. 	 703/2
(58) Field of Classification Search 703/2,

703/13
See application file for complete search history.

(56)	 References Cited

U.S. PATENT DOCUMENTS

	

6,026,222 A *	 2/2000 Gupta et al 716/5

	

7,073,143 BI *	 7/2006 Huang 716/5

OTHER PUBLICATIONS

E6n et al., "Temporal Induction by Incremental SAT Solving," Elec-
tronic Notes in Theoretical Computer Science 2003.*

(1o) Patent No.:	 US 7,865,339 B2
(45) Date of Patent: 	 Jan. 4, 2011

Hlavaty et al., "Formal Methods in Development and Testing of
Safety-Critical Systems: Railway Interlocking System," Proceedings
of Workshop 2002.*
Groce, "Error Explanation with Discrete Metrics," Springer-Verlag
Berlin Heidelberg 2004.*
Clarke et al., "Bounded Model Checking Using Satisfiability Solv-
ing," Advances in Computers, vol. 58, 2003.*
G. Hannon et al., An Operational Semantics for Stateflow, Fundamen-
tal Approaches to Software Engineering, Mar. 2004, pp. 229-243,
LNCS 2984, Springer-Verlag.
Hong et al., Data Flow Testing as Model Checking, 25th Intl. Conf. on
Software Engineering, May 2004, pp. 232-242, IEEE Computer
Society.
P.E. Black et al., Winnowing tests: Getting Quality Coverage from a
Model Checker without Quantity, 20th AIAA/IEEE Digital Avionics
Conf., Oct. 2001, pp. 9136/1-9136/4, IEEE.
K. Hayhurst et al., A Practical Tutorial on Modified Condition/Deci-
sion Coverage, NASA Technical Memo. TM-2001-210876, May
2001, NASA Langley Research Center.

* cited by examiner

Primary Examiner Hugh Jones

(57)	 ABSTRACT

The invention relates to the use of model checkers to generate
efficient test sets for hardware and software systems. The
method provides for extending existing tests to reach new
coverage targets; searching *to* some or all of the uncovered
targets in parallel; searching in parallel *from* some or all of
the states reached in previous tests; and slicing the model
relative to the current set of coverage targets. The invention
provides efficient test case generation and test set formation.
Deep regions of the state space can be reached within allotted
time and memory. The approach has been applied to use of the
model checkers of SRI's SAL system and to model-based
designs developed in Stateflow. Stateflow models achieving
complete state and transition coverage in a single test case are
reported.

38 Claims, 9 Drawing Sheets

Restarting from previously discov-
ered states rather than initial states

goals := the set of coverage goals
L. := initial states

failures :=emptyset

while goals is nonempty do
Call model checker m extend a test

case from some stale in knovmstates

to discharge some goal
if successful the.

Remove from goals any that
are discharged by the test case

add to knownstales those states
travat ad by the current test case

slice system relative to goals
while goals is nonempty do

Call model checker to extend
test Mass to discharge some goal

if successful then
remove from goals any

discharged by extended test case
add to knownstates those states

traversed by current test case
slice system relative to goals

endif
endwhlle
Output test case

else
f8#ureS := goals,

goals: = empty set
endif
eudwhile

U.S. Patent	 ,Tan. 4, 2011	 Sheet 1 of 9	 US 7,865,339 B2

yes

Fig 1	 PRIOR ART

U.S. Patent	 ,Tan. 4, 2011	 Sheet 2 of 9	 US 7,865,339 B2

22

1d
yes

29

Done

Fig 2

U.S. Patent	 Jan. 4, 2011	 Sheet 3 of 9	 US 7,865,339 B2

32

Coverage Metric

34
Model

36
z

30
\	 Enhanced Model	 37

C:	 Checker

SUT
Test Cases

no

Coverage Metric
Satisfied?

38
yes	 39

C: Done

Fig 3

a
g OL

0
in

I
n

9

U.S. Patent	 Jan. 4, 2011	 Sheet 4 of 9
	

US 7,865,339 B2

_ O
+ 0 + +

II
v ^ c

^

II	 ^ ^ .^v II p
II II II IIV C II

++
c

y C U V C

f- u '--'	 u (n rti u E rtifn

'"I N
M

N
It

c	 cu
V N E

/ u
C U C

u

'c c

E
EIuI	

V)I

G r
NO _N

p

V

0
II

O V

	

II	 IN
c_ I

E _°

/	 o v
II o '0

00
	 y c

0
tir II u E

	

I	 ICL *' a a
g

l Lq .(A
luw

0	 v
+^	 m

na
g

^^

a
d
g ^

LL
U) Ln

Ln

U.S. Patent	 ,Tan. 4, 2011	 Sheet 5 of 9	 US 7,865,339 B2

Constructing test cases by
incremental extension

goals := the set of coverage goals

failures := empty set
while goals is nonempty do
Select and remove goal from goals
Call model checker to generate

a new test case to discharge goal
if successful then

Select and remove from goals any that

are discharged by the test case

remaining := empty set
while goals is nonempty do

Remove goal from goals
Call model checker to extend

test case to discharge goal
if successful then

remove from goals and from

remaining any goals

discharged by extended test case
else add goal to remaining
endif

endwhile

goals := remaining
Output test case

else add goal to failures endif
endwhile

Fig 5

U.S. Patent	 Jan. 4, 2011	 Sheet 6 of 9	 US 7,865,339 B2

Searching for test cases in parallel,
and slicing the model as goals are
discharged

goals := the set of coverage goals
failures := empty set
while goals is nonempty do
Call model checker to generate

a new test case to discharge some goal

if successful then
Remove from goals any that

are discharged by the test case

slice system relative to goals
while goals is nonempty do

Call model checker to extend

test case to discharge some

goal

if successful then

remove from goals any
discharged by extended test

case

slice system relative to goals

endif

endwhile

Output test case

else
failures := goals,
goals := empty set

endif
endwhile

Fig 6

U.S. Patent	 ,Tan. 4, 2011	 Sheet 7 of 9	 US 7,865,339 B2

Restarting from previously discov-
ered states rather than initial states

goals := the set of coverage goals
knownstates := initial states
failures := empty set
while goals is nonempty do
Call model checker to extend a test

case from some state in knownstates
to discharge some goal

if successful then
Remove from goals any that

are discharged by the test case
add to knownstates those states

traversed by the current test case
slice system relative to goals
while goals is nonempty do

