
(12) United States Patent
Hinchey et al.

(54) SYSTEMS, METHODS AND APPARATUS FOR
GENERATION AND VERIFICATION OF
POLICIES IN AUTONOMIC COMPUTING
SYSTEMS

(75) Inventors: Michael G. Hinchey, Bowie, MD (US);
James L. Rash, Davidsonville, MD
(US); Walter E. Truszkowski,
Hyattsville, MD (US); Christopher A.
Rouff, Beltsville, MD (US); Roy
Sterritt, Newtownabbey (GB); Denis
Gracanin, Blacksburg, VA (US)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1089 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 11/532,800

(22) Filed:	 Sep.18, 2006

(65)	 Prior Publication Data

US 2010/0257505 Al	 Oct. 7, 2010

Related U.S. Application Data

(60) Provisional application No. 60/748,232, filed on Dec.
1, 2005.

(51) Int. Cl.
G06F 9144	 (2006.01)

(52) U.S. Cl 717/124; 717/127; 717/131;
717/136; 717/151; 717/154

(58) Field of Classification Search 714/124
See application file for complete search history.

(1o) Patent No.:	 US 7,886,273 B2
(45) Date of Patent:	 *Feb. 8, 2011

(56) References Cited

U.S. PATENT DOCUMENTS
6,697,965 131 * 2/2004	 Shimada 	 714/38
7,316,005 132 * 1/2008	 Qadeer et al 717/131

2002/0100014 Al * 7/2002	 Iborra et al	 717/104

* cited by examiner

Primary Examiner Thomas K Pham
(74) Attorney, Agent, or Firm Heather Goo

(57) ABSTRACT

Described herein is a method that produces fully (mathemati-
cally) tractable development of policies for autonomic sys-
tems from requirements through to code generation. This
method is illustrated through an example showing how user
formulated policies can be translated into a formal mode
which can then be converted to code. The requirements-based
programming method described provides faster, higher qual-
ity development and maintenance of autonomic systems
based on user formulation of policies.

Further, the systems, methods and apparatus described herein
provide a way of analyzing policies for autonomic systems
and facilities the generation of provably correct implementa-
tions automatically, which in turn provides reduced develop-
ment time, reduced testing requirements, guarantees of cor-
rectness of the implementation with respect to the policies
specified at the outset, and provides a higher degree of con-
fidence that the policies are both complete and reasonable.
The ability to specify the policy for the management of a
system and then automatically generate an equivalent imple-
mentation greatly improves the quality of software, the sur-
vivability of future missions, in particular when the system
will operate untended in very remote environments, and
greatly reduces development lead times and costs.

54 Claims, 25 Drawing Sheets

102 104
INFORMAL LAWS OF

SPECIFICATION	 CONCURRENCY

1802
CSP

TRANSLATOR

1804
CSP

SPECIFICATION

1806

1808 1810
VISUALIZATION ANALYZER CSP TOOLTOOL

1804

MODIFIED CSP
SPECIFICATION

112
CODE

TRANSLATOR

114
COMPUTER
LANGUAGE
PROGRAM 1800

U.S. Patent	 Feb. 8, 2011	 Sheet 1 of 25	 US 7,886,273 B2

102
	

104
INFORMAL	 LAWS OF

SPECIFICATION	 CONCURRENCY

106

TRANSLATOR

108
PROCESS-

BASED
SPECIFICATION

110

ANALYZER

112

CODE
TRANSLATOR

114
COMPUTER
LANGUAGE
PROGRAM

FIG. 1	 100

U.S. Patent	 Feb. 8, 2011	 Sheet 2 of 25	 US 7,886,273 B2

FIG. 2	 "1,-200

202

210

U.S. Patent	 Feb. 8, 2011	 Sheet 3 of 25	 US 7,886,273 B2

302
	

104

POLICY(S) 	 LAWS OF
CONCURRENCY

304

TRANSLATOR

306
FORMAL

SPECIFICATION

308

ANALYZER

310
CODE

TRANSLATOR

314
COMPUTER
LANGUAGE
PROGRAM

FIG. 3	 300

402

406

U.S. Patent	 Feb. 8, 2011	 Sheet 4 of 25	 US 7,886,273 B2

FIG. 4	 400

U.S. Patent
	

Feb. 8, 2011	 Sheet 5 of 25	 US 7,886,273 B2

502
TRANSLATE INFORMAL SPECIFICATION INTO
PROCESS-BASED SPECIFICATION SEGMENTS

504
AGGREGATE THE PROCESS-BASED

SPECIFICATION SEGMENTS INTO A SINGLE
PROCESS-BASED SPECIFICATION

506
TRANSLATE THE SINGLE PROCESS-BASED

SPECIFICATION
INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

508
COMPILE THE HIGH LEVEL LANGUAGE

INSTRUCTIONS INTO EXECUTABLE CODE

FIG. 5	 11_1'_500

U.S. Patent	 Feb. 8, 2011	 Sheet 6 of 25	 US 7,886,273 B2

602
VERIFY
SYNTAX

604
MAP TO

PROCESS-BASED
SPECIFICATION

502
606

CONSISTENCY
WITH OTHER

PROCESS-BASED
SPECIFICATIONS

608
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 6	 "I,__600

U.S. Patent	 Feb. 8, 2011	 Sheet 7 of 25	 US 7,886,273 B2

ANALYZE A FORMAL SPECIFICATION
DERIVED FROM SCENARIOS

704

NO
: LAW IN FORMAL
SPECIFICATION

?

YES

CORRECT THE FLAW IN THE SCENARIOS

702

706

FIG. 7	 700

U.S. Patent	 Feb. 8, 2011	 Sheet 8 of 25	 US 7,886,273 B2

TRANSLATE SCENARIOS INTO A FORMAL
SPECIFICATION

802

804
ANALYZE THE FORMAL SPECIFICATION

TRANSLATE THE FORMAL SPECIFICATION
INTO SCRIPT

806

FIG. 8	 I\\- 800

U.S. Patent
	

Feb. 8, 2011	 Sheet 9 of 25	 US 7,886,273 B2

902
MECHANICALLY TRANSLATE DOMAIN

KNOWLEDGE INTO FORMAL SPECIFICATION
SEGMENTS

904
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

906
TRANSLATE THE SINGLE FORMAL

SPECIFICATION
INTO SCRIPT(S)

908

GENERATE A SCRIPT FROM THE SCRIPT(S)

FIG. 9	 ^,- 900

U.S. Patent	 Feb. 8, 2011
	

Sheet 10 of 25
	

US 7,886,273 B2

1002
VERIFY
SYNTAX

1004
MAP TO FORMAL
SPECIFICATION

902
1006	 VERIFY

CONSISTENCY
OF FORMAL

SPECIFICATION

1008
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 10	 11-11-1000

U.S. Patent	 Feb. 8, 2011	 Sheet 11 of 25	 US 7,886,273 B2

1102
TRANSLATE POLICY(S) INTO FORMAL

SPECIFICATION SEGMENTS

1104
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

1106
TRANSLATE THE SINGLE FORMAL

SPECIFICATION
INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

1108
COMPILE THE HIGH LEVEL LANGUAGE

INSTRUCTIONS INTO EXECUTABLE CODE

FIG. 11	 111-1100

U.S. Patent	 Feb. 8, 2011
	

Sheet 12 of 25
	

US 7,886,273 B2

1202
VERIFY
SYNTAX

1204
MAP TO FORMAL
SPECIFICATION

1102
1206

CONSISTENCY
WITH OTHER

FORMAL
SPECIFICATIONS

1208
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 12	 1-11,-1200

U.S. Patent
	

Feb. 8, 2011	 Sheet 13 of 25	 US 7,886,273 B2

ANALYZE A FORMAL SPECIFICATION
DERIVED FROM POLICY(S)

1304

NO
FLAW IN FORMAL
SPECIFICATION

YES

CORRECT THE FLAW IN THE POLICY(S)

1302

1306

FIG. 13	 1300

U.S. Patent	 Feb. 8, 2011	 Sheet 14 of 25	 US 7,886,273 B2

TRANSLATE POLICY(S) INTO A FORMAL
SPECIFICATION

1402

1404

ANALYZE THE FORMAL SPECIFICATION

TRANSLATE THE FORMAL SPECIFICATION
INTO AN IMPLEMENTATION

1406

FIG. 14	 ^,— 1400

U.S. Patent
	

Feb. 8, 2011	 Sheet 15 of 25	 US 7,886,273 B2

1502
MECHANICALLY TRANSLATE POLICY(S) INTO

FORMAL SPECIFICATION SEGMENTS

1504
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

1506
TRANSLATE THE SINGLE FORMAL

SPECIFICATION
INTO IMPLEMENTATION(S)

1508
GENERATE AN IMPLEMENTATION FROM THE

IMPLEMENTATION(S)

FIG. 15	 1500

U.S. Patent
	

Feb. 8, 2011
	

Sheet 16 of 25
	

US 7,886,273 B2

1602

VERIFY
SYNTAX

1604

MAP TO FORMAL
SPECIFICATION

1502

1606
	

VERIFY
CONSISTENCY

OF FORMAL
SPECIFICATION

1608
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 16	 lll^— 1600

co
N
T

00
NtiT

N
T

N N
N O
I- I-T— T tiT

U.S. Patent	 Feb. 8, 2011	 Sheet 17 of 25	 US 7,886,273 B2

U.S. Patent	 Feb. 8, 2011	 Sheet 18 of 25	 US 7,886,273 B2

102
	

104
INFORMAL	 LAWS OF

SPECIFICATION	 CONCURRENCY

1802

CSP
TRANSLATOR

1804

CSP
SPECIFICATION

1806

1808
VISUALIZATION	 ANALYZERTOOL

1810

CSP TOOL

112

1804

MODIFIED CSP
SPECIFICATION

CODE
TRANSLATOR

114

FIG. ,^ 8
	

COMPUTER
LANGUAGE
PROGRAM	 1800

U.S. Patent	 Feb. 8, 2011	 Sheet 19 of 25	 US 7,886,273 B2

CDN
r

Ntir

N NN O
r r	 tir

00N
r

U.S. Patent
	

Feb. 8, 2011	 Sheet 20 of 25	 US 7,886,273 B2

104

2002

202

^	 204

SCENARIOSLAWS OF	 INFERENCE
CONCURRENCY	 ENGINE

206

TRANSLATOR

208

210
FORMAL	 ANALYZER

7	 SPECIFICATION

212
	REVERSE	 SCRIPT

	

SCRIPT	 TRANSLATOR
TRANSLATOR

214

SCRIPT

FIG. 20
	

2000

U.S. Patent	 Feb. 8, 2011	 Sheet 21 of 25	 US 7,886,273 B2

ON
T

NtiT

N NN O
ti tiT T	 tiT

00NtiT

U.S. Patent	 Feb. 8, 2011	 Sheet 22 of 25

302
POLICY(S)	 LAWS OF

CONCURRENCY

US 7,886,273 B2

104

2202
CSP

TRANSLATOR

2204
CSP

SPECIFICATION

2206

2208	 2210
VISUALIZATION	 ANALYZER	 CSP TOOLTOOL 41F-

2204

MODIFIED CSP
SPECIFICATION

310
CODE

TRANSLATOR

HIGH-LEVEL	 314
COMPUTER

FIG. 22	 LANGUAGE
PROGRAM	 2200

m
N
tir

00
Ntir

N
tir

N N
N O
r r

U.S. Patent	 Feb. 8, 2011	 Sheet 23 of 25	 US 7,886,273 B2

r

FIG. 24	 I\\- 2400

104

2402

204

)6

U.S. Patent	 Feb. 8, 2011	 Sheet 24 of 25	 US 7,886,273 B2

CD
Ntir

co
Ntir

N
T

N N
N O
T T

U.S. Patent	 Feb. 8, 2011	 Sheet 25 of 25	 US 7,886,273 B2

T

US 7,886,273 B2
1

SYSTEMS, METHODS AND APPARATUS FOR
GENERATION AND VERIFICATION OF

POLICIES IN AUTONOMIC COMPUTING
SYSTEMS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/748,232 filed Dec. 1, 2005 under 35
U.S.C. 119(e). This application is a continuation-in-part of io
co-pending U.S. application Ser. No. 11/461,669 filed on
Aug. 1, 2006 entitled "Systems, Methods and Apparatus for
Procedure Development and Verification," which is a con-
tinuation-in-part of co-pending U.S. application Ser. No.
11/203,590filedAug. 12,2005 entitled"Systems, Methods & 15

Apparatus For Implementation Of Formal Specifications
Derived From Informal Requirements," which is a continua-
tion-in-part of co-pending U.S. application Ser. No. 10/533,
376 filed Feb. 25, 2004 entitled "System and Method for
Deriving a Process-based Specification."	 20

ORIGIN OF THE INVENTION

The invention described herein was made by employees of
the United States Government and may be manufactured and 25
used by or for the Government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

FIELD OF THE INVENTION	 30

This invention relates generally to software development
processes and more particularly to validating a system imple-
mented from requirements expressed in policies.

