An alpha voltaic battery includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor material, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction of the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the one p/n junction in the layer of semiconductor material.
PROOF-OF-CONCEPT \(\alpha \)-VOLTAIC BATTERY

0.74 VOLTS @ 5.6nA

OPERATING TEMPERATURE: \(-135^\circ\text{C}\)

ALPHA VOLTAIC BATTERY PROTOTYPE OPERATING AT \(-135^\circ\text{C}\)

FIG. 4
ALPHA VOLTAIC BATTERIES AND METHODS THEREOF

This application is a divisional of prior application Ser. No. 11/093,134, filed Mar. 29, 2005, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/557,993 filed Mar. 31, 2004, which are hereby incorporated by reference in their entirety.

The subject matter of this application was made with support from the United States Government under NASA Grant No. NAG3-2595. The United States Government has certain rights.

FIELD OF THE INVENTION

The present invention generally relates to batteries and, more particularly, alpha voltaic batteries and methods thereof.

BACKGROUND

The concept of an alpha voltaic battery was proposed in 1954 as disclosed in W. G. Pfann and W. van Roosbroeck, Journal of Applied Physics, Volume 25, No. 11, pp. 1422-1434, November 1954, which is herein incorporated by reference. In an alpha voltaic battery a radioactive substance that emits energetic alpha particles is coupled to a semiconductor p/n junction diode. As the alpha particles penetrate into the p/n junction, they decelerate and give up their energy as electron-hole pairs. These electron-hole pairs are collected by the p/n junction and converted into useful electricity much like a solar cell.

The main reason alpha voltaic batteries are not commercially successful is that the alpha particles damage the semiconductor material so as to degrade its electrical performance in just a matter of hours as disclosed in G. C. Rybicki, C. V. Aburto, R. Uribe, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, pp. 93-96, 1996, which is herein incorporated by reference.

SUMMARY

An alpha voltaic battery in accordance with embodiments of the present invention includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor layer, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the p/n junction in the layer of semiconductor material.

A method for making an alpha voltaic battery in accordance with embodiments of the present invention includes providing at least one layer of a semiconductor material comprising at least one p/n junction, providing at least one absorption and conversion layer on the at least one layer of semiconductor layer, and providing at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the p/n junction in the layer of semiconductor material.

Alpha voltaic batteries 10(1) and 10(6) in accordance with embodiments of the present invention are illustrated in FIGS. 1-3D. The batteries 10(1)-10(6) each include an intermediate or absorption and conversion layer 12(1)-12(6) with an alpha particle emitter or source 14(1)-14(6) and one or more layers of semiconductor material 18(1)-18(6) and 22(1)-22(3), although the batteries 10(1)-10(6) can each comprise other numbers and types of elements in other configurations. The present invention provides alpha voltaic batteries whose performance does not degrade in a matter of hours because of damage to the layer semiconductor material from the alpha particles.

Referring more specifically to FIG. 1, an alpha voltaic battery 10(1) in accordance with embodiments of the present invention is illustrated. The alpha particle emitter 14(1) emits energetic alpha particles which are converted by the alpha voltaic battery 10(1) into energy. The alpha particle emitter 14(1) is embedded in a metal foil 16, although the alpha particle emitter 14(1) could be embedded or connected to other types and numbers of layers of material or materials in other configurations, such as in the absorption and conversion layer 12(2) as shown and described with reference to FIG. 2.

Referring back to FIG. 1, in these embodiments the alpha particle emitter 14(1) comprises Am-241 which is thermally diffused in the metal foil 16 and is then over-coated with another metal, such as silver, to form the metal foil 16 with the embedded alpha particle emitter 14(1), although other types
of alpha particle emitters which are embedded or configured in other manners could be used.

The intermediate or absorption and conversion layer 12(1) is deposited on the metal foil 16 with the embedded alpha particle emitter 14(1), although other types and numbers of absorption and conversion layers in other configurations could be used. The absorption and conversion layer 12(1) prevents alpha particles from the alpha particle emitter 14(1) from damaging one or more p/n junctions in the layer of semiconductor material 18(1), and also successfully converts the photons or energy from the alpha particles into electron-hole pairs for collection by the p/n junction in the layer of semiconductor material 18(1). The thickness of the absorption and conversion layer 12(1) depends upon the energy or the alpha particles and the resulting penetration depth in the absorption and conversion layer 12(1). The thickness of the absorption and conversion layer 12(1) can be chosen to prevent any radiation damage to the layer of semiconductor material 18(1) or to permit partial amounts of the energy to be deposited into the layer of semiconductor material 18(1) and to decrease the self-absorption of photons by absorption and conversion layer 12(1). For example, a thickness of the absorption and conversion layer 12(1) can be determined and selected to achieve a desired minimum lifespan for the battery 10(1)-10(6) and power output by providing a sufficient thickness to protect the layer of semiconductor material 18(1) while permitting a sufficient amount of the photons to reach the layer of semiconductor material 18(1) for conversion to power.