Call model checker to extend
test case to discharge some goal

if successful then
remove from goals any

discharged by extended test case
add to knownstates those states

traversed by current test case
slice system relative to goals

endif
endwhile
Output test case

else
failures : = goals;

goals := empty set
endif
endwhile

Fig 7

E

30

U.S. Patent	 ,Tan. 4, 2011	 Sheet 8 of 9	 US 7,865,339 B2

knownstates seeded by random testing or
other methods

82

88

Fig 8

U.S. Patent	 Jan. 4, 2011	 Sheet 9 of 9	 US 7,865,339 B2

O^ O

bA

w

W W

U
WQOw ^Ov^A

a^

O
rA

C)
	 O

a
00
o^

N
O
O^

US 7,865,339 B2
1

FORMAL METHODS FOR TEST CASE
GENERATION

GOVERNMENT FUNDING

This application was made in part with government support
under contract number NAS 1-00079 awarded by NASA Lan-
gley Research Center; this application was also made in part
with government support under contract number CCR-00-
86096 awarded by the National Science Foundation. The
Government has certain rights in this invention.

RELATED APPLICATIONS

Not applicable.

BACKGROUND

Testing is the dominant method for finding bugs in com-
puter software and hardware. When combined with methods
to measure the amount of coverage achieved, it is also the
dominant method for assessing when the software or hard-
ware concerned is good enough for release. Testing to high
coverage is enormously expensive. For example, more than
half the development costs in avionics systems are spent on
verification and validation activities, and testing is a substan-
tial part of verification and validation. In hardware and soft-
ware companies, more than half the entire technical staff may
be devoted to testing.

Performing tests and evaluating test outcomes can be auto-
mated to a considerable degree, but generating test cases still
is a largely a time consuming manual process. The quality and
coverage of the tests generated is utterly dependent on the
skill and diligence of those performing the task. Coverage is
a measure of how thoroughly a system has been tested. Cov-
erage can be defined with respect to the structure of the
system under test (SUT) (e.g., requiring that every control
point or every branch in the software is visited by at least one
test), with respect to the structure of the model or design from
which the SUT was developed, or with respect to the proper-
ties that the SUT is expected to satisfy (e.g., those properties
documented in its requirements specification).

Current attempts to develop automatic test case generation
involve describing the target of each test by means of a prop-
erty (e.g., "reach control point X in the SUT"), then solving
the constraint satisfaction problem to find inputs to the SUT
that will drive it through an execution that satisfies the prop-
erty concerned. A popular way to solve the constraint satis-
faction problem is by means of a model checker: the model
checker is asked to check the negation of the property con-
cerned (e.g., "the SUT never reaches control point X") in
some representation of the SUT or its design or specification,
and will produce a counterexample (e.g., a trace of state
transitions in SUT that reaches control point X from some
initial state) that is equivalent to the desired test case. Guided
by the coverage desired, different test targets are identified
and separate tests are generated for each one. FIG. 1 illus-
trates a generally understood representation of test generation
for a SUT. Because each test is generated separately, each of
them restarts the SUT (which can make the test expensive to
perform), and the set of tests generated by this approach
contains much redundancy (e.g., many tests start the same
way). This is inefficient, both in generating tests, and in
executing them. Furthermore, the model checker or other
method may be unable to solve the constraint satisfaction
problems for targets whose tests require many steps from an
initial state.

2
A variant on this approachto automatic test case generation

overcomes some of the limitations of model checking and
constraint satisfaction, but stops short of addressing the need
to generate irredundant test sets. (See Beyer et al., Generating

s Tests from Counterexamples. In 26th International Confer-
ence on Software Engineering, Edinburgh, Scotland, May
2004; IEEE Computer Society).

Yet another approach advocates building an abstract model

10
and doing a so-called "Chinese postman's tour" thereby gen-
erating a big, sweeping test case and an efficient test set. (See
Grieskamp et al., Generating finite state machines from
abstract state machines. In International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 112-122, Associa-
tion for Computing Machinery, Rome, Italy, July 2002).

15
Restricted to explicit-state model checking, these tour-based
approaches are unsuited to achieving coverage goals (e.g.,
MC/DC; See K. Hayhurst, D. Veerhusen, J. Chilenski, and L.
Rierson. A Practical Tutorial on Modified Condition/Deci-
sion Coverage. NASA Technical Memorandum TM-2001-

20
210876, NASA Langley Research Center, Hampton, Va.,
May 2001.) of the kind used in avionics and other critical
embedded systems and are suitable only for validation of
consumer products.

25 What is needed is an efficient method for the automated
generation of test cases that achieves high coverage with a
minimal number of tests. What is also needed is a method for
automated test generation providing rapid generation of tests
and providing a high level of coverage within the time and

30 memory budget available.

BRIEF SUMMARY

The invention provides a means for generating test cases

35 that provides precisely targeted coverage of a SUT. Provided
is a method and system for automated generation of test cases,
enabling rapid test case generation. As a consequence of the
rapid test case generation, the inventive approach provides
significant reduction in the development cost of a system. The

40 inventive method provides a means for extending existing
tests to reach new coverage targets. The method also provides
a means for parallel searching to all undiscovered target
goals. Further, the method provides a means for parallel
searching from any number of states reached in previous tests.