35
BACKGROUND OF THE INVENTION

High dependability and reliability is a goal of all computer
and software systems. Complex systems in general cannot
attain high dependability without addressing crucial remain- 40
ing open issues of software dependability. The need for ultra-
high dependability systems increases continually, along with
a corresponding increasing need to ensure correctness in sys-
tem development. Correctness exists where the implemented
system is equivalent to the requirements, and where this 45
equivalence can be mathematically proven.

The development of a system may begin with the develop-
ment of a requirements specification, such as a formal speci-
fication or an informal specification. A formal specification
might be encoded in a high-level language, whereas require- 50
ments in the form of an informal specification can be
expressed in restricted natural language, "if-then" rules,
graphical notations, English language, programming lan-
guage representations, flowcharts, scenarios, or even using
semi-formal notations such as unified modeling language 55
(UML) use cases.

Natural language scenarios are usually constructed in
terms of individual scenarios written in a structured natural
language. Different scenarios can be written by different
stakeholders of the system, corresponding to the different 60

views the stakeholders have of how the system will perform,
including alternative views corresponding to higher or lower
levels of abstraction. Natural language scenarios can be gen-
erated by a user with or without mechanical or computer aid.
The set of natural language scenarios provides the descrip- 65

tions of actions that occur as the software executes. Some of
these actions may be explicit and required, while others can

2
be due to errors arising, or as a result of adapting to changing
conditions as the system executes.

For example, if the system involves commanding space
satellites, scenarios for that system can include sending com-
mands to the satellites and processing data received in
response to the commands. Natural language scenarios might
be specific to the technology or application domain to which
the natural language scenarios are applied. A fully automated
general purpose approach covering all domains is technically
prohibitive to implement in a way that is both complete and
consistent. To ensure consistency, the domain of application
might be purpose-specific. For example, scenarios for satel-
lite systems might not be applicable as policies for systems
that manufacture agricultural chemicals.

After completion of an informal specification that repre-
sents domain knowledge, the system is developed. A formal
specification is not necessarily used by the developer in the
development of a system.

In the development of some systems, computer readable
code may be generated. The generated code is typically
encoded in a computer language, such as a high-level com-
puter language. Examples of such languages include Java, C,
C Language Integrated Production System (CLIPS), and Pro-
log.

One step in creating a system with high dependability and
reliability can be verification and validation that the execut-
able system accurately reflects the requirements. Validation
of the generated code is sometimes performed through the use
of a domain simulator, a very elaborate and costly approach
that is computationally intensive. This process of validation
via simulation rarely results in an unambiguous result and
rarely results in uncontested results among systems analysts.
In some examples, a system is validated through parallel
mode, shadow mode operations with a human operated sys-
tem. This approach can be very expensive and exhibit
severely limited effectiveness. In some complex systems, this
approach leaves vast parts of possible executionpaths forever
unexplored and unverified.

During the life cycle of a system, requirements typically
evolve. Manual change to the system creates a risk of intro-
ducing new errors and necessitates retesting and revalidation,
which can greatly increase the cost of the system. Often,
needed changes are not made due to the cost of verifying/
validating consequential changes in the rest of the system.
Sometimes, changes are simply made in the code and not
reflected in the specification or design, due to the cost or due
to the fact that those who generated the original specification
or design are no longer available.

Procedures, considered as the essential steps or actions to
achieve a result, are used for the assembly of materials in
factories, for servicing of spacecraft (whether by astronauts,
robots, or a combination), for business operation, and for
experiments in a laboratory, to name but a few. Procedures
can be very complex, involving many interactions, may
involve many actions happening in parallel, and may be sub-
ject to significant constraints such as the ordering in which
activities must happen, the availability of resources, and so
forth. In many complex procedures, it is quite common for
human error to result in the entire procedure needing to be
repeated ab initio. In some cases, such as servicing a space-
craft, it may not be possible to recover from some of the more
serious errors that may occur.

As a rapidly growing field, autonomic systems (autonomic
computing and autonomic communications) is a promising
new approach for developing large-scale complex distrib-
uted' computer-based systems. In autonomic computing, the
needs of large scale systems management has been likened to

US 7,886,273 B2
3

that of the human autonomic nervous system (ANS). The
ANS, through the self-regulation, is able to effectively moni-
tor, control and regulate the human body without the need for
conscious thought. The self-regulation and separation of con-
cerns provides human beings with the ability to concentrate
on high level objectives without having to micro-manage the
specific details involved.

The vision and metaphor of autonomic computing is to
apply the same principles of self-regulation and complexity-
hiding to the design of computer-based systems, in the hope
that eventually computer systems can achieve the same level
of self-regulation as the human ANS. The majority of con-
ventional systems address the "how" of autonomic systems
involving the low-level internal implementation, such as
defining autonomic managers that together with the compo-
nent that is to be managed make up an autonomic element to
exist in a collaborative autonomic environment to provide
self-management of the system. However, these efforts do not
directly address the high-level requirements of the systems
that drive autonomic systems.

For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled in the art
upon reading and understanding the present specification,
there is a need in the art to improve the system requirements
of autonomic systems. There is also a need in the art for
automated, generally applicable ways to produce a system
that is a provably correct implementation of policy that is
consistent throughout the system and that includes no major
discrepancies. There is a further a need for ways to produce a
system that does not require use of a theorem-prover and yet
provides that policies are consistent throughout the imple-
mentation, and that major discrepancies are not inherent in
the system. There is a further need for a convenient way of
generating a new system when a policy changes. There is also
a need for an automated, mathematics-based process for
policy validation that does not require large computational
facilities.

BRIEF DESCRIPTION OF THE INVENTION

The above-mentioned shortcomings, disadvantages and
problems are addressed herein, which will be understood by
reading and studying the following discussion.

Systems, methods and apparatus described herein may
provide automated analysis, validation, verification, and gen-
eration of complex procedures, often implemented as poli-
cies. The systems, methods and apparatus may include infer-
ring an equivalent formal model from one or more policies.
Such a model can be analyzed for contradictions, conflicts,
use of resources before the resources are available, competi-
tion for resources, and so forth. From such a formal model, an
implementation can be automatically generated in a variety of
notations. An implementation may include traditional pro-
gramming language code, machine language code, scripts,
and/or procedures. The approach improves the resulting
implementation, which may be provably equivalent to the
policies described at the outset. In "reverse engineering"
mode, the systems, methods and apparatus can be used to
retrieve meaningful descriptions (in English, use cases,
graphical notations, or whatever input notations are sup-
ported) of existing policies that implement complex proce-
dures, which may solve the need in the prior art to improve the
policy of autonomic systems. Moreover, two or more policies
can be translated to appropriate formal models, the models
may be combined, and the resulting combination checked for
conflicts. Then, the combined, error-free model may be used

4
to generate a new (single) policy that combines the function-
ality of the original separate policies, and may be more likely
to be correct.

In one embodiment, systems, methods and apparatus are
5 provided through which one or more policies may be trans-

lated without human intervention into a formal specification.
In some embodiments, the formal specification is translated
to a policy. In some embodiments, the formal specification is
analyzed for errors, which, when the corresponding errors are

10 corrected in the given policies, can reduce errors in the sub-
sequently generated formal specification. In some embodi-
ments, the formal specification may be translated back to a
policy. The policy can be designed for the assembly and
maintenance of devices (whether by human or robots), for

15 business operation, or for experimentation in a laboratory
(such as might be used by the bioinformatics community).

In another embodiment, a system may include an inference
engine and a translator, the translator being operable to
receive policy information and to generate in reference to an

20 inference engine, a formal specification. The system may also
include an analyzer operable to perform model verification/
checking and determine existence of omissions, deadlock,
livelock, and race conditions or other problems and inconsis-
tencies in either the formal specification or the policy infor-

25 mation.
In yet other embodiments, a method may include translat-

ing requirements expressed informally in a policy statement
to a formal specification, and analyzing the formal specifica-
tion or policy statement.

30 Systems, clients, servers, methods, and computer-readable
media of varying scope are described herein. In addition to the
embodiments and advantages described in this summary, fur-
ther embodiments and advantages will become apparent by
reference to the drawings and by reading the detailed descrip-

35 tion that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that provides an overview of a
40 system to generate a high-level computer source code pro-

gram from an informal specification, according to an embodi-
ment of the invention;

FIG. 2 is a block diagram that provides an overview of a
system to engineer a script or procedure from scenarios,

45 according to an embodiment of the invention;
FIG. 3 is a block diagram that provides an overview of a

system to generate a high-level computer source code pro-
gram from a policy, according to an embodiment of the inven-

50
tion;

FIG. 4 is a block diagram that provides an overview of a
system to engineer an implementation from one of more
policies, according to an embodiment of the invention;

FIG. 5 is a flowchart of a method to generate an executable

55 system from an informal specification, according to an
embodiment;

FIG. 6 is a flowchart of a method to translate mechanically
each of a plurality of requirements of the informal specifica-
tion to a plurality of process-based specification segments,

60 according to an embodiment;
FIG. 7 is a flowchart of a method to verify the syntax of a

set of scenarios, translate the set of scenarios to a formal
specification, verify the consistency of the formal specifica-
tion, and verify the absence of other problems, according to

65 an embodiment;
FIG. 8 is a flowchart of a method to validate/update sce-

narios of a system, according to an embodiment;

US 7,886,273 B2
5

FIG. 9 is a flowchart of a method to translate each of a
plurality of requirements into a script, according to an
embodiment;

FIG. 10 is a flowchart of a method to generate a formal
specification from scenarios, according to an embodiment;

FIG. 11 is a flowchart of a method to generate an executable
system from a policy, according to an embodiment;

FIG. 12 is a flowchart of a method to verify the syntax of a
set of policies, translate the set of policies to a formal speci-
fication, verify the consistency of the formal specification,
and verify the absence of other problems, according to an
embodiment;

FIG. 13 is a flowchart of a method to validate/update poli-
cies of a system, according to an embodiment;

FIG. 14 is a flowchart of a method to translate one or more
policies of a system to an implementation, according to an
embodiment;

FIG. 15 is a flowchart of a method to translate each of a
plurality of policies, according to an embodiment;

FIG. 16 is a flowchart of a method to generate a formal
specification from one or more policies, according to an
embodiment;

FIG. 17 is a block diagram of the hardware and operating
environment in which different embodiments can be prac-
ticed, according to an embodiment;

FIG. 18 is a block diagram of a CSP implementation of an
apparatus to generate a high-level computer source code pro-
gram from an informal specification, according to an embodi-
ment;

FIG. 19 is a block diagram of a hardware and operating
environment in which a particular CSP implementation of
FIG. 18 can be implemented, according to an embodiment;

FIG. 20 is a block diagram of a particular implementation
of an apparatus capable of translating scenarios to a formal
specification;

FIG. 21 is a block diagram of a hardware and operating
environment in which components of FIG. 20 can be imple-
mented, according to an embodiment;

FIG. 22 is a block diagram of a R2D2C implementation of
an apparatus to generate a high-level computer source code
program from a policy, according to an embodiment;

FIG. 23 is a block diagram of a hardware and operating
environment in which a particular CSP implementation of
FIG. 22 may be implemented, according to an embodiment;

FIG. 24 is a block diagram of an implementation of an
apparatus capable of translating one or more policies to a
formal specification; and

FIG. 25 is a block diagram of a hardware and operating
environment in which components of FIG. 24 can be imple-
mented, according to an embodiment.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments
which can be practiced. These embodiments are described in
sufficient detail to enable those skilled in the art to practice the
embodiments, and it is to be understood that other embodi-
ments can be utilized and that logical, mechanical, electrical
and other changes can be made without departing from the
scope of the embodiments. The following detailed descrip-
tion is, therefore, not to be taken in a limiting sense.

System Level Overview

FIG. 1 is a block diagram that provides an overview of a
system 100 to generate a high-level computer source code

6
program from an informal specification, according to an
embodiment. FIG. 2 is a block diagram that provides an
overview of a system 200 to generate a formal specification
and an implementation from descriptions of a system, accord-

5 ing to an embodiment. FIG. 3 is a block diagram that provides
an overview of a system to generate a high-level computer
source code program from a policy, according to an embodi-
ment. FIG. 4 is a block diagram that provides an overview of
a system to engineer a script or procedure from one or more

io policies, according to an embodiment.
FIG. 1 is a block diagram that provides an overview of a

system 100 to generate a high-level computer source code
program from an informal specification. System 100 may
solve the need in the art for an automated, generally appli-

15 cable way to produce a system that can be a provably correct
implementation of an informal design specification that does
not require, in applying the system to any particular problem
or application, the use of a theorem-prover.