In these embodiments, the absorption and conversion layer 12(1) comprises a layer of phosphor, such as ZnS:Ag, which fluoresces photons of approximately 2.66 eV (465 nm wavelength) in energy, although other types and numbers of absorption and conversion layers could be used. By way of example only, other materials which could be used for the absorption and conversion layer 12(1) include rare earth doped garnet crystals and nano scale materials known as "quantum dots" that exhibit fluorescence under particle radiation, although other types of materials could be used. Materials that fluoresce under particle radiation, collectively known as phosphors, can convert particle radiation into photons with very high efficiency.

The alpha particle emitter 14(1) is placed adjacent the absorption and conversion layer 12(1) and is embedded in the metal foil 16 as shown in FIG. 1, although other numbers and types of elements in other arrangements can be used. By way of example only, other arrangements for alpha particle emitters 14(3)-14(6) are illustrated in alpha voltaic batteries 10(3)-10(6) shown in FIGS. 3A-3D. Alpha voltaic batteries 10(3)-10(6) have a like structure and operation as the corresponding alpha voltaic batteries 10(1) and 10(2), except as described herein. Additionally, elements in FIGS. 3A-3D which are like those in FIGS. 1 and 2 have like reference numerals.

Referring to FIG. 3A, the alpha particle emitter 14(3), which for illustration purposes only is illustrated as dots, is distributed homogeneously throughout the absorption and conversion layer 12(3) which is adjacent the layer of semiconductor material 18(3) with a p/n junction. Referring to FIG. 3B, the alpha particle emitter 14(4), which for illustration purposes only is illustrated as dots, is distributed in a graded fashion throughout the absorption and conversion layer 12(4) with proportionally less alpha emitting material as the absorption and conversion layer 12(4) nears the layer of semiconductor material 18(4) with the p/n junction. Distributing the alpha particle emitter 14(4) in a graded fashion with less near the layer of semiconductor material 18(4) helps to make an effective battery 10(4) while minimizing any possible radiation to the layer of semiconductor material 18(4).

Similarly, referring to FIG. 3C, the alpha particle emitter 14(5), which for illustration purposes only is illustrated as dots, is distributed in a graded fashion throughout the absorption and conversion layer 12(5) with proportionally less alpha emitting material as the absorption and conversion layer 12(5) nears each of the layers of semiconductor material 18(5) and 22(2) with the p/n junction. Referring to FIG. 3D, the alpha particle emitter 14(6) and the absorption and conversion layer 12(6) are in a multilayered film arrangement between the layers of semiconductor material 18(6) and 22(3), although other numbers of layers of alpha particle emitters, absorption and conversion layers, and/or layers of semiconductor material could be used.

Referring back to FIG. 1, an interface 19 between the base layer 16 with the alpha particle emitter 14(1) and the absorption and conversion layer 12(1) is substantially reflective of the photons emitted by the absorption and conversion layer 12(1). With this reflection at the interface 19, the photons emitted by the absorption and conversion layer 12(1) towards the base layer 16 are be reflected to the p/n junction in the layer of semiconductor material 18(1) for collection. The natural reflectivity of alpha particle emitter 14(1) will cause reflection, although other ways of achieving the desired reflectivity can be used, such as an optional thin metal coating 21 on the metal foil 16 at the interface 19, although other numbers and types of at least partially reflective coatings at other locations can be used. By way of example only, the coating 21 could be the normal gold coating applied to seal most solid sample sources. The reflectivity of the surface of the metal foil 16 is directly related to the thickness of the metal foil 16, but the thickness will be inversely proportional to the amount of alpha energy which it passes.

The layer of semiconductor material 18(1) is deposited on a surface of the absorption and conversion layer 12(1), although other types and numbers of layers of semiconductor material in other configurations could be used. In these embodiments, the layer of semiconductor material 18(1) with the p/n junction is a high bandgap "solar cell", although other numbers of p/n junctions could be used. By way of example only, the types of layers of semiconductor materials which could be used include, by way of example only, GaAs, GaInP, SiC, Si, or other III-V, II-VI or group IV semiconductors. The layer of semiconductor material 18(1) has a high bandgap ranging between about 1 eV and about 3 eV, although the high bandgap for the layer of semiconductor material 18(1) could have other ranges.

