Terahertz Imaging and Backscatter Radiography Probability of Detection Study for Space Shuttle Foam Inspections

Warren Ussery
Lockheed Martin Space Systems Company
504-257-1934

Kenneth Johnson
NASA MSFC
256-544-0108

James Walker
NASA MSFC
256-961-1784

Ward Rummel
D&W Enterprises Ltd.
303-791-1940
External Propellant Tank (ET) Background

- ET holds cryogenic liquid hydrogen and oxygen fuel for shuttle main engines
- Polyurethane foam insulation prevents cryogenic fuel from boiling as well as ice formation
- Aero loads during launch can produce foam debris potentially damaging the shuttle orbiter
- After the Columbia accident, ET foam debris was identified as a likely cause of the orbiter wing damage
- NDE is performed on ET foam as one method of preventing critical foam debris during launch
Background: Foam Insulation

• **NDE Difficulties in Polyurethane Foam Inspection**
 – Does not lend itself to conventional NDE methods
 – Very low density (~2.5 lbs/cu ft) so air voids do not exhibit significant density change
 – Non homogeneous material with density variations
 – Inspection must be single sided due to access restrictions
 – No history of industrial inspection of foam

• **Conventional NDE Method Assessment**
 – UT: Foam attenuates UT
 – X-ray: Requires two sided access
 – Thermography: Foam is an insulator
 – Air-Coupled, Low Freq. UT: Non-homogeneous foam structure impairs technique

Typical Slice of ET Foam (Backlit to Emphasize Density Variations and Voids)

Pores
Interface Lines
Density Variation
Small Voids
Collimated beam of x-rays (55-70 kV) interact with sample molecules
Backscatter x-rays are emitted (Compton Scattering), possibly after multiple subsequent scattering events, and detected by NaI or YSO detectors
Collimation provides some preferential sensitivity to selected depth
The x-ray beam and detectors are scanned across the part to generate a 2-D presentation of the internal make-up of the foam
Terahertz (THZ) inspection uses energy in the high frequency RF band between microwave and infrared.

THZ beam is transmitted through object and reflects off the aluminum substrate.

Due to foam attenuation, received pulse is approx. 0.1 to 0.3 THz (100 GHz to 300 GHz).

Presence of defects produces changes in amplitude, phase and frequency of received beam.

Less attenuation can indicate less material such as the presence of a void.

THZ beam is scanned across the part to generate a 2-D presentation of the internal make-up of the foam.
Example 1
- THZ image has distinct response from void
- BSX image has marginal response from void
• **Example 2**
 - BSX image has distinct response from void
 - THZ image has marginal response from void
EXTERNAL TANK FOAM INSPECTION SYSTEM

Overhead Crane

Ice Frost Ramps

ET

Scanner

NDE Activity in Building 420 at the Michoud Assembly Facility
BSX/THZ POD Study

• **Purpose of Probability of Detection (POD) Study**
 – Statistical study used to assess performance and reliability of an NDE method
 – 90/95 detectability/confidence is common requirement in NASA, Air Force, etc.
 – BSX and THZ are used in a unique application with no existing POD history
 – POD result is necessary for future certification

• **Goals for the BSX/THZ POD Study**
 – Follow guidelines in MIL-HDBK-1823
 – Follow production requirements in inspection procedure
 • BSX and THZ methods are combined for a single result
 • Certified personnel
 • Material configuration
 • Production test procedures
 • Production equipment configuration
 – Establish 90/95 POD result
 • Multiple material thicknesses
 • Multiple defect depths
 • Exceed critical defect requirement of 0.9" by 0.4” voids
 – Establish false positive rate
 – Provide pedigree to techniques and personnel
BSX/THZ POD Study

- POD Study Characteristics
 - Designed Experiment
 - Hit or Miss Data
 - Multi-Variable Logistic Regression
 - Cumulative Distribution Function

90/95 Value: Intersection of 95% confidence curve with 90% probability of detection

Single variable versus multi-variable POD response
POD Approach for BSX/THZ of Ice Frost Ramps (IFRs)

- Test article consisted of flat blocks with inserted semi-natural defects
- This design allowed POD calculation for different defect depths and foam thicknesses
- Sample population of 400 composed of 100 defects and 300 blanks
- A POD sample consisted of a BSX and THZ inspection of one coupon
- Three interpreters analyzed the 400 samples for a total of 1200 discrete results
BSX/THZ POD Study

- POD Approach for BSX/THZ of IFRs
 - Test matrix and experimental design:
 - Ken Johnson (MSFC Statistics and Trending group)
 - Ward Rummel (Independent Contractor)
 - Randomized inspection order
 - Interpreters were blind to sample contents
 - Three Level II certified radiographers evaluated data
 - All 400 samples were dissected to confirm defect sizes or false positives

Mold and syringes used to produce voids.