According to an embodiment, system 100 may be a soft-
20 ware development system that includes a data flow and pro-

cessing points for the data. System 100 may be representative
of (i) computer applications and electrical engineering appli-
cations such as chip design and other electrical circuit design,
(ii) business management applications in areas such as work-

25 flow analysis, (iii) artificial intelligence applications in areas
such as knowledge-based systems and agent-based systems,
(iv) highly parallel and highly-distributed applications
involving computer command and control and computer-
based monitoring, and (v) any other area involving process,

so sequence or algorithm design. According to the disclosed
embodiments, system 100 mechanically converts different
types of specifications (either natural language scenarios or
descriptions which are effectively pre-processed scenarios)
into process-based formal specifications on which model

35 checking and other mathematics-based verifications are per-
formed, and then optionally converts the formal specification
into code.

In some embodiments, system 100 includes an informal
specification 102 having a plurality of rules or requirements.

4o The informal specification can be expressed in restricted
natural language, graphical notations, English language, pro-
gramming language representations, scenarios or even using
semi-formal notations such as unified modeling language
(UML) use cases. One skilled in the art will recognize that

45 other languages and graphic indicators may exist that fall
within the scope of this invention.

A scenario may be natural language text (or a combination
of any (possibly graphical) representations of sequential steps
or events) that describes the software's actions in response to

50 incoming data and the internal goals of the software. Sce-
narios also may describe communication protocols between
systems and between the components within the systems.
Scenarios also may be known as use-cases. A scenario typi-
cally describes one or more potential executions of a system,

55 describing what happens in a particular situation, and what
range of behaviors is expected from or omitted by the system
under various conditions.

According to some embodiments, system 100 also
includes a set of laws of concurrency 104. Laws of concur-

6o rency 104 are rules detailing equivalences between sets of
processes combined in various ways, and/or relating process-
based descriptions of systems or system components to
equivalent sets of traces. An example of the laws of concur-
rency 104 is given in "Concurrent Systems: Formal Develop-

65 ment in CS by M. G. Hinchey an S. A. Jarvis, McGraw-Hill
International Series in Software Engineering, New York and
London, 1995, which is herein incorporated by reference in

US 7,886,273 B2
7
	

8
its entirety. Laws of concurrency 104 may be expressed in any	 puter, such as computer 1702 in FIG. 17. While the system
suitable language for describing concurrency. These lan- 	 100 is not limited to any particular informal specification 102,
guages may include, but are not limited to, CSP (Communi-	 plurality of rules or requirements, set of laws of concurrency
cating Sequential Processes), CCS (Calculus of Communi-	 104, direct mechanical translator 106, process-based specifi-
cating Systems) and variants of these languages. 	 5 cation 108, analyzer 110, code translator 112 and high-level

The informal specification 102 and a set of laws of concur- 	 computer language program 114, for sake of clarity a simpli-
rency 104 can be received by a direct mechanical translator

	
fied informal specification 102, plurality of rules or require-

106. The plurality of rules or requirements of the informal
	

ments, set of laws of concurrency 104, direct mechanical
specification 102 may be translated mechanically to a pro- 	 translator 106, process-based specification 108, analyzer 110,
cess-based specification 108 or other formal specification io code translator 112, and high-level computer language pro-
language representation. The mechanical designation can	 gram 114 are described.
mean that no manual intervention in the direct translation is

	
System 100 may relate to the fields of chemical or biologi-

provided. In some embodiments, the process-based specifi- 	 cal process design or mechanical system design, and, gener-
cation 108 may be an intermediate notation or language of

	
ally to any field where the behaviors exhibited by a process to

sequential process algebra such as Hoare's language of Com- 15 be designed is described by a set of scenarios expressed in
municating Sequential Processes (CSP). 	 natural language, or some appropriate graphical notation or

The process-based specification 108 may be mathemati-	 textual notation.
cally and provably equivalent to the informal specification

	
FIG. 2 is a block diagram that provides an overview of a

102. Mathematically equivalent does not necessarily mean 	 system 200 to engineer a script or procedure from scenarios,
mathematically equal. Mathematical equivalence of A and B 20 according to an embodiment. System 200 may solve the need
means that A implies B and B implies A. Note that applying

	
in the art for an automated, generally applicable way to verify

the laws of concurrency 104 to the process-based specifica-	 that an implemented script is a provably correct implementa-
tion 108 would allow for the retrieval of a trace-based speci-	 tion of a set of scenarios.
fication that may be equivalent to the informal specification

	
One embodiment of the system 200 may be a software

102. Note that the process-based specification may be math- 25 development system that includes a data flow and processing
ematically equivalent to rather than necessarily equal to the	 points for the data. According to some of the disclosed
original informal specification 108. This indicates that the	 embodiments, system 200 can convert scenarios into a script
process may be reversed, allowing for reverse engineering of

	
on which model checking and other mathematics-based veri-

existing systems, or for iterative development of more com-	 fications can then be performed.
plex systems.	 so	 The system 200 can include a plurality of scenarios 202.

In some embodiments, the system includes an analyzer 110
	

The scenarios 202 can be written in a particular syntax, such
to determine various properties such as existence of omis- 	 as constrained natural language or graphical representations.
sions, deadlock, livelock, and race conditions in the process-	 The scenarios 202 can embody software applications,
based specification 108.	 although one skilled in the art will recognize that other sys-

According to some embodiments, system 100 also 35 tems fall within the purview of this invention.
includes a code translator 112 to translate the plurality of

	
In some embodiments, the scenarios 202 are received by a

process-based specification segments 108 to a set of instruc-	 translator 206. The optional inference engine 204 might be
tions in a high-level computer language program 114, such as 	 referenced by the translator 206 when the scenarios 202 are
the Java language.	 translated by the translator 206 into a formal specification

System 100 may be operational for a wide variety of infor- 4o 208. Subsequently, the formal specification 208 can be trans-
mal specification languages and applications, thus system

	
lated by script translator 212 into a script 214 in some appro-

100 can be generally applicable. Such applications will be 	 priate scripting language. In some embodiments no manual
apparent to one skilled in the art and may include distributed

	
intervention in the translation is provided. Those skilled in the

software systems, sensor networks, robot operation, complex 	 art will readily understand that other appropriate notations
scripts for spacecraft integration and testing, chemical plant 45 and/or languages exist that are within the scope of this inven-
operation and control, and autonomous systems. 	 tion.

Some embodiments indicate that system 100 can provide
	

In some embodiments, system 200 can include an analyzer
mechanical regeneration of the executable system when

	
210 to determine various properties of the formal specifica-

requirements dictate a change in the high level specification.	 tion, such as the existence of omissions, deadlock, livelock,
In system 100, all that may be required to update the gener- 5o and race conditions, as well as other conditions, in the formal
ated application may be a change in the informal specification 	 specification 208, although one skilled in the art will recog-
102, and then the changes and validation canripple through in 	 nize that other additional properties can be determined by the
a mechanical process when system 100 operates. This also	 analyzer 210. The analyzer 210 may solve the need in the
can allow the possibility of cost effectively developing com-	 prior art to reduce errors.
peting designs for a product and implementing each to deter- 55	 The terms "scripts" and "procedures" can be used inter-
mine the best one.	 changeably. Scripts can encompass not only instructions

Most notably, in some embodiments, system 100 does not	 written programming languages (such as Python, awk, etc., as
include a theorem prover to infer the process-based specifi- 	 described) but also languages for physical (electro-mechani-
cation segments from the informal specification. However, 	 cal) devices and even in constrained natural language instruc-
the plurality of process-based specification segments 108 60 tions or steps or checklists to be carried out by human beings
may be provably correct implementations of the informal

	
such as, but not limited to, an astronaut.

specification 102, provided the developer of an instance of
	

Scripting languages are computer programming languages
system 100 has properly used a theorem-prover (not shown)

	
initially used only for simple, repeated actions. The name

to prove that the direct mechanical translator 106 correctly
	

"scripting languages" comes from a written script such as a
translates informal specifications into formal specifications. 65 screenplay, where dialog is repeated verbatim for every per-

Some embodiments of system 100 operate in a multi-pro-	 formance. Early script languages were often called batch
cessing, multi-threaded operating environment on a com- 	 languages or j ob control languages. A script is typically inter-

US 7,886,273 B2
9
	

10
preted rather than compiled, but not always. Scripting lan-
guages may also be known as scripting programming lan-
guages or script languages.

Many such languages can be quite sophisticated and have
been used to write elaborate programs, which are often still
called scripts even though the applications of scripts are well
beyond automating simple computer tasks. A script language
can be found at almost every level of a computer system.
Besides being found at the level of the operating system,
scripting languages appear in computer games, web applica-
tions, word processing documents, network software and
more. Scripting languages favor rapid development over effi-
ciency of execution; scripting languages are often imple-
mented with interpreters rather than compilers; and scripting
languages are effective in communication with program com-
ponents written in other languages.

Many scripting languages emerged as tools for executing
one-off tasks, particularly in system administration. One way
of looking at scripts is as "glue" that puts several components
together; thus scripts are widely used for creating graphical
user interfaces or executing a series of commands that might
otherwise have to be entered interactively through keyboard
at the command prompt. The operating system usually offers
some type of scripting language by default, widely known as
a shell script language.

Scripts are typically stored only in their plain text form
(such as ASCII) and interpreted, or compiled each time prior
to being invoked.

Some scripting languages are designed for a specific
domain, but often it is possible to write more general pro-
grams in that language. In many large-scale projects, a script-
ing language and a lower level programming language are
used together, each lending its particular strengths to solve
specific problems. Scripting languages are often designed for
interactive use, having many commands that can execute
individually, and often have very high level operations (for
example, in the classic UNIX shell (sh), most operations are
programs.

Such high level commands simplify the process of writing
code. Programming features such as automatic memory man-
agement and bounds checking can be taken for granted. In a
`lower level' or non-scripting language, managing memory
and variables and creating data structures tends to consume
more programmer effort and lines of code to complete a given
task. In some situations this is well worth it for the resulting
fine-grained control. The scripter typically has less flexibility
to optimize a program for speed or to conserve memory.

For the reasons noted above, it is usually faster to program
in a scripting language, and script files are typically much
smaller than programs with equivalent functionality in con-
ventional programming languages such as C.

Scripting languages may fall into eight primary categories:
Job control languages and shells, macro languages, applica-
tion-specific languages, web programming languages, text
processing languages, general-purpose dynamic languages,
extension/embeddable languages, and extension/embeddable
languages.

In regards to job control scripting languages and shells, a
major class of scripting languages has grown out of the auto-
mation of job control starting and controlling the behavior
of system programs. Many of these languages' interpreters
double as command-line interfaces, such as the Unix shell or
the MS-DOS COMMAND.COM . Others, such as Apple-
Script, add scripting capability to computing environments
lacking a command-line interface. Examples of job control
scripting languages and shells include AppleScript, ARexx

(Amiga Rexx), bash, csh, DCL, 4NT, JCL, ksh, MS-DOS
batch, Windows PowerShell, RUM sh, and Winbatch

In regards to macro scripting languages, with the advent of
Graphical user interfaces, a specialized kind of scripting lan-

5 guage for controlling a computer evolved. These languages,
usually called Macro languages, interact with the same
graphic windows, menus, buttons and such that a person does.
Macro language scripts are typically used to automate repeti-
tive actions or configure a standard state. Macro language

io scripts can be used to control any application running on a
GUI-based computer, but in practice the support for such
languages depend on the application and operating system.
Examples of macro scripting languages include AutoHotkey,
AutoIt, and Expect.

15 In regards to application-specific scripting languages,
many large application programs include an idiomatic script-
ing language tailored to the needs of the application user.
Likewise, many computer game systems use a custom script-
ing language to express the programmed actions of non-

20 player characters and the game environment. Languages of
this sort are designed for a single application and, while
application-specific scripting languages can superficially
resemble a specific general-purpose language (e.g. QuakeC,
modeled after C) application-specific scripting languages

25 have custom features which distinguish the application- spe-
cific scripting languages. Examples of application-specific
scripting languages include, Action Code Script, Action-
Script, AutoLISP, BlobbieScript [1], Emacs Lisp, HyperTalk,
IRC script, Lingo, Cana Embedded Language, mIRC script,

so NWscript, QuakeC, UnrealScript, Visual Basic forApplica-
tions, VBScript, and ZZT-oop.

