Abstract

Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter) estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.
Recent improvements in retrieving near-surface air temperature and humidity using microwave remote sensing

J. Brent Roberts

NASA/MSFC, Earth Science Office
Outline

- Motivation
- Historical Approaches
- Recent Improvements
 - Algorithms & Sensors
 - SSM/I with SST, AQUA
- Current uncertainty estimates
- Outstanding issues
Global Energy and Water Cycle

• Turbulent oceanic heat and moisture transfer in the form of latent and sensible heat fluxes

• Measuring globally requires estimating:
 • wind speed,
 • sea surface temperature
 • near-surface air temperature (TA)
 • specific humidity (QA)

From NASA NEWS website
Flux Uncertainties

- SEAFLUX INTERCOMPARISONS
- QA, TA differences play a major role in the differences between products.
Specific Humidity (QA)

• Use precipitable water (PW) – QA relationship and PW estimate from microwave radiometers (Liu, 1988)

• RT modeling suggests lower level moisture sensitivities to some SSM/I channels so regress WB500 with insitu QA (Schulz et al., 1993)

• Propagation of errors; fix by direct regression (Schluessel et al., 1995)

Air Temperature (TA)

• Use QA, estimate a RH of 80% and back out what TA should be (Liu, 1988)

• Estimate QA, SST, and wind speed and then make use of Bowen ratio (Konda et al., 1996)

• Derive SST-TA based on cloud classification (i.e. cloud heights/boundary layer are influenced by stability); (Clayson and Curry, 1996)

(INDIRECT METHODS)
Algorithmic Improvements

\[TB = F(X) \quad X = F^{-1}(TB) \]

GOAL: FIND \(F^{-1}(\cdot) \)

LINEAR \rightarrow **NON-LINEAR**

- Stepwise linear regression (Jackson et al., 2006)
- Neural Network (Jones et al., 1999)
- Genetic Algorithms (Singh et al., 2006)
- Neural Network with first guess (Roberts et al., 2010)

\[X = F^{-1}(TB \mid X_{\text{init}}) \]
Progression of Sensor Combinations

Motivation

- SSM/I–only (Schulz et al., 1993; Schluessel et al., 1995; Bentamy et al., 2003)

Historical Approaches

- AMSUA–only (Shi, 2001)

Recent Advances

- AMSRE–only (Zong et al., 2007)
 - AMSRE + NCEP2 (Kubota and Hihara, 2008)

- AMSUA + AMSRE (Roberts et al., in preparation)

- SSM/I + AMSUA Combined (Jackson et al., 2006, 2009)

- SSM/I + SST First Guess (Roberts et al., 2010)
SSM/I + SST (Neural Network)

Distribution of errors; Clear and Cloudy conditions separated

- The NNET is least biased and has narrowest distribution of errors.
- NNET significantly outperforms in cloudy conditions (more nonlinear RT)
- The air temperature retrievals rely heavily on the first guess SST
The AQUA Advantage

- AMSUA contains channels sensitive to lower troposphere
- AMSRE contains channels sensitive to PW, CLW, and SST

TS-TA improved by taking information from the surface and lower troposphere!
Current Levels of Uncertainty

Motivation
Numerical simulation of errors for typical conditions
- Ce = 1.5e-3
- U = 7 ms\(^{-1}\)
- DQ = 4 gkg\(^{-1}\)
- DT = 1.5 C

Systematic Error
- 0.1 g/kg (DQ)
- 0.1 m/s (U)
- 0.1 C (DT)

Random Error (LHF)
- 1.3 g/kg (DQ)
- 1.5 m/s (U)

Random Error (SHF)
- 1.5 C (DT)
- 1.5 m/s (U)

~8 W/m\(^2\)
~50 W/m\(^2\)
~70 W/m\(^2\)

Summary
Summary

- Retrievals of QA and TA are progressing.
- Nonlinear methods may be more appropriate than standard least squares regression techniques.
- Including information on the surface is important to improvements.
- Current levels of uncertainty put systematic errors just under 10 W/m².

Outstanding Issues

- How do we go from swath-level retrievals to gridded and interpolated products?
- Can a blended TA/QA product be created from a combination of many sensors?
- What are the accuracy requirements needed for TA and QA retrievals?
Bibliography