45 It is an aspect of the invention that, rather than returning to
the initial state and revisiting all intermediate states already
visited, the new test case is extended from the last visited
state. The model is modified internally in two ways: it is
sliced, and it is changed (or the specification of the property

50 defining the next test case to be generated is changed) so that
the next test case extends the previous one if possible (as
opposed to being generated from a start state). Slicing is
performed each time the set of outstanding coverage goals is
reduced.

55 The inventive method for generating tests for a system
under test (SUT), (where the tests satisfy a coverage metric),
includes generating a model of the SUT; generating a first test
case with respect to the model; adding the first test case to a
collection of test cases; and checking the coverage metric

60 overthe collection. If the coverage metric is satisfied, no more
test cases are needed and the collection is complete. If the
coverage metric is not satisfied, then the model is reduced and
a second test case generated with respect to the reduced
model.

65 The inventive test case generation system provides rapid
satisfaction of the coverage metric. Moreover, it provides a
test case collection from which redundancies have been

US 7,865,339 B2
3

removed. In one embodiment, the method provides auto-
mated analysis and verification of Stateflow programs. The
application uses an operational semantics for Stateflow, a
decision procedure for embedded deduction, and a suite of
model checking tools. The embodiment provides static analy-
sis, debugging and exploration through model checking, and
structural unit test case generation for Stateflow.

The inventive method is employable using any tool that
solves constraints, and model checkers are discussed by way
of example only, and not to be construed as a limitation. Other
model based design systems may be used for the inventive
method and system for automated test generation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a known approach to test case generation.
FIG. 2 depicts an inventive approach to test case genera-

tion.
FIG. 3 illustrates an alternate embodiment of the inventive

approach.
FIG. 4 illustrates a model of a simple stopwatch in State-

flow.
FIG. 5 illustrates an example of pseudo code representing

constructing test cases by incremental extension.
FIG. 6 illustrates an example of pseudo code representing

test case generation searching for test cases in parallel and
slicing the model as goals are discovered.

FIG. 7 illustrates an example of pseudo code representing
test case generation restarting from previously discovered
states rather than initial states.

FIG. 8 depicts generalized seeding of knownstates by ran-
dom testing.

FIG. 9 is a high level block diagram of the present method
for generating test cases.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 2, the inventive approach provides a
method for generating tests for a system under test (SUT) 20
that satisfy a coverage metric 22 by generating a model 24 of
the SUT; generating a first test case 26 with respect to the
model; adding the first test case to a collection of test cases;
checking the coverage metric 28 over the collection and if the
coverage metric is not satisfied 27; reducing the model; and
generating a second test case with respect to the reduced
model. Rather than returning to the initial state and revisiting
all intermediate states already visited, the new test case is
extended from the last visited state.

The path 27 in FIG. 2 represents modification of the model
in two distinct ways: slicing and extension. As regards any
given set of test targets, slicing eliminates those parts of the
model that cannot contribute to the satisfaction of the cover-
age goals. Slicing is performed internally each time the set of
outstanding goals is reduced. As tests are generated, the
remaining targets get fewer and fewer, and the parts of the
system that are relevant are likewise reduced. Thus, as test
generation proceeds, the parts of the system needed to be
considered become smaller and smaller.

"Extension" involves modifying the model (or the specifi-
cation of the property defining the next test case to be gener-
ated) so that the next test case extends the previous one if
possible (as opposed to being generated from an initial or start
state). In conjunction with reduction of the model, the model
checker is preferentially internally modified: the construction
of test cases by extension is done internally without having to
change the model or properties. The advantages of extending
test cases rather than returning to the initial state and starting

4
from scratch each time include: a) better test sets and b)
deeper statespace penetration. The test sets are better because
they are fewer in number, are longer tests, and are less redun-
dant. The deeper penetration of statespace is facilitated by

5 extension of previous test lengths to enable effective test
lengths longer than the constraint solver/model checker could
handle otherwise. For example, the constraint solver/model
checker may be unable to reach coverage targets that require
tests of length from the start state because it cannot solve a

io problem of size 20. However, it may be able to solve a prob-
lem of size 20 by extending a previous test of length 15, as it
now has only to solve a problem of size 5. The previous test
itself was an extension of some length (e.g., 10), and so on,
enabling the constraint solver/model checker to reach, by

15 means of extension, coverage targets that would otherwise be
beyond its capability.

In the preferred embodiment, the abovementioned slicing
and extension are internalized. That is to say, the model
checker is modified so that the construction of test sets by

20 extension is done internally, without needing to change the
model or properties. The inventive method is employable
using any tool that solves constraints, and model checkers are
discussed by way of example only, and not to be construed as
a limitation.

25 Referring to the depiction in FIG. 3, it can be seen that the
method in the preferred embodiment provides a means for
parallel searching to all undiscovered target goals as well as a
means for parallel searching from any number of states
reached in previous tests.

30 The method presented is effective for many kinds of system
specifications, and for many notions of coverage, although
the description is generally focused on examples from model-
based development of embedded systems. As represented in
FIG. 2 and FIG. 3, executable models 24, 34 are constructed

35 for the system under test (SUT) 20, 30 and its environment
and these are used to develop and validate the system design.
The model is usually represented in a graphical form, using
statecharts, flowcharts, message sequence charts, use dia-
grams, and so on. One tool for creating such models is State-

40 flow.
The novel "extension" aspect of the inventive method is

depicted in FIG. 5 in regards to a stop watch modeled in
Stateflow FIG. 4. Current approaches to test generation pro-
duce a separate test case for each coverage goal and, conse-

45 quently, produce highly redundant test sets. Extension as
provided by the invention virtually eliminates redundancy.

FIG. 4 is a graphic representation of the Stateflow specifi-
cation for a stopwatch with lap time measurement 40. The
stopwatch contains a counter or time counter represented by

so three variables (min, sec, cent) and a display, also represented
as three variables (disp_min, disp_sec, disp_cent).