In regards to web programming scripting languages, an
important type of application-specific scripting language is
one used to provide custom functionality to internet web

35 pages. Web programming scripting languages are specialized
for internet communication and use web browsers for their
user interface. However, most modern web programming
scripting languages are powerful enough for general-purpose
programming. Examples of web programming scripting lan-

40 guage include ColdFusion (Application Server), Lasso,
Miva, and SMX.

In regards to text processing scripting languages, the pro-
cessing of text-based records is one of the oldest uses of
scripting languages. Many text processing languages, such as

45 Unix's awk and, later, PERL, were originally designed to aid
system administrators in automating tasks that involved Unix
text-based configuration and log files. PERL is a special
case originally intended as a report-generation language, it
has grown into a full-fledged applications language in its own

5o right. Examples of text processing scripting languages
include awk, PERL, sed and XSLT.

In regards to general-purpose dynamic scripting lan-
guages, some languages, such as PERL, began as scripting
languages but developed into programming languages suit-

55 able for broader purposes. Other similar languages fre-
quently interpreted, memory-managed, and dynamic have
been described as "scripting languages" for these similarities,
even if general-purpose dynamic scripting languages are
more commonly used for applications programming.

6o Examples of general-purpose dynamic scripting languages
include APL, Dylan, Groovy, MUMPS (M), newLISP, PERL,
PHP, Python, Ruby, Scheme, Smalltalk, SuperCard, and Tool
command language (TCL). TCL was created as an extension
language but has come to be used more frequently as a general

65 purpose language in roles similar to Python, PERL, and Ruby.
In regards to extension/embeddable languages, a small

number of languages have been designed for the purpose of

US 7,886,273 B2
11

replacing application-specific scripting languages, by being
embeddable in application programs. The application pro-
grammer (working in C or another systems language)
includes "hooks" where the scripting language can control
the application. These languages serve the same purpose as
application-specific extension languages, but with the advan-
tage of allowing some transfer of skills from application to
application. Examples of extension/embeddable script lan-
guages include Ch (C/C++ interpreter), ECMAScript a.k.a.
DMDScript, JavaScript, JScript, GameMonkeyScript, Guile,
ICI, Squirrel, Lua, TCT, and REALbasic Script (RBScript).

JavaScript began as and primarily still is a language for
scripting inside of web browsers, however, the standardiza-
tion of the language as ECMAScript has made JavaScript
widely adopted as a general purpose embeddable language.

Other scripting languages include BeanShell (scripting for
Java), CobolScript, Escapade (server side scripting), Eupho-
ria, F-Script, Ferite, Groovy, Gui4Cli, Io, KiXtart, Mondrian,
Object RUM Pike, Pliant, REBOL, ScriptBasic, Shorthand
Language, Simkin, Sleep, StepTalk, and Visual DialogScript.

In some embodiments, the script 214 can be mathemati-
cally and provably equivalent to the scenarios 202. Math-
ematically equivalent does not necessarily mean mathemati-
cally equal. Mathematical equivalence ofA and B means that
A implies B and B implies A. Note that the script 214 of some
embodiments can be mathematically equivalent to, rather
than necessarily equal to, the scenarios 202.

In some embodiments, the formal specification 208 can be
a process-based specification, such as process algebra
encoded notation. The process algebra encoded notation is a
mathematically notated form. This embodiment can satisfy
the need in the art for an automated, mathematics-based pro-
cess for requirements validation that does not require large
computational facilities.

In some embodiments, the scenarios 202 of system 200 can
specify allowed situations, events and/or results of a software
system. In that sense, the scenarios 202 can provide a very
abstract specification of the software system.

Some embodiments of system 200 can be operational for a
wide variety of rules, computer instructions, computer lan-
guages and applications; thus, system 200 may be generally
applicable. Such applications can include, without limitation,
space satellite control systems, distributed software systems,
sensor networks, robot operations, complex scripts for space-
craft integration and testing, chemical plant operation and
control, autonomous systems, electrical engineering applica-
tions such as chip design and other electrical circuit design,
business management applications in areas such as workflow
analysis, artificial intelligence applications in areas such as
knowledge-based systems and agent-based systems, highly
parallel and highly-distributed applications involving com-
puter command and control and computer-based monitoring,
and any other area involving process, sequence or algorithm
design. Hence, one skilled in the art will recognize that any
number of other applications not listed can fall within the
scope of this invention.

Some embodiments of the system 200 can provide
mechanical or automatic generation of the script 214, in
which human intervention is not required. In at least one
embodiment of the system 200, all that is required to update
the generated application is a change in the scenarios 202, in
which case the changes and validation will ripple through the
entire system without human intervention when system 200
operates. This also allows the possibility of cost effectively
developing competing designs for a product and implement-
ing each to determine the best one.

12
Some embodiments of the system 200 may not include an

automated logic engine, such as a theorem-prover or an auto-
mated deduction engine, to infer the script 214 from the
scenarios 202. However, the script 214 can be a provably

5 correct version of the scenarios 202.
Thus, in regards to scripts and complex procedures, auto-

matic code generation of system 200 can generate proce-
dures/scripts in suitable scripting language or device control
language (such as for a robot) that would provide the proce-

io dures, once validated, to be automatically transformed into an
implementation. Additionally, system 200 can be used to
"reverse engineer" existing procedures/scripts so that the
existing procedures/scripts can be analyzed and corrected and
recast in a format and form that can be more easily under-

15 stood. System 200 also can be used to reverse engineer mul-
tiple existing procedures/scripts (even written in different
languages) to a single formal model by which the procedures/
scripts are combined, analyzed for conflicts, and regenerated
as a single procedure/script (in the same or a different proce-

2o dure/scripting language).
Some embodiments of system 200 operate in a multi-pro-

cessing, multi-threaded operating environment on a com-
puter, such as the computer 1702 illustrated in FIG. 17. While
the system 200 is not limited to any particular scenarios 202,

25 inference engine 204, translator 206, formal specification
208, analyzer 210, script translator 212 and script 214, for
sake of clarity, embodiments of simplified scenarios 202,
inference engine 204, translator 206, formal specification
208, analyzer 210, script translator 212 and script 214 are

so described.
In some embodiments, the system 200 may be a software

development system that can include a data flow and process-
ing points for the data. System 200 can be representative of (i)
computer applications and electrical engineering applica-

35 tions such as chip design and other electrical circuit design,
(ii) business management applications in areas such as work-
flow analysis, (iii) artificial intelligence applications in areas
such as knowledge-based systems and agent-based systems,
(iv) highly parallel and highly-distributed applications

40 involving computer command and control and computer-
based monitoring, and (v) any other area involving process,
sequence or algorithm design. One skilled in the art, however,
will recognize that other applications can exist that are within
the purview of this invention. According to the disclosed

45 embodiments, system 200 can, without human intervention,
convert different types of specifications (such as natural lan-
guage scenarios or descriptions which are effectively pre-
processed scenarios) into process-based scripts on which
model checking and other mathematics-based verifications

5o are performed, and then optionally convert the script into
code.

System 200 can be operational for a wide variety of lan-
guages for expressing requirements, thus system 200 may be
generally applicable. Such applications may include, without

55 limitation, distributed software systems, sensor networks,
robot operation, complex scripts for spacecraft integration
and testing, chemical plant operation and control, and autono-
mous systems. One skilled in the art will understand that these
applications are cited by way of example and that other appli-

60 cations can fall within the scope of the invention.
According to some embodiments, a scenario is natural

language text (or a combination of any, such as possibly
graphical, representations of sequential steps or events) that
describes the software's actions in response to incoming data

65 and the internal goals of the software. Scenarios also can
describe communication protocols between systems and
between the components within the systems. Scenarios also

US 7,886,273 B2
13
	

14
can be known as use cases. A scenario can describe one or 	 management that establishes rules in advance to deal with
more potential executions of a system, such as describing 	 situations that are likely to occur. From this perspective,
what happens in a particular situation and what range of

	
policy-based management works by controlling access to,

behaviors is expected from or omitted by the system under 	 and setting priorities for, the use of information and commu-
various conditions.	 5 nications technology (ICT) resources, for instance, where a

Natural language scenarios can be constructed in terms of
	

(human) manager can simply specify the business objectives
individual scenarios written in a structured natural language.	 and the system will make it so in terms of the needed ICT. For
Different scenarios can be written by different stakeholders of

	
example:

the system, corresponding to the different views the stake- 	 1. "The customer database must be backed up nightly
holders can have of how the system will perform, including io between 1 a.m. and 4 a.m."
alternative views corresponding to higher or lower levels of

	
2. "Platinum customers are to receive no worse than 1-sec-

abstraction. Natural language scenarios can be generated by a 	 ond average response time on all purchase transactions."
user with or without mechanical or computer aid. Such a set

	
3. "Only management and the HR senior staff can access

of natural language scenarios can provide the descriptions of
	

personnel records." and
actions that occur as the software executes. Some of these 15	 4. "The number of connections requestedby the Web appli-
actions can be explicit and required, while others can be due 	 cation server cannot exceed the number of connections sup-
to errors arising or as a result of adapting to changing condi- 	 ported by the associated database."
tions as the system executes.	 These examples highlight the wide range and multiple

For example, if the system involves commanding space
	

level(s) of policies available, the first being concerned with
satellites, scenarios for that system can include sending com- 20 system protection through backup, the second being con-
mands to the satellites and processing data received in	 cerned with system optimization to achieve and maintain a
response to the commands. Natural language scenarios may

	
level of quality of service for key customers; while the third

be specific to the technology or application domain to which
	

and forth examples are concerned with system configuration
the natural language scenarios are applied. A fully automated

	
and protection. If one definition of autonomic computing

general purpose approach covering all domains can be tech- 25 could be self-management based on high level guidance from
nically prohibitive to implement in a way that is both com-	 humans, and considering IBM's high-level set of self-prop-
plete and consistent. 	 erties (self-CHOP: configuration, healing, optimization and

To ensure consistency, the domain of application can often 	 protection) against the types of typical policies mentioned
be purpose-specific. For example, scenarios for satellite sys- 	 previously (optimization, configuration and protection), the
tems may not be applicable as scenarios for systems that 30 importance and relevance of polices for achieving autono-
manufacture agricultural chemicals. 	 micity become clear.

System 300 may solve the need in the art for an automated, 	 Some application areas of policy-based management
generally applicable way to produce a system that is a prov-	 (PBM) may include networking as a way of managing IP-
ably correct implementation of one or more policies that does

	
based multi-service networks with quality of service guaran-

not require, in applying the system to any particular problem 35 tees, the telecom industry for next generation networking
or application, the use of a theorem-prover.	 which is driven by the fact that policy has been recognized as

In some embodiments, system 300 is a software develop- 	 a solution to manage complexity and to guide the behavior of
ment system that includes a data flow and processing points 	 a network or distributed system through high-level user-ori-
for the data. System 300 thus may be representative of (i)

	
ented abstractions, and product and system management by

computer applications and electrical engineering applica- 40 providing uniform cross-product policy definition and man-
tions such as chip design and other electrical circuit design (ii)

	
agement infrastructure.

business management applications in areas such as workflow
	

System 300 may also include a set of laws of concurrency
analysis, (iii) artificial intelligence applications in areas such

	
104. According to some embodiments, the policy 302 and a

as knowledge-based systems and agent-based systems, (iv)
	

set of laws of concurrency 104 are received by a direct
highly parallel and highly-distributed applications involving 45 mechanical translator 304. The plurality of rules or require-
computer command and control and computer-based moni- 	 ments of the policy 302 may be translated mechanically to a
toring, (v) any other area involving process, sequence or

	
formal specification 306 or other formal specification lan-

algorithm design, (vi) remote space vehicles such as autono- 	 guage representation, such as a process-based specification.
mous nanotechnology swarm (ANTS) and moon and Mars

	
The mechanical characterization means that no manual inter-

exploration vehicles. According to some of the disclosed 50 vention in the direct translation is provided. In some embodi-
embodiments, system 300 mechanically converts different	 ments, the formal specification 306 is an intermediate nota-
types of specifications (either natural language scenarios or 	 tion or language of sequential process algebra such as
descriptions which are effectively pre-processed scenarios)

	
Hoare's language of Communicating Sequential Processes

into formal specifications on which model checking and other
	

(CSP).
mathematics-based verifications are performed, and then 55	 The formal specification 306 can be mathematically and
optionally converts the formal specification into code. 	 provably equivalent to the policy 302. Mathematically

System 300 may include one or more policies 302 having 	 equivalent does not necessarily mean mathematically equal.
a plurality of rules or requirements. The policy 302 can be an

	
Mathematical equivalence ofA and B means that implies B

informal specification that can be expressed in restricted
	

and B implies A. Note that applying the laws of concurrency
natural language, graphical notations, English language, pro- 60 104 to the formal specification 306 would allow for the
gramming language representations, or even using semi-for- 	 retrieval of a trace-based specification that is equivalent to the
mal notations such as unified modeling language (UML) use 	 policy 302. Note that the formal specification 306 could be
cases.	 mathematically equivalent to rather than necessarily equal to

In some embodiments, policies are a set of business con- 	 the original policy 302. Thus, in some embodiments, the
siderations or a business policy that is designed to guide 65 process maybe reversed, allowing for reverse engineering of
decisions of courses of action, and policy-based management 	 existing systems, or for iterative development of more com-
may be viewed as an administrative approach to systems	 plex systems.

