GRB Studies with GLAST Fermi

Charles Meegan
NASA/MSFC

for the Fermi GRB Team

see http://www.nasa.gov/glast and links therein
The Fermi Observatory

Large Area Telescope (LAT)
- Large Field of View (>2.4 sr)
- Views entire sky every 3 hrs
- 20 MeV - 300 GeV

Gamma-ray Burst Monitor (GBM)
- Views entire unocculted sky
- NaI: 8 keV - 1 MeV
- BGO: 150 keV - 30 MeV
Launch from Cape Canaveral Air Station 11 June 2008 at 12:05PM EDT

- Circular orbit, 565 km altitude (96 min period), 25.6 deg inclination.

- Communications:
 - Science data link via TDRSS Ku-band, average data rate 1.2 Mbps.
 - S-band via TDRSS and ground stations
Motivations for High Energy Observations

- Delayed emission
- SSC component
- Absorption
 - Internal
 - External
- Thermal + non-thermal spectra
- Quantum Gravity

Hurley et al. 1994
Gonzalez et al. 2003
Fermi and GRBs

- LAT + GBM cover 6 decades in energy
- GBM provides full sky coverage
- Autonomous repointing for strong bursts
- Synergy with Swift

"Typical" Prompt GRB Spectrum

\[E^2 N_E \text{ (erg cm}^{-2} \text{s}^{-1}) \]

- \(E \) is the energy of the photon in MeV
- \(N_E \) is the differential number of photons per energy interval

Photon Energy (MeV)
- Precision Si-strip Tracker (TKR) -
 70 m² of silicon detectors arranged in 36 planes.
 880,000 channels.

- Hodoscopic CsI Calorimeter (CAL) -
 1536 CsI(Tl) crystals in 8 layers, total mass 1.5 tons.

- Segmented Anticoincidence Detector (ACD) -
 89 plastic scintillator tiles.

- Electronics System - Includes flexible hardware trigger and onboard computing.
LAT Capabilities

- Effective Area >8000 cm² above 10 GeV (10 x EGRET)
- Field of View: 2.4 sr
- PSF <10 arc min above 10 GeV (5 times better than EGRET)
- Very low background for GRBs
- Deadtime per event ~26 μs (10⁴ better than EGRET)
LATGRB Searches

- **Onboard (150 Hz background rate, simplified direction/energy reconstruction)**
 - Standalone search: look for spatially and temporally clustered events in a blind search
 - GBM seeded search: Look at the location and time of a GBM burst
 - Currently in a “diagnostic” mode where the thresholds for the standalone search are set very high (so we will rarely trigger) and the thresholds for the GBM seeded search are set very low (so that we always send LAT alert messages)

- **Ground search (5 hz background rate, sophisticated direction/energy reconstruction)**
 - Standalone/blind search
 - Follow up of all GRB within LAT FoV

- **GRB 080916C**
 - LATonboard (ra, dec): 119.3, -56.7
 - LATground (ra, dec): 119.88, -56.59
 - GROND (ra, dec): 119.85, -56.63
- Gamma-Ray Burst Monitor -

- **12 Sodium Iodide Detectors (NaI)**
 - 5” x ½”, 8 keV – 1 Mev

- **2 Bismuth Germanate Detectors (BGO)**
 - 5” x 5”, 150 keV – 30 MeV

- **Data processing Unit (DPU)**
 - Command, telemetry, flight software.

- **Power Supply Box (PSB)**
 - HV and LV to DPU and detectors
GBM Capabilities

- **Energy Range:** 8 keV to 30 MeV
- **On-Board Trigger**
 - Up to 5 energy ranges
 - Timescales 16 ms to 16 sec
 - Classification
 - Localizations to <8
- **Trigger sensitivity:** 0.7 photons cm$^{-2}$ s$^{-1}$
- **Rapid GCN notifications**
- **Data:**
 - 8 channel spectra every 256 ms
 - 128 channel spectra every 8 s
 - Time-tagged events during bursts
- **Expect ~280 GRB triggers/year**
GBM Trigger Classes

- 141 triggers in 94 days
 - 72 GRBs - 280 per year
 - 27 SGR 1501+4516
 - 7 AXP 1E1547.0-5408
 - 5 TGF
 - 29 Other (particles, Cyg X-1, accidental, unknown)
3 LAT/GBM Detections of GRBs

GRB080825C: ~13 LAT photons

GRB080916C: >200 LAT photons

GRB081024B: ~20 LAT photons
GRB 080916C LAT skymap

30 deg region around GRB 080916C

- GRB at 48° from the LAT boresight at T_0
- \text{RGB= <100 MeV, 100 MeV - 1 GeV, >1 GeV}