The stopwatch is controlled by two command buttons,
START and LAP. The START button switches the time

55
counter 42 on and off; the LAP button fixes the display to
show the lap time when the counter is running and resets the
counter when the counter is stopped. This behavior is mod-
eled as a statechart with four exclusive states:

Reset 44: the counter is stopped. Receiving LAP resets the
60 counter and the display, receiving START changes the control

to the Running mode.
Lap—stop 45: the counter is stopped. Receiving LAP

changes to the Reset mode and receiving START changes to
the Lap mode.

65 Running 46: the counter is running, and the display
updated. Receiving START changes to the Stop mode, press-
ing LAP changes to the Lap mode.

US 7,865,339 B2
5
	

6
Lap 47: the counter is running, but the display is not	 of these tools. The API is scriptable in Scheme and the model

updated, thus showing the last value it received. Receiving 	 checkers are Scheme scripts. SAL 2 contains API functions
START changes to Lap—Stop, receiving LAP changes to Run- 	 that can perform or can easily be extended to perform a model
ning.	 check, either symbolic or bounded, on a given system and

These four states are here grouped by pairs inside two main 5 property, and to continue a model check given a previously
states: Run 49 and Stop 48, active respectively when the 	 reached state and a path to get there.
counter is counting or stopped. The counter itself is specified

	
The inventive method exploits these API functions to con-

within the Run state as a flowchart 42, incrementing its cent 	 struct a script that extends each test case to discharge as many
value every time a clock TIC is received (i.e., every Vioo s); the 	 additional coverage goals as possible, and that starts a new
sec value is incremented (and cent reset to 0) whenever cent io test case only when necessary. A pseudo code rendition of this
equals 100, and the min value is similarly incremented when- 	 script is shown in FIG. 5. On completion, the variable failures
ever sec equals 60. Notice that it requires a test case of length

	
contains the set of coverage goals for which the algorithm was

6,000 to exercise the lower right transition in the flowchart 42: 	 unable to generate test cases.
this is where the min variable first takes a nonzero value,	 Note that in the most deeply nested part of FIG. 5, the code
following 60 sees, each of 100 cents. Embedded systems 15 to remove from remaining any goals discharged by extending
often contain counters that must be exhausted before parts of

	
a test case: this set contains only those goals that were not

the statespace become reachable so this is an example of the
	

discharged by previous attempts to extend the current case. If
kind of "deep" test goal that is often hard to discharge using 	 the model checker is using limited resources (e.g., bounded
model checking.	 model checking to depth k), a certain goal may be discharged

Focusing now on the statechart labeled Stop 48, if a test 20 by an extension that can be found by model checking from a
case is generated that begins in the initial state and exercises 	 given test case, but not from its prefixes.
the transition from Lap —stop 45 to Reset 44 (e.g., the

	
The method as depicted in FIG. 5 selects a particular cov-

sequence of events START, LAP, START, LAP), then this test 	 erage goal and attempts to discharge the goal by generating a
also exercises the transitions from Resetto Running, Running 	 new test case or extending the current one. This means that the
to Lap, and Lap to Lap stop. However, the usual approach to 25 coverage goals are explored in some specific order that is
generating a test set to achieve transition coverage will inde- 	 independent of their "depth" or "difficulty." Furthermore, the
pendently generate test cases to exercise each of these tran- 	 method may place a particular goal in the failures set because
sitions, resulting in a test set with much redundancy. Black

	
it is unable to generate a test case to discharge it from the start

and Ranville describe a method for "winnowing" test sets 	 state, whereas it might have been able to generate a test case
after generation to reduce their redundancy. (See P. E. Black 3o had it tried to do so by extending some previously generated
and S. Ranville. Winnowing tests: Getting quality coverage	 test case.
from a model checker without quantity. In 20th AIAA/IEEE

	
A further inventive aspect of the method is demonstrated in

Digital Avionics Conference, Daytona Beach, Fla., October 	 embodiments in which multiple coverage goals are consid-
2001). An algorithm presented by Hong et al. reduces redun- 	 ered in parallel. Rather than picking a coverage goal and
dancy during generation. (See Hong et al., Data flow testing 35 asking the model checker to discharge it, the entire set of
as model checking. In 25 th International Conference on Soft- 	 undischarged goals can be given to the model checker and the
ware Engineering", pp 232-242, Portland, Oreg., May 2003.	 model checker can be asked to discharge any one of them.
IEEE Computer Society). Applied to the stopwatch of FIG. 4, 	 That is, instead of separately model checking the assertions
the Hong algorithm would record during generation of a test

	
"always not p," "always not q" etc., one model checks

case to exercise the Lap —stop to Reset transition that it has 40 "always not (p or q or ...)." This feature of the inventive
also exercised the Running to Lap transition. The latter tran- 	 method enables the model checker to first discharge shallow
sition would be removed from its set of remaining coverage 	 or easy goals and approach the deeper or more difficult goals
goals. However, the effectiveness of this strategy depends on

	
incrementally. Moreover, as already discussed relative to

the order in which the model checker tackles the coverage
	

FIG. 5, it may be possible to discharge a difficult goal by
goals: if it generates the test for Running to Lap before the one 45 extending an already discovered test case when it could not be
for Lap-stop to Reset, then this winnowing will be ineffective. 	 discharged (within some resource bound) from an initial

The inventive method overcomes this inefficiency in test 	 state, or from a shorter test case generated earlier in the
sets by extending existing test cases to reach uncovered goals, 	 process.
rather than start each one afresh. Extension of existing test