US 7,886,273 B2
15
	

16
In some embodiments, the system includes an analyzer 308

to determine various properties such as existence of omis-
sions, deadlock, livelock, and race conditions in the formal
specification 306.

System 300 may also include a code translator 310 to
translate the plurality of formal specification segments 306 to
a set of instructions in a high-level computer language pro-
gram 314, such as the Java language.

System 300 can be operational for a wide variety of policy
languages and applications, thus system 300 can be generally
applicable. Such applications may include distributed soft-
ware systems, sensor networks, robot operation, complex
scripts for spacecraft integration and testing, chemical plant
operation and control, and autonomous systems.

In some embodiments, system 300 provides mechanical
regeneration of the executable system when requirements
dictate a change in the high level specification. In system 300,
updating the generated application may require a change in
the policy 302, and then the changes and validation can ripple
through in a mechanical process when system 300 operates.
This also allows the possibility of cost effectively developing
competing designs for a product and implementing each to
determine the best one.

Most notably, some embodiments of system 300 do not
include a theorem-prover to infer the formal specification 306
segments from the policy 302. However, the plurality of for-
mal specification segments 306 can be provably correct
implementations of the policy 302, provided the developer of
an instance of system 300 has properly used a theorem-prover
(not shown) to prove that the direct mechanical translator 304
correctly translates policies into formal specifications.

Some embodiments of system 300 operate in a multi-pro-
cessing, multi-threaded operating environment on a com-
puter, such as computer 1702 in FIG. 17. While the system
300 may not be limited to any particular policy 302, plurality
of rules or requirements, set of laws of concurrency 104,
direct mechanical translator 304, formal specification 306,
analyzer 308, code translator 310 and high-level computer
language program 314, for sake of clarity a simplified policy
302, plurality of rules or requirements, set of laws of concur-
rency 104, direct mechanical translator 304, formal specifi-
cation 306, analyzer 308, code translator 310, and high-level
computer language program 314 are described by way of
example.

According to some embodiments, system 300 relates to the
fields of chemical or biological process design or mechanical
system design, and, generally to any field where the behaviors
exhibited by a process to be designed are described or con-
strained by a set of policies expressed in natural language, or
some appropriate graphical notation or textual notation.

FIG. 4 is a block diagram that provides an overview of a
system to generate or engineer a script or procedure from
policies, according to an embodiment. System 400 can alle-
viate a need in the art for an automated, generally applicable
way to verify that an implementation is a provably correct
implementation of one of more policies.

At least one embodiment of the system 400 is a software
development system that includes a data flow and processing
points for the data. According to the disclosed embodiments,
system 400 can convert one or more policies into a script on
which model checking and other mathematics-based verifi-
cations can then be performed.

The system 400 can include one or more policies 402. The
policies 402 can be written in a particular syntax, such as
constrained natural language, graphical representations, etc.
The policies 402 can embody software applications, although

one skilled in the art will recognize that other systems fall
within the purview of this invention.

In some embodiments, the policies 402 are received by a
translator 404. The optional inference engine 204 might be

5 referenced by the translator 404 when the policies 402 are
translated by the translator 404 into a formal specification
306. Subsequently, the formal specification 306 can be trans-
lated by translator 408 into a script in some appropriate script-
ing language. In some embodiments, no manual intervention

io in the translation is provided. Those skilled in the art readily
will understand that other appropriate notations and/or lan-
guages exist that are within the scope of this invention.

In some embodiments, system 400 can include an analyzer
406 to determine various properties of the formal specifica-

15 tion, such as the existence of omissions, deadlock, livelock,
and race conditions, as well as other conditions, in the formal
specification 306, although one skilled in the art will recog-
nize that other additional properties can be determined by the
analyzer 406. The analyzer 406 may solve the need in the

20 prior art to reduce errors.
In some embodiments, the implementation 410 can be

mathematically and provably equivalent to the policies 402.
Mathematically equivalent does not necessarily mean math-
ematically equal. Mathematical equivalence of A and B

25 means that A implies B and B implies A. Note that the imple-
mentation 212 of some embodiments may be mathematically
equivalent to, rather than necessarily equal to, the policies
402.

In some embodiments, the formal specification 306 can be
so a process-based specification, such as process algebra

encoded notation. The process algebra encoded notation can
be a mathematically notated form. This embodiment can sat-
isfy the need in the art for an automated, mathematics-based
process for policy validation that does not require large com-

35 putational facilities.
In some embodiments, the policies 402 of system 400 can

specify allowed situations, events and/or results of a software
system. In that sense, the policies 402 can provide a very
abstract specification of the software system.

40 Some embodiments of system 400 can be operational for a
wide variety of rules, computer instructions, computer lan-
guages and applications; thus, system 400 can be generally
applicable. Such applications can include, without limitation,
space satellite control systems, distributed software systems,

45 sensor networks, robot operations, complex scripts for space-
craft integration and testing, chemical plant operation and
control, autonomous systems, electrical engineering applica-
tions such as chip design and other electrical circuit design,
business management applications in areas such as workflow

5o analysis, artificial intelligence applications in areas such as
knowledge-based systems and agent-based systems, highly
parallel and highly-distributed applications involving com-
puter command and control and computer-based monitoring,
and any other area involving process, sequence or algorithm

55 design. Hence, one skilled in the art will recognize that any
number of other applications not listed can fall within the
scope of this invention.

Some embodiments of the system 400 can provide
mechanical or automatic generation of the implementation

6o 410, in which human intervention is not required. In at least
one embodiment of the system 400, all that is required to
update the generated application is a change in the policies
402, in which case the changes and validation will ripple
through the entire system without human intervention when

65 system 400 operates. This also allows the possibility of cost
effectively developing competing designs for a product and
implementing each to determine the best one.

US 7,886,273 B2
17
	

18
Perhaps most notably, some embodiments of the system

	
Different policies can be written by different stakeholders

400 do not include an automated logic engine, such as a 	 of the system, corresponding to the different views the stake-
theorem-prover or an automated deduction engine, to infer

	
holders can have of how the system will perform, including

the script implementation from the policies 402. However, the 	 alternative views corresponding to higher or lower levels of
script implementation can be a provably correct version of the 5 abstraction. Policies can be generated by a user with or with-
policies 402 provided the developer of an instance of system 	 out mechanical or computer aid. Policies can provide the
400 has properly used a theorem-prover (not shown) to prove

	
descriptions of actions that occur as the software executes.

that the direct mechanical translator 404 correctly translates
	

Some of these actions can be explicit and required, while
policies into formal specifications. 	 others can be due to errors arising, including those that are as

Thus, in regards to scripts and complex procedures, auto- io a result of adapting to changing conditions as the system
matic code generation of system 400 can generate proce- 	 executes.
dures/scripts in suitable scripting language or device control
language (such as for a robot) that would provide the proce-	 Method Embodiments
dures, once validated, to be automatically transformed into an
implementation. Additionally, system 400 can be used to 15	 In the previous section, a system level overview of the
"reverse engineer" existing procedures/scripts so that the 	 operation of an embodiment is described. In this section,
existing procedures/scripts can be analyzed and corrected and

	 some particular methods of such embodiments are described
recast in a format and form that can be more easily under- 	 by reference to a series of flowcharts. Describing the methods
stood. System 400 also can be used to reverse engineer mul-	 by reference to a flowchart enables one skilled in the art to
tiple existing procedures/scripts (even written in different 20 develop such programs, firmware, or hardware, including
languages) to a single formal model by which the procedures/

	 such instructions to carry out the methods on suitable com-
scripts are combined, analyzed for conflicts, and regenerated

	 puters, executing the instructions from computer-readable
as a single procedure/script (in the same or a different proce- 	 media. Similarly, the methods performed by the server com-
dure/scripting language).	 puter programs, firmware, or hardware may also be com-

Some embodiments of system 400 operate in a multi-pro- 25 posed of computer-executable instructions. Methods
cessing, multi-threaded operating environment on a com- 	 500-1600 can be performed by a program executing on, or
puter, such as the computer 1702 illustrated in FIG. 17. While 	 performed by, firmware or hardware that is a part of, a com-
the system 400 is not limited to any particular policies 402,	 puter, such as computer 1702 in FIG. 17.
inference engine 204, translator 404, formal specification

	 FIG. 5 is a flowchart of a method 500 to generate an
306, analyzer 406, translator 408 and implementation 212, for 30 executable system from an informal specification, according
sake of clarity, embodiments of simplified policies 402, infer-	 to an embodiment. Method 500 may solve the need in the art
ence engine 204, translator 404, formal specification 306,	 to generate executable computer instructions from require-
analyzer 406, translator 408 and implementation 212 are 	 ments with neither the time involved in manually writing the
described by way of example. 	 executable computer instructions, nor the mistakes that may

In some embodiments, the system 400 is a software devel- 35 arise in manually writing the executable computer instruc-
opment system that can include a data flow and processing

	 tions, without using a theorem-prover.
points for the data. System 400 can be representative of (i)

	
Method 500 may include translating 502 mechanically

computer applications and electrical engineering applica- 	 each of a plurality of requirements of the informal specifica-
tions such as chip design and other electrical circuit design,	 tion to a plurality of process-based specification segments. In
(ii) business management applications in areas such as work- 40 some embodiments, the translating 502 includes inferring the
flow analysis, (iii) artificial intelligence applications in areas	 process-based specification segments from the informal
such as knowledge-based systems and agent-based systems, 	 specification. One embodiment of translating 502 is shown in
(iv) highly parallel and highly-distributed applications

	 FIG. 6 below.
involving computer command and control and computer-	 In some embodiments, the process-based specification is
based monitoring, and (v) any other area involving process, 45 process algebra notation. Such embodiments may satisfy the
sequence or algorithm design. One skilled in the art, however, 	 need in the art for an automated, mathematics-based process
will recognize that other applications can exist that are within

	 for requirements validation that does not require large com-
the purview of this invention. According to the some of dis- 	 putational facilities.
closed embodiments, system 400 can, without human inter-	 Thereafter, some embodiments of method 500 include
vention, convert different types of policies into formal speci- 5o aggregating 504 the plurality of process-based specification
fications on which model checking and other mathematics- 	 segments into a single process-based specification model.
based verifications are performed, and then optionally

	 Subsequently, method 500 may include translating 506 the
convert the specification into code. 	 single process-based specification model to instructions

System 400 can be operational for a wide variety of lan-	 encoded in the Java computer language or some other high-
guages for expressing requirements, thus system 400 can be 55 level computer programming language. Thereafter, method
generally applicable. Such applications may include, without

	 500 may include compiling 508 the instructions encoded in
limitation, distributed software systems, sensor networks, 	 the Java computer language into a file of executable instruc-
robot operation, complex scripts for spacecraft integration

	 tions.
and testing, chemical plant operation and control, and autono- 	 In some embodiments, method 500 includes invoking the
mous systems. One skilled in the art will understand that these 60 executable instructions, which can provide a method to con-
applications are cited by way of example and that other appli-	 vert informal specifications to an application system without
cations can fall within the scope of the invention. 	 involvement from a computer programmer.