Syringe

Syringe

X-ray images of internal voids in coupon

Coupon with defects marked after x-ray inspection

Coupon with defects after final dissection

ASNT Fall Conference 2008
BSX/THZ POD Study

- POD Variables
 - POD results are computed for multiple values of these variables
 - Interpreter: Three interpreters were used in the study
 - Foam thickness: Total foam thickness that contained the defect
 - Void depth: How far below the surface the void was located
 - Void height: Air gap or thru thickness of void
 - Void diameter: Diameter of cylinder void
 - Void major axis: Length of major axis of a slot void

![Diagram showing POD variables](image_url)

- Reporting Requirement for Cylinders: 0.9” diameter
- Reporting Requirement for Slots: 0.4” by 0.9”
BSX/THZ POD Study

- **Observations**
 - More elongated flaws require larger major axis dimension for detection
 - Thinner flaws (smaller height or thru-thickness) require larger major axis dimension for detection
 - Deeper flaws (under larger amounts of foam) require larger major axis dimension for detection

![Plot of Major v Minor Axis Lengths]

- **Detection:**
 - 0 of 3
 - 1 of 3
 - 2 of 3
 - 3 of 3

- **Major:Minor Axis Ratio**
 - 1:1
 - 2:1
 - 4:1

ASNT Fall Conference 2008
POD Results for Combined BSX/THZ Inspection: Cylinders

Inputs

<table>
<thead>
<tr>
<th>Foam Thickness (in)</th>
<th>Void Depth (in)</th>
<th>Flaw Height (in)</th>
<th>Flaw Diameter (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>0.20</td>
<td>0.41</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>0.22</td>
<td>0.44</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0.26</td>
<td>0.51</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>0.31</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Diagram

- **0”-2” depth:** 0.41” dia. X 0.20” high
- **2”-4” depth:** 0.44” dia. X 0.22” high
- **4”-6” depth:** 0.51” dia. X 0.26” high
- **6”-8” depth:** 0.63” dia. X 0.31” high

Worst Case Flaw of 0.63” by 0.31” Exceeds Critical Flaw Size Requirement of 0.9” dia.
BSX/THZ POD Study

• POD Results for Combined BSX/THZ Inspection: Slots

<table>
<thead>
<tr>
<th>Foam Thickness (in)</th>
<th>Void Depth (in)</th>
<th>Flaw Height (in)</th>
<th>Flaw Maj. Axis (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>0.29</td>
<td>0.58</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>0.31</td>
<td>0.62</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0.36</td>
<td>0.72</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>0.44</td>
<td>0.89</td>
</tr>
</tbody>
</table>

0”-2” depth: 0.58” major axis X 0.20” high
2”-4” depth: 0.62” major axis X 0.22” high
4”-6” depth: 0.72” major axis X 0.26” high
6”-8” depth: 0.89” major axis X 0.31” high

Worst Case Flaw of 0.89” by 0.44” meets Critical Flaw Size Requirement of 0.9” by 0.4”
BSX/THZ false positive results

- False positive rate was approx. 0.24 per square foot or approx. one false positive per IFR
- However, all false positives were below the reportable size of 0.4” x 0.9”
- No false positive indications from this study would have been formally reported based on their small size

<table>
<thead>
<tr>
<th>Interpreter</th>
<th>Spl No.</th>
<th>ID</th>
<th>Lab Cpn. No.</th>
<th>Foam Thickness</th>
<th>BSX Hit/Miss</th>
<th>BSX Long Axis Dim.</th>
<th>BSX Short Axis Dim.</th>
<th>THz Hit/Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>023a</td>
<td>Blank260</td>
<td>62B1X</td>
<td>4</td>
<td>1</td>
<td>0.580</td>
<td>0.220</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>023b</td>
<td>Blank260</td>
<td>62B1X</td>
<td>4</td>
<td>1</td>
<td>0.250</td>
<td>0.180</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>027</td>
<td>Blank046</td>
<td>76BX</td>
<td>4</td>
<td>1</td>
<td>0.930</td>
<td>0.250</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>082</td>
<td>Blank064</td>
<td>191X</td>
<td>4</td>
<td>1</td>
<td>0.235</td>
<td>0.235</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>181b</td>
<td>84.625</td>
<td>198BX</td>
<td>2</td>
<td>1</td>
<td>0.480</td>
<td>0.140</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>181c</td>
<td>84.625</td>
<td>198BX</td>
<td>2</td>
<td>1</td>
<td>0.550</td>
<td>0.210</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>295</td>
<td>Blank038</td>
<td>334X</td>
<td>4</td>
<td>1</td>
<td>0.250</td>
<td>0.120</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>362a</td>
<td>Blank175</td>
<td>384B1X</td>
<td>6</td>
<td>1</td>
<td>0.325</td>
<td>0.300</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>362b</td>
<td>Blank175</td>
<td>384B1X</td>
<td>6</td>
<td>1</td>
<td>0.300</td>
<td>0.300</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>400</td>
<td>Blank030</td>
<td>444X</td>
<td>2</td>
<td>1</td>
<td>0.160</td>
<td>0.160</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>382</td>
<td>Blank101</td>
<td>396B1X</td>
<td>8</td>
<td>1</td>
<td>0.360</td>
<td>0.260</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>Blank030</td>
<td>444X</td>
<td>2</td>
<td>1</td>
<td>0.170</td>
<td>0.150</td>
<td>0</td>
</tr>
</tbody>
</table>
• POD Summary
 – POD Test Plan was developed following the guidelines of MIL-HDBK-1823
 – ET production procedures were used in the POD study
 – POD studies completed for combined BSX and THZ detection of voids
 – Worst case 90/95 POD value for BSX/THZ:
 • Cylinders: 0.63” diameter by 0.31” thick void under 8” of foam
 • Slots: 0.89” x 0.45” slot by 0.31” thick void under 8” of foam
 – False positive rate established
 • No false positive results at or above critical flaw size