	
As test generation proceeds, those parts of the system

cases to reach uncovered goals eliminates much redundancy 50 specification that have already been covered may become
from the test set and it reduces the total number of test cases

	
irrelevant to the coverage goals remaining. Modern model

required to achieve coverage. Although conceptually 	 checkers, including SAL, generally perform some form of
straightforward, it is not easy in practice to cause a model

	
automated model reduction that is similar to (backward) pro-

checker to find a counterexample that extends an existing one 	 gram slicing. Typically, cone of influence reduction is used.
when the only way to interact with the model checker is 55 Slicing or cone of influence reduction eliminates those state
through its normal interfaces (where all one can do is supply 	 variables and those parts of the model which do not influence
it with a system specification, an initial state, and a property). 	 the values of the state variables appearing in the assertion to
The preferred embodiment employs modern model checkers

	
be model checked.

that provide scriptable interfaces, and the method uses the
	

In the inventive method, the parts of the system specifica-
scriptable interfaces to effect rapid construction of suitably 60 tion that become irrelevant are sliced away at each step,
customized analysis tools. 	 causing the specification to shrink as the outstanding cover-

As suggested by representation of the preferred embodi-	 age goals become fewer and, presumably, harder to discharge
ment in FIG. 3, the inventive method has been applied using

	
(because the easy ones would be picked off earlier). Recall

the SAL 2 model checking environment. The SAL 2 model
	

that a test case of length 6,000 is required to exercise the lower
checking environment provides state-of-the-art symbolic, 65 right transition in the flowchart 42 of FIG. 4. A model checker
bounded, infinite-bounded, and witness model checkers. It	 cannot quickly find the corresponding counterexample so
also provides an API that gives access to the basic machinery

	
long as its search is cluttered with the vast number of display

US 7,865,339 B2
7
	

8
and control states that are independent of the state variables 	 seconds (on a 2 GHz Pentium with 1 GB of memory) after
representing the clock. Once the coverage goals in the stat- 	 exploring 71,999 states, but the test case is 24,001 steps long.
echart part of the model have been discharged, however, all

	
This is four times the minimal length because several START

those state variables can be sliced away, isolating the flow- 	 and LAP events are interspersed between each TIC. In
chart 42 and rendering generation of the required counterex- 5 breadth-first mode, on the other hand, the model checker does
ample feasible. Pseudo code illustrating this aspect of the 	 not terminate in reasonable time. However, if the model is
method appears in FIG. 6. 	 sliced (thereby eliminating START and LAP events), both

A further aspect of the inventive method is the means to
	

breadth- and depth first search generate the minimal test case
generate new searches from previously discovered states 	 of length 6,001 in little more than a second.
rather than returning to the initial states. The method as 10	 Explicit-state model checking needs to use breadth-first
depicted in FIG. 6 always seeks to extend the current test case, 	 search to be useful for test case generation, and the search
and if that fails it starts a new case. However, the test cases that

	
becomes infeasible when the number of states to be explored

have already been found provide the ability to reach many	 exceeds a few million. Subject to this constraint, it is capable
states, and the inventive method may seek an extension from 	 of finding deep test cases.
some intermediate point of some previous test case, rather 15	 Simple examples where the SUT is an embedded system
then start a completely new case when the current case cannot

	
taking several numerical inputs from its environment are

be extended. This is particularly so when at least one deep test 	 often beyond the reach of explicit-state model checkers. Even
case has already been discovered that gives entry to a new part

	
in these simple cases, the reachable states rapidly exceed

of the statespace. There may be many coverage goals that can 	 those that can be enumerated by an explicit-state model
be discharged cheaply by constructing several extensions to 20 checker In one published example, an "altitude switch" takes
that known, deep test case.	 numerical readings from three altimeters, one of which may

FIG. 7 presents pseudo code for a method that attempts (in
	

be faulty, and produces a safe consensus value. If the altim-
the nested while loop) to extend the current test case as much

	
eters produce readings in the range 0 ... 40,000 feet, then an

as possible. If and when that fails, it tries (in the outer while 	 explicit-state model checker couldblindly enumerate through
loop) to extend a test from some state that it has reached 25 a significant fraction of the 40,0003 (i.e., 64 trillion) combi-
previously (these are recorded in the variable knownstates). It 	 nations of input values before stumbling on those that trigger
is not necessary to call to the model checker iteratively to 	 cases of interest. (See Heimdahl et al., Deviation analysis
search from each of the knownstates: a symbolic or bounded

	
through model checking. In 17th IEEE International Confer-

model checker can search from all these states in parallel.	 ence on Automated Software Engineering (ASE'02) pp
This parallel search capability increases the efficiency of test 30 37-46, Edinburgh, Scotland, September 2002. IEEE Com-
generation.	 puter Society).

The inventive method provides for finding extensions from
	

By contrast, this problem is handled by symbolic model
states other than the initial state. The discussion below 	 checkers in fractions of a second. A symbolic model checker
recounts the application of the method in embedded systems, 	 represents sets of states, and functions and relations on these,
using explicit state, symbolic and bounded model checkers, 35 as reduced ordered binary decision diagrams (BDDs). This is
and various combined approaches. 	 a compact and canonical symbolic representation on which

All model checkers of interest in test generation take as 	 the image computations required for model checking can be
their inputs the transition relation defining a state machine	 performed very efficiently. The performance of symbolic
and its environment, the initial states, and an assertion. The 	 model checkers is sensitive to the size and complexity of the
assertion is usually expressed as a temporal logic formula. 40 transition relation, and to the size of the total statespace (i.e.,
Because only formulas of the kind "always not p," are relevant

	
the number of bits or BDD variables needed to represent a

to generation of test cases, the details of the temporal logic are 	 state), but it is less sensitive to the number of reachable states.
not important. And although the model checker may actually

	
The symbolic representation provides a very compact encod-

work by encoding the assertion as a Biichi automaton, it does
	

ing for large sets of states. Symbolic model checkers can use
little harm in this case to think of the model checker as 45 a variety of search strategies and the search strategies can
working by searching for a state that satisfies p and is reach- 	 dramatically impact the verifying of valid assertions. For
able from the initial states. 	 example, backward search verifies inductive properties in a