The operation of the alpha voltaic battery 10(1) will now be described with reference to FIG. 1. Alpha particles emitted from the alpha particle emitter 14(1) embedded in the metal foil 16 are emitted into the absorption and conversion layer 12(1). The alpha particles decelerate in the absorption and conversion layer 12(1) creating electron-hole pairs. Instead of being collected by a p/n junction in the layer of semiconductor material 18(1), the electron-hole pairs in the absorption and conversion layer 12(1) simply recombine and emit photons.

The emitted photons in the absorption and conversion layer 12(1) are either emitted towards the layer of semiconductor material 12(1) or are substantially reflected at the interface between the metal foil 16 and the absorption and conversion layer 12(1) towards the layer of semiconductor material 12(1). Since the photons have energy greater than the bandgap of the p/n junction in the layer of semiconductor material 18(1), the photons are absorbed in the p/n junction layer of
semiconductor material $12(1)$ creating electron-hole pairs that are converted into useful electricity. This generated electricity or power is transferred to a load $20(1)$ which is coupled between the absorption and conversion layer $12(1)$ and the layer of semiconductor material $18(1)$ across the p/n junction. Accordingly, with the absorption and conversion layer $12(1)$, the p/n junction in the layer of semiconductor material $18(1)$ is protected from the harmful effects of the alpha particles from the alpha emitter $14(1)$, but still recovers the energy from the alpha radiation which is converted to useful power.

Referring to FIG. 2, a schematic diagram of a bi-facial alpha voltaic battery $10(2)$ in accordance with other embodiments of the present invention is illustrated. The alpha particle emitter $14(2)$ emits energetic alpha particles which are converted by the alpha voltaic battery $10(2)$ into energy. The alpha particle emitter $14(2)$ is embedded in an absorption and conversion layer $12(2)$, although the alpha particle emitter $14(2)$ could be embedded or connected to other types and numbers of layers of material or materials in other configurations. For example, the alpha particle emitter $14(2)$ could be in a multilayered film between the layers of semiconductor material $18(2)$ and $22(1)$ comprising with alternating layers of the alpha particle emitter and the absorption and conversion layer. In another embodiment, the alpha particle emitter $14(2)$ could be distributed homogeneously throughout the absorption and conversion layer $12(2)$. In yet another embodiment, the alpha particle emitter $14(2)$ could be distributed in a graded fashion throughout the absorption and conversion layer $12(2)$ with proportionally less alpha emitting material as the absorption and conversion layer $12(1)$ nears each of the layers of semiconductor material $18(2)$ and $22(1)$. Distributing the alpha particle emitter $14(2)$ in a graded fashion with less near each of the layers of semiconductor material $18(2)$ and $22(1)$ helps to make an effective battery while minimizing any possible radiation to each of the layers of semiconductor material $18(2)$ and $22(1)$. In these embodiments the alpha particle emitter $14(2)$ comprises Am-241 which is thermally diffused in the absorption and conversion layer $12(2)$, although other types of alpha particle emitters which are embedded or configured in other manners could be used.

The absorption and conversion layer $12(2)$ comprises a single layer between layers of semiconductor material $18(2)$ and $22(1)$, although other types and numbers of absorption and conversion layers in other configurations could be used. The absorption and conversion layer $12(2)$ prevents alpha particles from the alpha particle emitter $14(2)$ from damaging one or more p/n junctions in the layers of semiconductor material $18(2)$ and $22(1)$. The absorption and conversion layer $12(2)$ also successfully converts the photons or energy from the alpha particles into electron-hole pairs for collection by the p/n junction in each of the layers of semiconductor material $18(2)$ and $22(1)$. The absorption and conversion layer $12(2)$ comprises a single layer of phosphor, although again like the absorption and conversion layer $14(1)$, the absorption and conversion layer $12(2)$ can have other types and numbers of layers in other configurations, such as a multilayer design alternating with layers of the alpha particle emitter between or a composite of the alpha particle emitter and the absorption and conversion layer in which the alpha particle emitter is homogeneously or graded throughout the absorption and conversion layer $12(2)$. The number of layers and/or composition and material distribution depends on the particular material used for absorption and conversion layer $12(2)$ and the particular alpha source material utilized for the alpha particle emitter $14(2)$. The absorption and conversion layer $12(2)$ and the alpha particle emitter $14(2)$ are combined to provide the maximum photon output to the surrounding layers of semiconductor materials $18(2)$ and $22(1)$, while minimizing any damage to the layers of semiconductor materials $18(2)$ and $22(1)$ and to the absorption and conversion layer $12(2)$.

