Phased Array Ultrasound

Initial Development of PAUT Inspection of Self-Reacting Friction Stir Welds

Ryan Rairigh, Ph.D.
Michoud Assembly Facility
New Orleans, LA
Background

Conventional Friction Stir Weld (FSW)

• Uses fixed or retractable pin tool
• One shoulder and an anvil
• Requires more tooling force

Self Reacting Friction Stir Weld (SR-FSW)

• Uses self reacting pin tool
• Two shoulders. No anvil.
• Uses less tooling force and lower rpms.
Previous Work

• 2003-2004
 – NDE development for inspection of SR-FSW in 0.320-inch-thick 2219-T87/2195-T8M4.
 – Develop volumetric techniques for residual oxide defects (ROD) and other void type flaws via phased array ultrasonic testing (PAUT) to assure the acceptable quality of SR-FSW.
 – Multiple techniques were evaluated: visual (VT), penetrant (PT), X-ray radiography (RT) and phased-array ultrasound (PAUT).

<table>
<thead>
<tr>
<th>Weld Defect</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect free (clean)</td>
<td></td>
</tr>
<tr>
<td>Residual Oxide Defect (ROD)</td>
<td>Improper weld joint cleaning/Unconsumed interface</td>
</tr>
<tr>
<td>Voids / Wormholes</td>
<td>Insufficient forging of weld nugget</td>
</tr>
<tr>
<td>Tears – surface and subsurface</td>
<td>Excessive forging force</td>
</tr>
<tr>
<td>Undercutting</td>
<td>Excessive heel plunge</td>
</tr>
</tbody>
</table>

Table 1. Defects studied
Residual Oxide Defect (ROD)

• PAUT is the only NDE method which has been shown to detect detrimental levels of ROD.
• Detrimental ROD results in significant decrease in weld strength.
• Several process control countermeasures exist
 – Pre-weld prep including cleaning of weld area and dwell time.
 – Offset of centerline of weld.
 – Type of pin tool?

[Images of ROD Fracture and Typical Fracture]
Previous Work

• Conclusions
 – RT was inadequate for inspection of ROD
 – PAUT
 • ROD from high to mild severity, but non-relevant indications (NRI) were also noted
 – Surface breaking flaws were detected by visual and PT but PT produced multiple NRI. RT and PAUT found severe surface breaking flaws.

• Recommendations
 – Continue PAUT development to encompass ALL internal and volumetric flaw types.
 – Establish NDE thresholds for worst case flaws, and develop interpretation criteria based on these thresholds to include ROD, void and internal flaws.
Orion PAUT Development

• Initial Development
 – Based on previous work to develop PAUT as the primary NDE method for SR-FSW
 – Ground Test Article (GTA)
 • First complete engineering article of the Orion Crew Module (CM)
 • GTA provides the opportunity to test and qualify the baseline PAUT process.
 • Qualification of GTA inspection will serve as input for qualification of flight hardware inspection.
Development Defects

• Two Classes
 – Out of Schedule Defects (e.g. depend on weld temperature, mixing, etc.)
 • Galling
 • Lack of Adequate Forging (LAF)
 • ROD
 • Wormholes
 – Contamination Defects
 • Heavy Inclusions
 • Organic Material
Phased Array Ultrasound Analysis

C scan (top view)

D scan (end view)

B scan (side view)

Weld Nugget

A Scan (Amplitude)
PAUT Process

• Inspection Methods
 – Phased Array UT
 • Focus
 – Reference Standard: 0.020” Side Drilled Hole (SDH)
 – 10L64 (10 MHz, 64 element) probes with water wedge
 – 0° skew angle (perpendicular to direction of pin travel)
 – Dual probe, one each on advancing and retreating sides of weld, automated track encoder
 – 45° shear wave, electronic scan
 • OmniScan
 – 0.020” SDH Reference Standard
 – 5L 64, 10L 64 and 17L 100 probes with contact wedge
 – 0° skew angle
 – 45° shear wave, electronic scan
 – Hand scan on advancing and retreating sides with mini-encoder
Galling

- Tears and/or blisters on the surface (root or crown) of the SR-FSW
Wormholes and LAF

- Typically occur along advancing side of the weld midline
- Cold welds
ROD/Cross Slide

• Pin tool offset to the advancing side
• Creates larger volume of unconsumed interface
• Panels with increasing degree of offset
 – 10 % → 50 %
• Can resemble LAF in extreme conditions
ROD
30% Offset

No Defect Visible

X-ray
ROD

50% Offset

No Defect Visible

X-ray
Contamination

• Heavy Inclusions – Wire brush bristles, pin tool fragments
• Organics – Oil, hydraulic fluid

Heavy Inclusions

X-ray
Weld Development DOE

- Correlate weld strength and NDE results
- Weld Schedule for 0.200” thick Al 2195/2195
- External Tank (ET) PAUT protocols were followed
 - Reference Standard: 0.020” Side Drilled Hole (SDH)
 - 10L64 (10 MHz, 64 element) probes with water wedge
 - 0° skew angle (perpendicular to direction of pin travel)
 - Dual probe, one each on advancing and retreating sides of weld, automated track encoder
 - 45° shear wave, electronic scan
Mean UTS Values for DOE I & II

Orion DOE (5/16 DUST pin, 2:1, 95/95, .200) UTS

- Minimum acceptable UTS (red line above) per Engineering Process Specification
Mean UTS Values for DOE I & II

Orion DOE (5/16 DUST pin, 2:1, 95/95, .200) UTS

Panel ID

• Green squares were rejected by x-ray radiography
Mean UTS Values for DOE I & II

• Orange squares were rejected by PAUT
• Captured all of X-ray rejected defects (circled in green)
• False positives had localized defects and/or insufficient surface preparation
Representative Metallurgy

- Acceptable

- Galling

- LAF
Conclusions

• Weld DOE
 – All welds rejected by PAUT were outside the nominal weld schedule
 • Low UTS
 • Fracture Location in Weld
• X-ray was not successful at rejecting all major defects
• PAUT has shown initial success at finding all classes of defects in SR-FSW