The approach to model checking by explicit state explora- 	 single step. In test generation, however, where deliberately
tion is very competitive for certain problems. As the name

	
invalid properties are handled, a symbolic model checker,

suggests, this kind of model checker uses an explicit repre- 50 whether going forward or backward, must perform at least as
sentation for states and enumerates the set of reachable states 	 many image computations as there are steps in the shortest
by forward exploration until either it finds a violation of the 	 counterexample. The symbolic model checker of SAL 2 can
assertion (in which case a trace back to the start state provides

	
find the counterexample of length 6,000 that exercises the

a counterexample), or it reaches a fixed point (i.e., has enu- 	 lower right transition of the flowchart in FIG. 4 in 125 seconds
merated all the reachable states without discovering a viola- 55 (it takes another 50 seconds to actually build the counterex-
tion, in which case the assertion is valid). 	 ample) and visits 107,958,013 states. If the model is sliced

There are several strategies for exploring the reachable
	

(eliminating START and LAP events), then the number of
states: depth first search uses the least memory and often finds 	 visited states declines to 6,001 and the time decreases to 85
counterexamples quickly, but the counterexamples may not	 seconds (plus 50 to build the counterexample).
be minimal. On the other hand, breadth first search requires 60	 A symbolic model checker can be very effective for test
more memory and often takes longer, but will find the shortest 	 case generation when there are large numbers of reachable
counterexamples. It is known that counterexamples produced

	
states as well as for fairly deep cases. A symbolic model

by an explicit-state model checker using depth-first search
	

checker's performance declines when the number of BDD
often are too long to be useful as test cases. Using a translation 	 variables grows above a couple of hundred, and when the
into SAL for the stop watch example of FIG. 4, SAL's 65 transition relation is large. These conditions increase the time
explicit-state model checker operating in depth-first mode 	 taken to perform image computations, and thus curtail the
finds a test case for the transition at the bottom right in 25

	
depth of the test cases that can be found in reasonable time.

US 7,865,339 B2
9

Because BDD operation performance is highly dependent on
arranging the variables in a suitable manner, finding a good
variable ordering in systems requiring many BDD variables
can pose significant additional cost. The methods used in the
inventive application employ scripts using the same BDD
representation to generate many tests, thereby incurring the
cost associated with variable ordering only once.

Bounded model checkers are specialized to generate coun-
terexamples and can perform verification by k-induction. A
bounded model checker is given a depth bound k and searches
for a counterexample up to that depth (i.e., length) by casting
it as a constraint satisfaction problem. For finite state systems,
this can be represented as a prepositional satisfiability prob-
lem and given to a SAT solver. Modern SAT solvers can
handle problems with many thousands of variables and con-
straints. Each increment of I in the depth of bounded model
checking increases the number of variables in the SAT prob-
lem by the number of bits needed to represent the statespace
and by the number of constraints needed to represent the
transition relation. Empirically, the complexity of bounded
model checking is strongly dependent on the depth, and the
practical limit on k is around 30-50. At modest depths, how-
ever, bounded model checking is able to handle very large
statespaces without incurring the cost of BDD variable order-
ing encountered in symbolic model checking systems.
Bounded model checking must compute the k-fold composi-
tion of the transition relation. Bounded model checking does
not necessarily generate the shortest counterexamples: it sim-
ply finds some counterexample no longer than k. Although
more expensive, iterative invocation of bounded model
checking for k=1, 2.... will ensure that the shortest counter-
example is found.

The solution of constraint satisfaction problems in the
combination of propositional calculus and the theories of the
infinite data types concerned (e.g., real and integer linear
arithmetic) enables the extension of bounded model checking
to infinite state systems. SAL 2 has such an "infinite
bounded" model checker. As the SAL 2 infinite bounded
model checker is based on the ICS decision procedure (de-
scribed in co-pending, commonly assigned U.S. patent appli-
cation Ser. Nos. 10/447,759 and 10/431,780, the entire dis-
closures of which are incorporated herein by this reference),
which has the best performance of its kind for many prob-
lems, more applications of the inventive method are envis-
aged as work continues.

The inventive approaches to iterated extension described in
the previous section confirm the effectiveness of bounded
model checking for test generation. Furthermore, the inven-
tive method minimizes one of its main weakness: whereas
bounded model checking to depth 5 will not discharge a
coverage goal that requires a test case of length 20, and
bounded model checking to depth 20 may be infeasible, iter-
ated bounded model checking to depth 5 may find a path to
one goal, then an extension to another, and another, and
eventually to the goal at depth 20 because 4 or 5 checks to
depth 5 are much easier than one to depth 20.

The approach expressed in the pseudo code of FIG. 6 has
been applied using bounded model checking to the Stateflow
model for a shift scheduler for a 4-speed automatic transmis-
sion. (See G. Hamon and J. Rushby. An Operational Seman-
tics for Stateflow. In M. Wermelinger and T. Margaria-Stef-
fen, eds., FundamentalApproaches to Software Engineering:
7th International Conference (FASE), Lecture Notes in Com-
puter Science, pp 229-243, Barcelona, Spain, 2004. Springer-
Verlag). This shift scheduler model has 23 states and 25

10
transitions. Using a translator from Stateflow to SAL, a single
test case was generated of length 86 that provides complete
state and transition coverage.

However, bounded model checking to modest depths, even
5 when iterated, may be unable to exhaust a loop counter, or to

find entry to other deep parts of a statespace. An effective
approach is to use symbolic model checking with some
resource bound as the model checker at the top of the outer

10
while loop in FIG. 6. This call is cheap when many easy goals
remain (the cost of BDD ordering is amortized over all calls),
and can be useful in finding a long path to a new part of the
state space when all the easy goals have been discharged.
Moreover, slicing can be very effective in this situation. This

15 combined approach is able to find a single test case that
achieves state and transition coverage in the example of FIG.
4.