According to some embodiments, a policy can describe
	 Some embodiments ofinethod 500 do not include invoking

one or more potential executions of a system, such as describ- 	 a theorem-prover to infer the process-based specification seg-
ing what happens in a particular situation and what range of 65 ments from the informal specification.
behaviors is expected from or omitted by the system under

	
FIG. 6 is a flowchart of a method 600 to translate mechani-

various conditions.	 cally each of a plurality of requirements of the informal

US 7,886,273 B2
19
	

20
specification to aplurality of process-based specification seg-	 be a verification/validation of the scenarios 202. In some
ments, according to an embodiment. Method 600 is an	 embodiments, the analyzing 804 determines various proper-
example of one embodiment of translating 502 in FIG. 5.	 ties such as existence of omissions, deadlock, livelock, and

According to some embodiments, method 600 includes	 race conditions in the script 214, although one skilled in the
verifying 602 the syntax of the plurality of requirements of 5 art will know that analyzing the formal specification can
the informal specification. Thereafter, method 600 may

	
determine other properties not specifically listed, which are

include mapping 604 the plurality of requirements of the	 contemplated by this invention. In some embodiments, the
informal specification to a process-based specification. 	 analyzing 804 can provide a mathematically sound analysis

In some embodiments, method 600 subsequently also	 of the scenarios 202 in a general format that doesn't require
includes verifying 606 consistency of the process-based io significant understanding of the specific rules of the scenarios
specification with at least one other process-based specifica-	 202. Further, the analyzing 804 can warn developers of errors
tion. In some embodiments, method 600 subsequently also

	
in their scenarios 202, such as contradictions and inconsis-

includes verifying 608 lack of other problems in the process- 	 tencies, but equally importantly it can highlight rules or sets
based specification. One example of other problems is 	 of rules that are underspecified or over-specified and need to
unreachable states in the process defined in the process-based 15 be corrected for the scenarios 202 to operate as intended.
specification. 	 Thus, in some embodiments no knowledge of the scenarios

FIG. 7 is a flowchart of a method 700 to validate/update a
	

202 is required, but instead significant analysis, verification,
system, according to an embodiment. Method 700 may solve	 testing, simulation and model checking of the scenarios 202
the need in the prior art to reduce errors in scripts. 	 using customized tools or existing tools and techniques is

Method 700 can include analyzing 702 a script or specifi- 20 provided.
cation, such as script 214, of the system 200, the script having

	
Thereafter, in some embodiments, method 800 can include

been previously derived from the rules of the system. 	 translating 806 the formal specification to a script 214. Thus,
Thereafter, a determination 704 can be made as to whether

	
in at least one embodiment, the method 800 provides a

or not the analyzing 702 indicates that the script contains a	 method to convert scenarios to scripts without involvement
flaw. If a flaw does exist, then the rules can be corrected 706 25 from a computer programmer.
accordingly.	 Most notably, some embodiments of the method 800 do not

In some embodiments, the analyzing 702 can include
	

include invoking an automated logic engine, such as a theo-
applying mathematical logic to the script in order to identify 	 rem-prover, to infer the script 214 from the scenarios 202.
a presence or absence of mathematical properties of the

	
In certain embodiments of method 800, informal represen-

script. Mathematical properties of the script that can be deter- 30 tations of requirements for procedures/scripts that represent
mined by applying mathematical logic to the script can 	 the operation of a system can be mechanically converted to a
include, by way of example:	 mathematically sound specification that can be analyzed for

1) whether or not the script implies a system execution
	

defects and used for various transformations including auto-
trace that includes a deadlock condition, and

	
matic translation into executable form and automatic regen-

2) whether or not the script implies a system execution 35 eration of procedures/scripts into other notations/representa-
trace that includes a livelock condition. 	 tions. In other embodiments, the method disclosed herein can

In some embodiments, the above two properties are
	

be used to automatically reverse engineer existing procedures
domain independent. One skilled in the art will note that there	 and scripts to formal models from which the method can be
are many other possible flaws that could be detected through

	
used to produce customer-readable representations of proce-

the analysis of the model, many or even most of which might 4o dures/scripts or machine-proces sable scripts in any of various
be domain dependent. An example of a domain dependent 	 scripting languages.
property would be represented by the operational principle

	
Mathematically sound techniques can be used to mechani-

that "closing a door that is not open is not a valid action." This 	 cally translate an informal procedure/script requirement into
example would be applicable in the domain of the Hubble	 an equivalent formal model. The model may be mechanically
Space Telescope on-orbit repair. 	 45 (that is, with no manual intervention) manipulated, examined,

Because in some embodiments the script can be provably 	 analyzed, verified, and used in a simulation.
equivalent to the scenarios by virtue of method 700, if a flaw

	
FIG. 9 is a flowchart of a method 900 to translate each of a

is detected in the script, then the flaw could be corrected by 	 plurality of requirements to a plurality of formal specification
changing (correcting) the scenarios. Once the correction is 	 segments, and formally compose the plurality of formal
made, then the corrected scenarios can be processed by sys- 50 specification segments into a single equivalent specification,
tem 200 in FIG. 2 or method 800 in FIG. 8 to derive a new	 and translate the single formal specification into a script,
script from the corrected scenarios. According to at least one 	 according to an embodiment. Method 900 may solve the need
embodiment, the new script can be processed by method 700,	 in the art to generate scripts from requirements with neither
and the iterations of method 800 and method 700 can repeat

	
the time involved in manually writing the scripts, nor the

until there are no more flaws in the script generated from the 55 mistakes that can arise in manually writing the scenarios,
scenarios, at which point the scenarios have no flaws because 	 without using an automated logic engine.
the script is provably equivalent to the scenarios from which

	
Method 900 can include mechanically translating 902 each

it was derived. Thus, iterations of methods 800 and 700 can	 of a plurality of scenarios or domain knowledge to a plurality
provide verification/validation of the scenarios. 	 of formal specification segments. The translation can be done

Thereafter, the new script can be used to generate an imple- 60 without human intervention. One embodiment of translating
mentation of the system. 	 902 is shown in FIG. 10 below.

FIG. 8 is a flowchart of a method to validate/update sce- 	 Thereafter, method 900 can include aggregating 904 the
narios of a system, according to an embodiment. Embodi- 	 plurality of formal specification segments into a single formal
ments of the method 800 can include translating 802 sce-	 model or specification.
narios 202 into a script 214 without human intervention.	 65	 Subsequently, method 900 can include translating 906 the

Thereafter, method 800 can include optionally analyzing 	 single formal specification to multiple scripts as output from
804 the formal model or specification. The analyzing 804 can	 translating 906. Thereafter, method 900 can include generat-

US 7,886,273 B2
21
	

22
ing 908 a script from the scripts that were accepted from 	 programming language. Thereafter, method 1100 may
translating 906. Thus, method 900 provides an embodiment

	
include compiling 1108 the instructions encoded in the high-

of a method to convert a script to an application system
	

level computer language into a file of executable instructions
without involvement from a computer programmer. 	 or code.

Most notably, method 900 does not include invoking a 5	 In some embodiments, method 1100 includes invoking the
theorem-prover or any other automated logic engine to infer	 executable instructions, which provides a method to convert
the formal specification segments from the scenarios. 	 policies to an application system without involvement from a

FIG. 10 is a flowchart of a method 1000 to verify the syntax	 computer programmer.
of a set of scenarios, translate the set of scenarios to a formal

	
Some embodiments of method 1100 do not include invok-

specification, verify the consistency of the formal specifica- io ing a theorem-prover to infer the formal specification seg-
tion, and verify the absence of other problems, according to 	 ments from the policy.
an embodiment. Method 800 is an example of one embodi- 	 FIG. 12 is a flowchart of a method 1200 to translate
ment of translating 902 in FIG. 9. As indicated, such transla-	 mechanically each of a plurality of requirements of the policy
tion can be accomplished without human intervention.	 to a plurality of formal specification segments, according to

In some embodiments, the method 1000 can include veri- 15 an embodiment. Method 1200 is an example of an embodi-
fying 1002 the syntax of the plurality of scenarios. Thereafter, 	 ment of translating 1102 in FIG. 11.
method 1000 can include mapping 1004 the plurality of sce-	 In some embodiments, method 1200 includes verifying
narios to a script or specification.	 1202 the syntax of the plurality of requirements of the policy.

In some embodiments, method 1000 subsequently can also
	

Thereafter, method 1200 may include mapping 1204 the plu-
include verifying 1006 consistency of the formal specifica- 2o rality of requirements of the policy to a formal specification.
tion. In some embodiments, method 1000 subsequently also

	
In some embodiments, method 1200 subsequently also

includes verifying 1008 a lack of otherproblems in the formal
	

includes verifying 1206 consistency of the formal specifica-
specification. One example of other problems is unreachable	 tion with at least one other formal specification. In some
states in the process defined in the formal specification, 	 embodiments, method 1200 subsequently also includes veri-
although one skilled in the art will understand that yet other 25 fying 1208 lack of other problems in the formal specification.
problems are contemplated. 	 One example of other problems is unreachable states in the

In some embodiments, methods 500-1600 can be imple-	 process defined in the formal specification, although one
mented as a computer data signal embodied in a carrier wave 	 skilled in the art will recognize that other problems fit within
that represents a sequence of instructions, which, when	 the scope of this invention.
executed by a processor, such as processor 1704 in FIG. 17, so 	 FIG. 13 is a flowchart of a method 1300 to validate/update
cause the processor to perform the respective method. In other 	 a system, according to an embodiment. Method 1300 may
embodiments, methods 500-1600 can be implemented as a	 solve the need in the prior art to reduce errors in implemen-
computer-accessible medium having executable instructions 	 tations.
capable of directing a processor, such as processor 1704 in

	
Method 1300 can include analyzing 1302 a formal speci-

FIG. 17, to perform the respective method. In varying 35 fication, such as formal specification 306, of the system, the
embodiments, the medium can be a magnetic medium, an

	
formal specification 306 having been previously derived from

electronic medium, an electromagnetic medium, a medium	 the policies of the system.
involving configurations or spatial positioning of electrons, 	 In some embodiments, the analyzing 1302 can include
ions, atoms, or molecules or aggregations of such particles, a 	 applying mathematical logic to the formal specification 306
medium involving quantum mechanical entities, or an optical 40 in order to identify a presence or absence of mathematical
medium. Other mediums will be readily apparent to one 	 properties of the formal specification 306. Mathematical
skilled in the art and fall within the scope of this invention. 	 properties of the formal specification 306 that can be deter-

FIG. 11 is a flowchart of a method 1100 to generate an	 mined by applying mathematical logic to the formal specifi-
executable system from a policy, according to an embodi- 	 cation 306 can include, by way of example:
ment. Method 1100 solves the need in the art to generate 45	 1) whether or not the formal specification 306 implies a
executable computer instructions from policy with neither the 	 system execution trace that includes a deadlock condition,
time involved in manually writing the executable computer 	 and
instructions, nor the mistakes that may arise in manually

	
2) whether or not the formal specification 306 implies a

writing the executable computer instructions, without using a 	 system execution trace that includes a livelock condition.
theorem-prover. 	 50 The above two properties can be domain independent. One

In some embodiments, method 1100 includes translating	 skilled in the art will note that there are many other possible
1102 mechanically each of a plurality of requirements of the

	
flaws that could be detected through the analysis of the model,

policy to a plurality of formal specification segments. In some	 many or even most of which might be domain dependent. An
embodiments, the translating 1102 includes inferring the for- 	 example of a domain dependent property would be repre-
mal specification segments from the policy. One embodiment 55 sented by the operational principle that "closing a door that is
of translating 1102 is shown in FIG. 12 below.	 not open is not a valid action." This example would be appli-

In some embodiments, the formal specification is process	 cable in the domain of the Hubble Space Telescope on-orbit
algebra notation. Such embodiments may satisfy the need in	 repair.
the art for an automated, mathematics-based process for

	
Thereafter, a determination 1304 can be made as to

policy validation that does not require large computational 60 whether or not the analyzing 1302 indicates that the formal
facilities.	 specification 306 contains a flaw. If a flaw does exist, then the

Thereafter, method 1100 may include aggregating 1104
	

policies can be corrected 1306 accordingly.
the plurality of formal specification segments into a single

	
Once a correction is made, then the corrected policies can

formal specification or model.	 be processed by system 400 in FIG. 4 or method 1400 in FIG.
Subsequently, method 1100 may include translating 1106 65 14 to derive a new implementation from the corrected poli-

the single formal specification to instructions encoded in the 	 cies. According to at least one embodiment, the new policy(s)
Java computer language or some other high-level computer

	
402 can be processed by method 1300, and the iterations of

US 7,886,273 B2
23
	

24
method 1400 and method 1300 can repeat until there are no	 policy with neither the time involved in manually writing the
more flaws in the implementation 410 generated from the 	 scripts, nor the mistakes that can arise in manually writing the
policies, at which point the policies have no flaws because the

	
implementation, without using an automated logic engine.

implementation 410 is provably equivalent to the policy from
	

Method 1500 can include mechanically translating 1502
which it was derived. Thus, iterations of method 1400 and s each of a plurality of policies 402 to a plurality of formal
1300 can provide verification/validation of the policies. 	 specification segments. The translation may be done without

FIG. 14 is a flowchart of a method to translate one or more
	

human intervention. One embodiment of translating 1502 is
policies of a system to an implementation, according to an 	 shown in FIG. 16 below.
embodiment. The method 1400 can include translating 1402

	
Thereafter, method 1500 can include aggregating 1504 the

policies 402 into a formal specification 108 without human io plurality of formal specification segments into a single formal
intervention.	 model or specification.

