3 September 2010

The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

Michael R. Collier¹
David G. Sibeck¹
F. Scott Porter¹
J. Burch²
J.A. Carter³
Thomas Cravens⁴
Kip Kuntz⁵
N. Omidi⁶
A. Read³
Ina Robertson⁴
S. Sembay³
Steven L. Snowden¹

michael.r.collier@nasa.gov
david.g.sibeck@nasa.gov
Frederick.S.Porter@nasa.gov
j.burch@swri.edu
jac48@star.le.ac.uk
cravens@ku.edu
kuntz@pha.jhu.edu
omidi@adelphia.net
amr30@star.le.ac.uk
robertin@ku.edu
sfs5@star.le.ac.uk
snowden@milkyway.gsfc.nasa.gov

1. NASA’s Goddard Space Flight Center, Greenbelt, MD 20771
2. Southwest Research Institute, San Antonio, TX, USA 78216
3. University of Leicester, Leicester, UK LE1 7RH
4. University of Kansas, Lawrence, KS, USA 66045
5. Johns Hopkins University, Baltimore, MD, USA 21218
6. Solana Scientific Inc., Solana Beach, CA, USA 92075

All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable
for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.