In these embodiments the absorption and conversion layer $12(2)$ comprises a layer of phosphor, such as ZnS:Ag, which fluoresces photons of approximately 2.66 eV (465 nm wavelength) in energy, although other types and numbers of absorption and conversion layers could be used. By way of example only, other materials which could be used for the absorption and conversion layer $12(2)$ include rare earth oxides or rare earth doped garnet crystals and nanoscale materials known as “quantum dots” that exhibit fluorescence under particle radiation, although other types of materials could be used. Materials that fluoresce under particle radiation, collectively known as phosphors, can convert particle radiation into photons with very high efficiency.

The layers of semiconductor material $18(2)$ and $22(1)$ are deposited on opposing surfaces of the absorption and conversion layer $12(2)$, although other types and numbers of layers of semiconductor material in other configurations could be used. In these embodiments, each of the layers of semiconductor material $18(2)$ and $22(1)$ have a p/n junction and comprise a high bandgap “solar cell”, although other numbers of p/n junctions could be used in each of the layers of semiconductor material $18(2)$ and $22(1)$. By way of example only, the types of layers of semiconductor materials which could be used include, by way of example only, GaAs, GaInP, SiC, Si, or other III-V, II-VI or group IV semiconductors. Each of the layers of semiconductor material $18(2)$ and $22(1)$ has a high bandgap ranging between about 1 eV and about 3 eV, although the high bandgap for each of the layers of semiconductor material $18(2)$ and $22(1)$ could have other ranges.

The operation of the alpha voltaic battery $10(2)$ will now be described with reference to FIG. 2. Alpha particles emitted from the alpha particle emitter $14(2)$ embedded in the absorption and conversion layer $12(2)$ are emitted into the absorption and conversion layer $12(2)$. The alpha particle atoms decelerate in the absorption and conversion layer $12(2)$ creating electron-hole pairs. Instead of being collected by the p/n junction in each of the layers of semiconductor material $18(2)$ and $22(1)$, the electron-hole pairs in the absorption and conversion layer $12(2)$ simply recombine and emit photons.

The emitted photons in the absorption and conversion layer $12(2)$ are either emitted towards the layer of semiconductor material $18(2)$ or towards the layer of semiconductor material $22(1)$. Since the photons have energy greater than the band gap of the p/n junction in each of the layers of semiconductor material $18(2)$ and $22(1)$, the photons are absorbed in the p/n junction in each of the layers of semiconductor material $18(2)$ and $22(1)$ creating electron-hole pairs that are converted into useful electricity. This generated electricity or power is transferred to loads $20(2)$ and $20(3)$. Load $20(2)$ is coupled across the p/n junction of the layer of semiconductor material $18(2)$ and load $20(3)$ is coupled across the p/n junction of the layer of semiconductor material $22(1)$. Accordingly, with the absorption and conversion layer $12(2)$, the p/n junction in each of the layers of semiconductor material $18(2)$ and $22(1)$ is protected from the harmful effects of the alpha particles from the alpha emitter $14(2)$, but still recovers the energy from the alpha radiation.

The emerging technologies of micro electrical mechanical systems (MEMS) are a perfect application for alpha voltaic batteries in accordance with the present invention. The present invention provides a long life power source that simply did not exist for these devices prior to this invention. Additionally, the present invention is very suitable for inte-
grating batteries directly on the semiconductor for a "battery-on-a-ship" concept. Alpha voltaic batteries in accordance with the present invention could produce power on the order of micro-Watts, sufficient for many MEMS applications.

With the present invention, scaling to higher power levels suitable for deep space missions (100's of Watts) is also possible. Alpha voltaic batteries in accordance with the present invention have at least two unique properties when compared to conventional chemical batteries that make them outstanding candidates for deep space missions: 1) The emitting materials have half-lives from months to 100's of years, so there is the potential for "everlasting" batteries; and 2) Alpha voltaic batteries in accordance with the present invention can operate over a tremendous temperature range. Ordinary chemical batteries all fail at temperatures below −40°C, while alpha voltaic batteries in accordance with the present invention have been demonstrated to work at −135°C.

Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.

What is claimed is:

1. A method for making an alpha voltaic battery, the method comprising:
 providing at least one layer of a semiconductor material comprising at least one p/n junction;
 putting at least one absorption and conversion layer on the at least one layer of semiconductor material, wherein the absorption and conversion layer comprises at least one layer of a fluorescent material; and
 providing at least one alpha particle emitter, wherein the at least one absorption and conversion layer prevents at least a portion of alpha particles from the at least one alpha particle emitter from damaging the at least one p/n junction and at least one layer of semiconductor material.