Using symbolic model checking in the outer while loop in
the method of FIG. 7 may prove to be more effective. As in

20 FIG. 6, using a symbolic model checker in this situation
preserves the possibility of finding long extensions, should
these be necessary. Equally important, the representation of
knownstates as a BDD for symbolic model checking is likely
to be compact, whereas its representation as SAT constraints

25 for a bounded model checker could be very large.
All the foregoing enhancements to test generation pre-

sented have used model checking as their sole means for
constructing test cases. However, a natural generalization

30 leads directly to an attractive integration between model
checking and other methods seeded by random testing or
other methods. In particular, the method of FIG. 7 uses the
states in the set knownstates as starting points for extending
known paths into test cases for new goals. As new test cases

35 generate paths to previously unvisited states, the method adds
these to knownstates, but it starts with this set empty. Alter-
natively, this set may be initialized with some sampling of
states and the paths to reach them discovered by any means
whatsoever, as portrayed in FIG. 8.

40 In FIG. 8, the shaded FIG. 80 suggests the reachable
statespace and the three interior lines 82, 84, 86 represent
known paths through a sampling of states. Random testing is
one way to create an initial population of states and paths.
Concretized states and paths found by model checking

45 abstractions of the original system may be another way.
Explicit state model checking in heavily sliced models would
be an instance of the latter. Referring again to FIG. 8, sub-
mitting a goal 88, to the method of FIG. 7 will start symbolic
model checking from all the knownstates in parallel and is

50 likely to find a short extension from one of them to the desired
goal. If knownstates is considered too large to serve as the
starting point for model checking, then some sample of the
most likely candidates can be used instead. Of course, if there
is more than a single outstanding goal, the symbolic model

55 checker can search in parallel from all knownstates to all
outstanding goals. Once an extension has been found, the
bounded model checker will seek to further extend that path;
and when that path is exhausted the search will revert to the
symbolic model checker of the outer loop.

60 The inventive method provides efficient test sets genera-
tion for model-based embedded systems by using a model
checker to extend tests discovered earlier in the process.
Extending tests not only eliminates the redundancy of many
tests with similar prefixes, but it allows the model checker

65 incrementally to explore more deeply into the statespace. In
this manner, more complete coverage is possible than could
formerly be achieved under time and memory constraints.

US 7,865,339 B2
11

The method taught herein requires "going under the hood" of
the model checker to exploit the capabilities of modern, suit-
ably scriptable APIs.

FIG. 9 is a high level block diagram of the present method
for generating test cases that is implemented using a general
purpose computing device 900. In one embodiment, a general
purpose computing device 900 comprises a processor 902, a
memory 904, a test case generation module 905 and various
input/output (I/O) devices 906 such as a display, a keyboard,
a mouse, a modem, and the like. In one embodiment, at least
one 1/0 device is a storage device (e.g., a disk drive, an optical
disk drive, a floppy disk drive). It should be understood that
the test case generation module 905 can be implemented as a
physical device or subsystem that is coupled to a processor
through a communication channel.

Alternatively, the test case generation module 905 can be
represented by one or more software applications (or even a
combination of software and hardware, e.g., using Applica-
tion Specific Integrated Circuits (ASIC)), where the software
is loaded from a storage medium (e.g., I/O devices 906) and
operated by the processor 902 in the memory 904 of the
general purpose computing device 900. Thus, in one embodi-
ment, the test case generation module 905 for generating test
cases for a SUT, as described herein with reference to the
preceding Figures can be stored on a computer readable
medium or carrier (e.g., RAM, magnetic or optical drive or
diskette, and the like).

The inventive method exploits the full power of model
checking to search at each step for an extension from any
known state to any uncovered goal, and uses slicing so that the
complexity of the system being model checked is reduced as
the outstanding coverage goals become harder to achieve.
The method can be combined with others, such as random
testing, that create a preliminary "map" of known paths into
the statespace. Efficient methods for MC/DC coverage are
possible with the method provided. More applications and
approaches than are set forth here are apparent to those of skill
in the relevant art. This invention is not intended to be limited
to the examples set forth here but rather shouldbe coextensive
with the claims set forth and granted such scope as is afforded
under all applicable laws.

We claim:
1. A method for test case generation to produce test cases

from counterexamples produced by a formal analysis system
relative to a model of a system under test comprising steps of:

submitting the model and at least one predicate character-
izing test targets to the formal analysis system with an
assertion that none of the predicates is satisfiable;

identifying one or more of the test targets that are satisfied
by a first test case;

eliminating one or more portions of the model that cannot
contribute to a satisfaction of one or more of the test
targets not satisfied by the first test case, wherein the
eliminating results in a reduced model, and wherein the
eliminating is performed each time at least one of the test
targets is satisfied;

obtaining a new counterexample from the formal analysis
system in accordance with the reduced model, wherein
the new counterexample is an extension to at least a part
of a previously known counterexample from which the
first test case is extracted, wherein the formal analysis
system uses a processor to adapt a non-initial state of the
previously known counterexample as an initial state
from which to calculate the new counterexample;

12
extracting a new test case from the new counterexample to

cause the one or more of the test targets that cannot be
satisfied by the first test case to be reached by the system
under test; and

5	 forming a set of test cases, wherein the set of test cases
includes the first test case and the new test case.

2. The method as in claim 1 wherein the new counterex-
ample from the formal analysis system is an extension to a
complete previously known counterexample.

10 3. The method as in claim 1 wherein the step of obtaining
a new counterexample involves an analysis that considers in
parallel more than one previously discovered counterex-
ample.