Before the burst (T_0-100 s to T_0)

During the burst (T_0 to T_0+100 s)

Black region = out of FoV
Multiple detector light curve

First 3 light curves are background subtracted

- The LAT can be used as a counter to maximize the rate and to study time structures above tens of MeV
 - The first low-energy peak is not observed at LAT energies

- Spectroscopy needs LAT event selection (>100 MeV)
 - 5 intervals for time-resolved spectral analysis:
 - $0 - 3.6 - 7.7 - 16 - 55 - 100$ s
 - 14 events above 1 GeV
The bulk of the emission of the 2nd peak is moving toward later times as the energy increases.

Clear signature of spectral evolution.
Spectroscopy of the main LAT peak

- $\alpha = -1.02 \pm 0.02$
- $\beta = -2.21 \pm 0.03$
- $E_{\text{peak}} = 1170 \pm 142$ keV
- Amp. = 0.0354 ± 0.001 photons/s-cm2-keV
- REDUCED CHISQ = 0.963, PROB = 0.698

- Consistent with Band function from 10 keV to 10 GeV
- No evidence for any other component
- No evidence for any roll-off

PRELIMINARY!
GRB 080916C Spectral evolution

Soft-to-hard, then hard-to-soft evolution
Temporally-extended LAT emission

- GBM emission drop-off ~55 seconds after T_0
- Significant LAT emission from $T_0+3.6$ s to T_0+1400 s
 - Tighter event selection cuts, optimized for weak sources
 - Test Statistics with position fixed at GROND location: TS > 25 (square of significance)
 - Still significant (5.9σ) between T_0+200 s and T_0+1400 s, and consistent with the trend from the prompt emission

PRELIMINARY!
GRB 080916C Summary

• After only 2 months of the Fermi mission!
 – Second burst detected by the LAT after GRB 080825C [GCN 8183 – A. Bouvier]
 – The first GRB since EGRET epoch with imaged photons and energies > 1 GeV!

• Prompt emission
 – A long bright GRB
 • First GBM burst in fluence \((4.0 \times 10^{-5} \text{ erg/cm}^2 \text{ in } 50 – 300 \text{ keV})\) and in the LAT FoV
 • More than 140 LAT events for spectral analysis (> 100 MeV)
 • More than 3000 LAT photons in the first 100 seconds
 – Time-resolved spectroscopy over 6 decades in energy (10 keV to 10 GeV)
 • Joint analysis of GBM and LAT data works very well!
 • All spectra are consistent with a Band function
 – Soft-to-hard (up to \(E_{\text{peak}} = 1.2 \text{ MeV}\)) then hard-to-soft spectral evolution
 \(\nabla\)
 The high-energy emission peaks at later times

• High-energy continued emission up to 23 min after the trigger time
 – Constantly declining flux

All detailed analyses in upcoming article!
Fermi Large Area Space Telescope is operational and working well.

Three bursts detected by both LAT and GBM.

Wide spectral range shows great promise.

Still to come:
- Automatic repoints
- GBM/LAT/Swift bursts
Backup Material
GBM Burst Alerts

GBM

1. Trigger
2. Classification, Location, Hardness, Initial Flux
3. Flux, Fluence, Hardness (Running Updates)
4. Parameters
5. Science Repoint Candidate

S/C

1. Direct link
2. Begin R/T downlink
3. Continue R/T, 5 min.

LAT

1. Mode Change?
2. Information packet
3. Repoint request
4. S/C Repoint Decision

Legend

- GBM
- LAT
- GBM/LAT
- S/C
The LAT Field of view is huge! (>55 deg half angle)

- Increases total exposure (because more of the sky is exposed at any instant)
- Superb for “catching” transients

[Diagram showing effective area vs. inclination angle and angle for 68% containment vs. inclination angle]
LAT will routinely localize GRBs to $<1^\circ$
GBM On-board Trigger Algorithm

- Four energy ranges: 25-50, 50-300, >100, >300 (keV)
- Eleven integration times: 16 ms - 8 s.
- Two timing phases
- Threshold of 4.5 sigma for 50-300 keV, 64 ms - 4 s
- Background rate 50-300 keV is \(\sim 320 \) counts/s
- Flux threshold for 1 s burst, 50-300 keV: \(\sim 0.75 \) photons/cm\(^2\)/s
- Prediction of 200 bursts/year with BATSE-like trigger