2. The method as set forth in claim 1 further comprising embedding the at least one absorption and conversion layer on at least one base layer, wherein the at least one absorption and conversion layer is on the at least one base layer and between the at least one base layer with the alpha particle emitter and the at least one layer of semiconductor material.

3. The method as set forth in claim 2 wherein an interface between the at least one absorption and conversion layer and the at least one base layer to the at least one p/n junction in the at least one layer of semiconductor material is at least partially reflective.

4. The method as set forth in claim 3 further comprising providing at least one coating at the interface which provides the at least partial reflectivity.

5. The method as set forth in claim 1 further comprising embedding the at least one alpha particle emitter in at least a portion of the at least one absorption and conversion layer.

6. The method as set forth in claim 5 wherein the at least one alpha particle emitter is substantially homogeneously disbursed through the at least one absorption and conversion layer.

7. The method as set forth in claim 5 wherein the at least one alpha particle emitter is disbursed through the at least one absorption and conversion layer in a graded manner with proportionally less of the at least one alpha particle emitter near the at least one layer of semiconductor material.

8. The method as set forth in claim 1 wherein the at least one alpha particle and the at least one absorption and conversion layer comprise a plurality of alternating layers.

9. The method as set forth in claim 1 wherein the at least one layer of semiconductor material has a high bandgap ranging between about 1 eV and about 3 eV.

10. The method as set forth in claim 1 further comprising putting at least one other layer of a semiconductor material with at least one p/n junction on another surface of the at least one absorption and conversion layer.

11. A method for making an alpha voltaic battery, the method comprising:
 providing at least one layer of a semiconductor material comprising at least one p/n junction;
 putting at least one absorption and conversion layer on the at least one layer of semiconductor layer, wherein the absorption and conversion layer comprises one of a rare earth oxide, a rare earth doped garnet crystal, and quantum dots; and
 providing at least one alpha particle emitter, wherein the at least one absorption and conversion layer prevents at least a portion of alpha particles from the at least one alpha particle emitter from damaging the at least one p/n junction in the at least one layer of semiconductor material.

12. A method for making an alpha voltaic battery, the method comprising:
 providing at least one layer of a semiconductor material comprising at least one p/n junction;
 putting at least one absorption and conversion layer on the at least one layer of semiconductor layer, and
 providing at least one alpha particle emitter, wherein the at least one absorption and conversion layer prevents at least a portion of alpha particles from the at least one alpha particle emitter from damaging the at least one p/n junction in the at least one layer of semiconductor material.

13. The method as set forth in claim 12 further comprising embedding the at least one alpha particle emitter in at least a portion of the at least one base layer, wherein the at least one absorption and conversion layer is on the at least one base layer and between the at least one base layer with the alpha particle emitter and the at least one layer of semiconductor material.
14. The method as set forth in claim 13 wherein an interface between the at least one absorption and conversion layer and the at least one base layer to the at least one p/n junction in the at least one layer of semiconductor material is at least partially reflective.

15. The method as set forth in claim 14 further comprising providing at least one coating at the interface which provides the at least partial reflectivity.

16. The method as set forth in claim 12 further comprising embedding the at least one alpha particle emitter in at least a portion of the at least one absorption and conversion layer.

17. The method as set forth in claim 16 wherein the at least one alpha particle emitter is substantially homogeneously disbursed through the at least one absorption and conversion layer.

18. The method as set forth in claim 16 wherein the at least one alpha particle emitter is disbursed through the at least one absorption and conversion layer in a graded manner with proportionally less of the at least one alpha particle emitter near the at least one layer of semiconductor material.

19. The method as set forth in claim 12 wherein the at least one alpha particle and the at least one absorption and conversion layer comprise a plurality of alternating layers.

20. The method as set forth in claim 12 wherein the absorption and conversion layer comprises at least one layer of a fluorescent material.

21. The method as set forth in claim 12 wherein the absorption and conversion layer comprises one of a rare earth oxide, a rare earth doped garnet crystal, and quantum dots.

22. The method as set forth in claim 12 wherein the at least one layer of semiconductor material has a high bandgap ranging between about 1 eV and about 3 eV.

23. The method as set forth in claim 12 further comprising putting at least one other layer of a semiconductor material with at least one p/n junction on another surface of the at least one absorption and conversion layer.