4. The method as in claim 3 wherein the step of obtaining
15 a new counterexample involves an analysis that considers in

parallel all previously discovered counterexamples.
5. The method as in claim 1 wherein the step of obtaining

a new counterexample involves an analysis that considers
states visited in random testing as previously known counter-

20 examples.
6. The method as in claim 1 wherein predicates character-

izing all test targets are submitted to the formal analysis
system.

7. The method as in claim 1 wherein the set of test cases
25 generated satisfies a coverage metric relative to the system

under test.
8. The method as in claim 7 wherein the coverage metric is

MC/DC.
9. The method as in claim 1 wherein the formal analysis

30 system is a model checker.
10. The method as in claim 1 wherein the model comprises

a Stateflow statechart.
11. The method as in claim 1 wherein the step of submitting

35 the model to the formal analysis system includes reducing the
model.

12. The method as in claim 11 wherein said reducing the
model comprises slicing.

13. The method as in claim 11 wherein said reducing the

40
model comprises a cone of influence reduction.

14. The method as in claim 1 wherein the formal analysis
system reduces the model prior to generating a counterex-
ample.

15. The method as in claim 14 wherein said reducing the

45 model comprises slicing.
16. The method as in claim 14 wherein said reducing the

model comprises a cone of influence reduction.
17.The method as in claim 1 further comprising processing

the set of test cases generated to remove redundancies.
50 18. The method of claim 1, wherein the initial state from

which the new counterexample is calculated is different from
an initial state from which the previously known counterex-
ample is calculated.

19. The method of claim 1, wherein the non-initial state of
55 the previously known counterexample is obtained by:

storing one or more states of the system under test, wherein
the one or more states are visited by a path generated by
the previously known counterexample, and wherein the
one or more states were previously unvisited by paths

60	 generated by other counterexamples; and
selecting one of the one or more states as the non-initial

state of the previously known counterexample.
20. A computer readable storage medium containing an

executable program for test case generation to produce test
65 cases from counterexamples produced by a formal analysis

system relative to a model of a system under test, where the
program performs steps of:

US 7,865,339 B2
13

submitting the model and at least one predicate character-
izing test targets to the formal analysis system with an
assertion that none of the predicates is satisfiable;

identifying one or more of the test targets that are satisfied
by a first test case;

eliminating one or more portions of the model that cannot
contribute to a satisfaction of one or more of the test
targets not satisfied by the first test case, wherein the
eliminating results in a reduced model, and wherein the
eliminating is performed each time at least one of the test
targets is satisfied;

obtaining a new counterexample from the formal analysis
system in accordance with the reduced model, wherein
the new counterexample is an extension to at least a part
of a previously known counterexample from which the
first test case is extracted, wherein the formal analysis
system uses a processor to adapt a non-initial state of the
previously known counterexample as an initial state
from which to calculate the new counterexample;

extracting a new test case from the new counterexample to
cause the one or more of the test targets that cannot be
satisfied by the first test case to be reached by the system
under test; and

forming a set of test cases, wherein the set of test cases
includes the first test case and the new test case.

21. The computer readable storage medium of claim 20
wherein the new counterexample from the formal analysis
system is an extension to a complete previously known coun-
terexample.

22. The computer readable storage medium of claim 20
wherein the step of obtaining a new counterexample involves
an analysis that considers in parallel more than one previously
discovered counterexample.

23. The computer readable storage medium of claim 22
wherein the step of obtaining a new counterexample involves
an analysis that considers in parallel all previously discovered
counterexamples.

24. The computer readable storage medium of claim 20
wherein the step of obtaining a new counterexample involves
an analysis that considers states visited in random testing as
previously known counterexamples.

25. The computer readable storage medium of claim 20
wherein predicates characterizing all test targets are submit-
ted to the formal analysis system.

14
26. The computer readable storage medium of claim 20

wherein the set of test cases generated satisfies a coverage
metric relative to the system under test.

27. The computer readable storage medium of claim 26
5 wherein the coverage metric is MC/DC.

28. The computer readable storage medium of claim 20
wherein the formal analysis system is a model checker.

29. The computer readable storage medium of claim 20
wherein the model comprises a Stateflow statechart.

10 30. The computer readable storage medium of claim 20
wherein the step of submitting the model to the formal analy-
sis system includes reducing the model.

31. The computer readable storage medium of claim 30
wherein said reducing the model comprises slicing.

15 32. The computer readable storage medium of claim 30
wherein said reducing the model comprises cone of influence
reduction.

33. The computer readable storage medium of claim 20
wherein the formal analysis system reduces the model prior to

20 generating a counterexample.
34. The computer readable storage medium of claim 33

wherein said reducing the model comprises slicing.
35. The computer readable storage medium of claim 33

wherein said reducing the model comprises a cone of influ-
25 ence reduction.

36. The computer readable storage medium of claim 20
further comprising processing the set of test cases generated
to remove redundancies.

37. The computer readable storage medium of claim 20,
30 wherein the initial state from which the new counterexample

is calculated is different from an initial state from which the
previously known counterexample is calculated.

38. The computer readable storage medium of claim 20,
wherein the non-initial state of the previously known coun-

35 terexample is obtained by:
storing one or more states of the system under test, wherein

the one or more states are visited by a path generated by
the previously known counterexample, and wherein the
one or more states were previously unvisited by paths

40	 generated by other counterexamples; and
selecting one of the one or more states as the non-initial

state of the previously known counterexample.

	7865339-p0001.pdf
	7865339-p0002.pdf
	7865339-p0003.pdf
	7865339-p0004.pdf
	7865339-p0005.pdf
	7865339-p0006.pdf
	7865339-p0007.pdf
	7865339-p0008.pdf
	7865339-p0009.pdf
	7865339-p0010.pdf
	7865339-p0011.pdf
	7865339-p0012.pdf
	7865339-p0013.pdf
	7865339-p0014.pdf
	7865339-p0015.pdf
	7865339-p0016.pdf
	7865339-p0017.pdf