Thereafter, method 1400 can include optionally analyzing
	

Subsequently, method 1500 can include translating 1506
1404 the formal specification 108. The analyzing 1404 can be	 the single formal specification or model to multiple imple-
a verification/validation of the policies 402. In some embodi-	 mentations. Thereafter, method 1500 can include generating
ments, the analyzing 1404 determines various properties such 15 1508 a singular implementation from the implementations.
as existence of omissions, deadlock, livelock, and race con- 	 Thus, method 1500 provides one embodiment of a method to
ditions in the formal specification 306, although one skilled in	 convert a policy 402 to an application system without involve-
the art will know that analyzing the formal specification 306	 ment from a computer programmer.
can determine other properties not specifically listed, which

	
Some embodiments of method 1500 do not include invok-

are contemplated by this invention. In some embodiments, 20 ing a theorem-prover or any other automated logic engine to
the analyzing 1404 can provide a mathematically sound

	
infer the formal specification segments from the policies.

analysis of the policies 402 in a general format that doesn't
	

FIG. 16 is a flowchart of a method 1600 to verify the syntax
require significant understanding of the specific rules of the 	 of a set of policies, translate the set of policies to a formal
policies 402. Further, the analyzing 1404 can warn developers 	 specification, verify the consistency of the formal specifica-
of errors in their policies 402, such as contradictions and 25 tion, and verify the absence of other problems, according to
inconsistencies, but equally importantly it can highlight rules 	 an embodiment. Method 1600 is one embodiment of trans-
or sets of rules that are underspecified or over-specified and

	
lating 1502 in FIG. 15. As indicated, such translation can be

need to be corrected for the policies 402 to operate as	 accomplished without human intervention.
intended. Thus, no knowledge of the policies 402 may be

	
In some embodiments, the method 1600 can include veri-

required, but instead significant analysis, verification, testing, so fying 1602 the syntax of the plurality of policies. Thereafter,
simulation and model checking of the policies 402 using 	 method 1600 can include mapping 1604 the plurality of poli-
customized tools or existing tools and techniques is provided. 	 cies to a formal specification.

Thereafter, in some embodiments, method 1400 can
	

In some embodiments, method 1600 subsequently can also
include translating 1406 the formal specification to an imple- 	 include verifying 1606 consistency of the formal specifica-
mentation 410. Thus, in at least one embodiment, the method 35 tion. In some embodiments, method 1600 subsequently also
1400 provides a method to convert policies 402 to an imple- 	 includes verifying 1608 a lack of other problems in the formal
mentation 410 without involvement from a computer pro- 	 specification. One example of other problems is unreachable
grammer.	 states in the process defined in the formal specification,

Most notably, some embodiments of the method 1400 do	 although one skilled in the art will understand that yet other
not include invoking an automated logic engine, such as a 40 problems are contemplated.
theorem-prover, to infer the implementation 410 from the
policies 402.	 Hardware and Operating Environment

In some embodiments of method 1400, one or more poli-
cies 402 that represent the operation of a system can be

	 FIG. 17 is a block diagram of the hardware and operating
mechanically converted to a mathematically sound formal 45 environment 1700 in which different embodiments can be
306 specification that can be analyzed for defects and used for 	 practiced. The description of FIG. 17 provides an overview of
various transformations including automatic translation into 	 computer hardware and a suitable computing environment in
executable form and automatic regeneration of procedures/

	 conjunction with which some embodiments can be imple-
scripts into other notations/representations. In other embodi-	 mented. Embodiments are described in terms of a computer
ments, the method disclosed herein can be used to automati- 50 executing computer-executable instructions. However, some
cally reverse engineer existing implementations 410 to	 embodiments can be implemented entirely in computer hard-
formal specification 306 from which the method can be used

	 ware in which the computer-executable instructions are
to produce customer-readable representations of policy(s)

	
implemented in read-only memory. Some embodiments can

402 or machine-proces sable implementations 410. 	 also be implemented in client/server computing environ-
Mathematically sound techniques maybe used to mechani- 55 ments where remote devices that perform tasks are linked

cally translate one or more policy(s) 402 into an equivalent
	

through a communications network. Program modules can be
formal specification 306. The formal specification 306 may

	 located in both local and remote memory storage devices in a
be mechanically (that is, with no manual intervention)

	
distributed computing environment. Some embodiments can

manipulated, examined, analyzed, verified, and used in a 	 also be at least partially implemented in a quantum mechani-
simulation.	 60 cal computing and communications environment.

FIG. 15 is a flowchart of a method 1500 to translate each of
	

Computer 1702 may include a processor 1704, commer-
a plurality of policy(s) to a plurality of formal specification 	 cially available from Intel, Motorola, Cyrix and others. Com-
segments, and formally compose the plurality of formal

	
puter 1702 can also include random-access memory (RAM)

specification segments into a single equivalent specification, 	 1706, read-only memory (ROM) 1708, and one or more mass
and translate the single formal specification into an imple- 65 storage devices 1710, and a system bus 1712, that operatively
mentation, according to an embodiment. Method 1500 can	 couples various system components to the processing unit
solve the need in the art to generate implementations from

	 1704. The memory 1706, 1708, and mass storage devices,

US 7,886,273 B2
25
	

26
1710, are types of computer-accessible media. Mass storage
devices 1710 are more specifically types of nonvolatile com-
puter-accessible media and can include one or more hard disk
drives, floppy disk drives, optical disk drives, and tape car-
tridge drives. The processor 1704 can execute computer pro-
grams stored on the computer-accessible media.

Computer 1702 can be communicatively connected to the
Internet 1714 (or any communications network) via a com-
munication device 1716. Internet 1714 connectivity is well
known within the art. In one embodiment, a communication
device 1716 is a modem that responds to communication
drivers to connect to the Internet via what is known in the art
as a "dial-up connection." In another embodiment, a commu-
nication device 1716 is an Ethemet(k or similar hardware
network card connected to a local-area network (LAN) that
itself is connected to the Internet via what is known in the art
as a "direct connection" (e.g., TI line, etc.).

A user enters commands and information into the com-
puter 1702 through input devices such as a keyboard 1718 or
a pointing device 1720. The keyboard 1718 permits entry of
textual information into computer 1702, as known within the
art, and embodiments are not limited to any particular type of
keyboard. Pointing device 1720 permits the control of the
screen pointer provided by a graphical user interface (GUI) of
operating systems such as versions of Microsoft Windows®.
Embodiments are not limited to any particular pointing
device 1720. Such pointing devices may include mice, touch
pads, trackballs, remote controls and point sticks. Other input
devices (not shown) can include a microphone, joystick,
game pad, gesture-recognition or expression recognition
devices, or the like.

In some embodiments, computer 1702 is operatively
coupled to a display device 1722. Display device 1722 can be
connected to the system bus 1712. Display device 1722 per-
mits the display of information, including computer, video
and other information, for viewing by a user of the computer.
Embodiments are not limited to any particular display device
1722. Such display devices include cathode ray tube (CRT)
displays (monitors), as well as flat panel displays such as
liquid crystal displays (LCD's) or image and/or text projec-
tion systems or even holographic image generation devices.
In addition to a monitor, computers typically include other
peripheral input/output devices such as printers (not shown).
Speakers 1724 and 1726 (or other audio device) provide
audio output of signals. Speakers 1724 and 1726 are also
connected to the system bus 1712.

Computer 1702 may also include an operating system (not
shown) that is stored on the computer-accessible media RAM
1706, ROM 1708, and mass storage device 1710, and is
executed by the processor 1704. Examples of operating sys-
tems include Microsoft Windows®, Apple MacOS®,
Linux®, UNIX®. Examples are not limited to any particular
operating system, however, and the construction and use of
such operating systems are well known within the art.

Embodiments of computer 1702 are not limited to any type
of computer 1702. In varying embodiments, computer 1702
comprises a PC-compatible computer, a MacOSO-compat-
ible computer, a Linux®-compatible computer, or a UNIX®-
compatible computer. The construction and operation of such
computers are well known within the art.

Computer 1702 can be operated using at least one operat-
ing system to provide a graphical user interface (GUI) includ-
ing a user-controllable pointer. Computer 1702 can have at
least one web browser application program executing within
at least one operating system, to permit users of computer
1702 to access an intranet, extranet or Internet world-wide-
web pages as addressed by Universal Resource Locator
(URL) addresses. Examples of browser application programs
include Netscape Navigator® and Microsoft Internet
Explorer®.

The computer 1702 can operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as remote computer 1728. These logical connec-
tions can be achieved by a communication device coupled to,

5 or a part of, the computer 1702. Embodiments are not limited
to a particular type of communications device. The remote
computer 1728 can be another computer, a server, a router, a
network PC, a client, a peer device or other common network
node. The logical connections depicted in FIG. 17 include a
local-area network (LAN) 1730 and a wide-area network

10
(WAN) 1732. Such networking environments are common-
place in offices, enterprise-wide computer networks, intra-
nets, extranets and the Internet.

When used in a LAN-networking environment, the com-
puter 1702 and remote computer 1728 are connected to the

15 local network 1730 through network interfaces or adapters
1734, which is one type of communications device 1716.
Remote computer 1728 also includes a network device 1736.
When used in a conventional WAN-networking environment,
the computer 1702 and remote computer 1728 communicate

20 with a WAN 1732 through modems (not shown). The modem,
which can be internal or external, is connected to the system
bus 1712. In a networked environment, program modules
depicted relative to the computer 1702, or portions thereof,
can be stored in the remote computer 1728.

25	 Computer 1702 also includes power supply 1738. Each
power supply can be a battery.

CSP Implementation

30 Referring to FIG. 18, a particular CSP implementation
1800 is described in conjunction with the system overview in
FIG. 1 and the methods described in conjunction with FIG. 5
and FIG. 6, according to an embodiment.

FIG. 18 is a block diagram of a particular CSP implemen-
35 tation of an apparatus 1800 to generate a high-level computer

source code program from an informal specification, accord-
ing to an embodiment. Apparatus 1800 may solve the need in
the art for an automated, generally applicable way to produce
a system that is a provably correct implementation of an
informal design specification that does not require use of a

40 theorem-prover.
Apparatus 1800 may include an informal specification 102

having a plurality of rules or requirements. The informal
specification 102 can be expressed in restricted natural lan-
guage, graphical notations, or even using semi-formal nota-

45 tions such as unified modeling language (UML) use cases.
Apparatus 1800 may also include a set of laws of concurrency
104.

The informal specification 102 and a set of laws of concur-
rency 104 may be received by a mechanical CSP translator

50 1802. The plurality of rules or requirements of the informal
specification 102 can be translated mechanically to a speci-
fication 1804 encoded in Hoare's language of Communicat-
ing Sequential Processes (CSP). In some embodiments, the
mechanical CSP translator 1802 performs actions 502 and
504 in FIG. 5.

55
In some embodiments, the system includes a formal speci-

fication analyzer 1806 to perform model verification/check-
ing and determine existence of omissions, deadlock, livelock
and race conditions in the CSP specification 1804. In some
embodiments, the formal specification analyzer 1806

60 receives andtransmits information from and to a visualization
tool 1808 that provides a way to modify the CSP specification
1804. In some embodiments, the formal specification ana-
lyzer 1806 receives and transmits information from and to a
tool 1810 designed for CSP that provides a way to modify the

65 CSP specification 1804.
The formal specification analyzer 1806 can generate a

modified CSP specification 1804 that may in turn be received

US 7,886,273 B2
27

by a code translator 112 or compiler to translate the plurality
of process-based specification segments 108 to a set of
instructions in a high-level computer language program 114,
such as Java language.

Formal specification analyzer 1806 may allow the user to
manipulate the formal specification 1804 in various ways.
The formal specification analyzer 1806 may allow the user to
examine the system described by the informal specification
102, and to manipulate it. The CSP specification 1804 may be
analyzed to highlight undesirable behavior, such as race con-
ditions, and equally important, to point out errors of omission
in the informal specification 102. The formal specification
analyzer 1806 may be an optional but useful stage in the
disclosed embodiments of the present invention. If the formal
specification analyzer 1806 is not used, then the process-
based specification 108 and the modified CSP specification
1804 can be identical. Hence, if the formal specification ana-
lyzer 1806 is not used then all references to the modified CSP
specification 1804 disclosed below may also apply to the CSP
specification 1804.

Some embodiments of apparatus 1800 do not include a
theorem-prover to infer the process-based specification seg-
ments from the informal specification.

Apparatus 1800 can be operational for a wide variety of
informal specification languages and applications, thus appa-
ratus 1800 can be generally applicable. Such applications
may include distributed software systems, sensor networks,
robot operation, complex scripts for spacecraft integration
and testing, and autonomous systems.

Apparatus 1800 components of the mechanical CSP trans-
lator 1802, the formal specification analyzer 1806, visualiza-
tion tool 1808, CSP tool 1810 and the code translator 112 can
be embodied as computer hardware circuitry or as a com-
puter-readable program, or a combination of both, such as
shown in FIG. 18. In another embodiment, apparatus 1800
may be implemented in an application service provider (ASP)
system.

FIG. 19 is a block diagram of a hardware and operating
environment 1900 in which a particular CSP implementation
of FIG. 18 is implemented, according to an embodiment.

Script Implementation

Referring to FIGS. 20 and 21, a particular scripting lan-
guage implementation 2000 is described in conjunction with
the system overview in FIG. 2 and the methods described in
conjunction with FIGS. 5-16, according to an embodiment.

FIG. 20 is a block diagram of a particular implementation
of an apparatus capable of translating scenarios to a formal
specification, optionally analyzing the formal specification
and translating the formal specification to a script and reverse
engineering (translating) a script into a formal specification
(and possibly analyzing the formal specification), according
to an embodiment. Apparatus 2000 can solve the need in the
art for an automated, generally applicable way to verify that
implemented scripts are a provably correct implementation of
a scenario(s).

Apparatus 2000 can include a translator 206 that generates
a formal specification 208 from the laws of concurrency 104
and the scenario(s) 202 in reference to the optional inference
engine 204.

Subsequently, the formal specification 208 may be trans-
lated by script translator 212 into a script 214 in some appro-
priate scripting language. In some embodiments no manual
intervention in the translation is provided. Those skilled in the
art will readily understand that other appropriate notations
and/or languages exist that are within the scope of this inven-
tion.

In some embodiments, apparatus 2000 can include an ana-
lyzer 210 to determine various properties of the formal speci-

28
fication, such as the existence of omissions, deadlock, live-
lock, and race conditions, as well as other conditions, in the
formal specification 208, although one skilled in the art will
recognize that other additional properties can be determined

5 by the analyzer 210. The analyzer 210 may solve the need in
the prior art to reduce errors.

In some embodiments, a reverse script translator 2002
receives the script 214 and generates a formal specification
208. The output of the reverse script translator 2002 can be a

10 different formal specification than formal specification 208.
In some embodiments, there can be some small differences
between the formal specification generated by reverse script
translator 2002 and formal specification 208, but the formal
specifications generated by the reverse script translator 2002
is substantially functionally equivalent to the formal specifi-

15 cation 208.
Apparatus 2000 can operate fora wide variety of languages

and applications, and thus apparatus 2000 can be generally
applicable. Such applications can include, without limitation,
distributed software systems, sensor networks, robot opera-

20 tion, complex scripts for spacecraft integration and testing,
and autonomous systems, but those skilled in the art will
understand that other applications are contemplated.

Apparatus 2000 components such as the translator 206,
script translator 212, the analyzer 210, and the reverse script

25 translator 2002 can be embodied as computer hardware cir-
cuitry or as a computer-readable program, or a combination
of both, such as shown in FIG. 21. In other embodiments,
apparatus 2000 can be implemented in an application service
provider (ASP) system.

30 FIG. 21 illustrates an environment 2100 similar to that of
FIG. 17, but with the addition of the script translator 212, the
analyzer 210 and the reverse script translator 2002 that cor-
respond to some of apparatus 2000.

35	 R2D2C Implementation

Referring to FIG. 22, a particular R2D2C implementation
2200 is described in conjunction with the system overview in
FIG. 3 and the methods described in conjunction with FIG. 11

40 and FIG. 12.
FIG. 22 is a block diagram of a particular R2D2C imple-

mentation of an apparatus 2200 to generate a high-level com-
puter source code program from a policy, according to an
embodiment. Apparatus 2200 may solve the need in the art for

45 an automated, generally applicable way to produce a system
that is a provably correct implementation of one or more
policies that does not require use of a theorem-prover.

Apparatus 2200 may include a policy 302 having a plural-
ity of rules or requirements. The policy 302 can be expressed

50
in restricted natural language, graphical notations, or even
using semi-formal notations such as unified modeling lan-
guage (UML) use cases. Apparatus 2200 may also include a
set of laws of concurrency 104.

The policy 302 and a set of laws of concurrency 104 can be
received by a direct mechanical CSP translator 2202. The

55 plurality of rules or requirements of the policy 302 can be
translated mechanically to a specification 2204 encoded in
Hoare's language of Communicating Sequential Processes
(CSP). In some embodiments, the direct mechanical CSP
translator 2202 performs actions 1102 and 1104 in FIG. 11.

60 In some embodiments, the system includes a formal speci-
fication analyzer 2206 to perform model verification/check-
ing and determine existence of omissions, deadlock, livelock
and race conditions in the CSP specification 2204. In some
embodiments, the formal specification analyzer 2206

65 receives and transmits infor nation from and toavisualization
tool 2208 that provides a way to modify the CSP specification
2204. In some embodiments, the formal specification ana-

US 7,886,273 B2
29

lyzer 2206 receives and transmits information from and to a
tool 2210 designed for CSP that provides a way to modify the
CSP specification 2204.

The formal specification analyzer 2206 may generate a
modified CSP specification 2204 that is in turn received by a
code translator 310 or compiler to translate the plurality of
formal specification segments 306 to a set of instructions in a
high-level computer language program 314, such as Java
language.

In some embodiments, formal specification analyzer 2206
allows the user to manipulate the formal specification 2204 in
various ways. The formal specification analyzer 2206 may
allow the user to examine the system described by the policy
302, and to manipulate it. The CSP specification 2204 may be
analyzed to highlight undesirable behavior, such as race con-
ditions, and equally important, to point out errors of omission
in the policy 302. The formal specification analyzer 2206 is an
optional but useful stage in the disclosed embodiments of the
present invention. If the formal specification analyzer 2206 is
not used, then the formal specification 306 and the modified
CSP specification 2204 can be identical. Hence, if the formal
specification analyzer 2206 is not used then all references to
the modified CSP specification 2204 disclosed below may
also apply to the CSP specification 2204.

In some embodiments, apparatus 2200 does not include a
theorem-prover to infer the formal specification segments
from the policy.

Apparatus 2200 can be operational for a wide variety of
policy languages and applications, thus apparatus 2200 can
be generally applicable. Such applications may include dis-
tributed software systems, sensor networks, robot operation,
complex scripts for spacecraft integration and testing, and
autonomous systems.

Apparatus 2200 components of the mechanical CSP trans-
lator 2202, the formal specification analyzer 2206, visualiza-
tion tool 2208, CSP tool 2210 and the code translator 310 can
be embodied as computer hardware circuitry or as a com-
puter-readable program, or a combination of both, such as
shown in FIG. 23. In another embodiment, apparatus 2200 is
implemented in an application service provider (ASP) sys-
tem.

One approach to requirements-based programming is
requirements-to-design-to-code (R2D2C), which provides a
mathematically tractable round-trip engineering approach to
system development. In R2D2C, engineers (or others) write
specifications as scenarios in constrained (domain-specific)
natural language, or in a range of other notations (including
UML use cases), which is integrated to derive a formal model
that is guaranteed to be equivalent to the requirements stated
at the outset, and which will subsequently be used as a basis
for code generation. The formal model can be expressed using
a variety of formal methods such as CSP, Hoare's language of
Communicating Sequential Processes. The R2D2C approach
generates a formal model with automatic reverse engineering.

R2D2C is unique in that the methodology allows for full
formal development from the outset, and maintains math-
ematical soundness through all phases of the development
process, from requirements through to automatic code gen-
eration. The approach may also be used for reverse engineer-
ing, that is, in retrieving models and formal specifications
from existing code. R2D2C can also be used to "paraphrase"
(in natural language, etc.) formal descriptions of existing
systems. This approach is not limited to generating high-level
code. R2D2C can also be used to generate business processes
and procedures, and to generate instructions for robotic
devices such as those used on the Hubble Robotic Servicing
Mission (HRSM). R2D2C can also be used as a basis for an
expert system verification tool, and as a way of capturing
domain knowledge for expert systems, and for generating
policies from requirements.

30
The R2D2C approach involves a number of phases. The

following describes each of these phases as understood in the
prior art. The entire process, with DI thru D5 illustrating the
development approach, is suitable for various types of analy-

5 sis and investigation, and as the basis for fully formal imple-
mentations as well as for use in automated test case genera-
tion and so forth.

DI Scenarios Capture: Engineers, end users, and others
write scenarios describing intended system operation. The

10 input scenarios may be represented in a constrained natural
language using a syntax-directed editor, or may be repre-
sented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic
events are derived from the scenarios defined in phase DI.

15 D3 Model Inference: A formal model, or formal specifica-
tion, expressed in CSP is inferred by an automatic theorem-
prover, in this case using the traces derived in phase D2. A
deep embedding of the laws of concurrency in the theorem-
prover gives it sufficient knowledge of concurrency and of

20 CSP to perform the inference.
D4 Analysis: Based on the formal model, various analyses

can be performed, using currently available commercial or
public domain tools, and specialized tools that are planned for
development. Because of the nature of CSP, the model may be

25 analyzed at different levels of abstraction using a variety of
possible implementation environments.

D5 Code Generation: The techniques of automatic code
generation from a suitable model are reasonably well under-
stood. The present modeling approach is suitable for the

30 application of existing code generation techniques, whether
using a tool specifically developed for the purpose, or existing
tools such as FDR, or converting to other notations suitable
for code generation (e.g., converting CSP to B and then using
the code generating capabilities of the B Toolkit).

35 In some embodiments, an exemplary system for automatic
control of ground stations of overhead satellites includes both
autonomous and autonomic properties and operates by hav-
ing a community of distributed autonomous software mod-
ules work cooperatively based on policies to perform the

40 functions previously undertaken by human operators using
traditional software tools, such as orbit generators and com-
mand sequence planners. In an example, a pager agent and a
mapping from natural language descriptions through to the
CSP model can be used to generate code.

45 Based on defined policies, the pager agent sends pages to
engineers and controllers when there is a spacecraft anomaly.
For example, the pager agent receives requests from a user
interface agent that no analyst is logged on, so it gets paging
information from a database agent and pages an appropriate

50
analyst,and, when instructed by the user interface agent stops
paging the analyst. These policies can be stated as follows:

When the pager agent receives a request from the user
interface agent, the pager agent sends a request to the data-
base agent for an analyst's pager information and puts the
message in a list of requests to the database agent. When the

55 pager agent receives a pager number from the database agent,
then the pager agent removes the message from the paging
queue and sends a message to the analyst's pager and adds the
analyst to the list of paged people. When the pager agent
receives a message from the user interface agent to stop

60 paging a particular analyst, the pager agent sends a stop-
paging command to the analyst's pager and removes the
analyst from the paged list. When the pager agent receives
another kind of message, it replies to the sender that the
message was not recognized.

65 The above policies could then be translated into CSP. The
following could be a partial CSP description of the pager
agent:

US 7,886,273 B2
31
	

32

PAGER_ BUSdbwaiting,paged = pager. Iin?msg-
case

GET USER INFOdbwaiting,paged,pagee,text
ifmsg = (STARTPAGING, specialist, text)

BEGIN PAGING& waiting,paged,in reply to id(msg),pager-num
ifmsg =(RETURN DATA.pager num)

STOPCONTACTdbwaiting,paged,pagee
if msg = (STOPPAGING, pagee)

pager. lout! (head(msg), UNRECOGNIZED)
PAGER BUSdbwaiting,paged

otherwise

The above pseudo-language description states that the pro- 15	 Apparatus 2400 can include a translator 404 that generates
cess PAGER _BUS receives a message on its "Iin" channel

	
a formal specification 306 from the laws of concurrency 104

and stores it in a variable called "msg". Depending on the 	 and the policy(s) 402 in reference to the optional inference
contents of the message, one of four different processes is 	 engine 204.
executed based on the policies. If the message is of type

	
Subsequently, the formal specification 306 may be trans-

START_PAGING, then the GET _ USER _INFO process is 20 lated by translator 408 into an implementation 410, such as
called with parameters of the specialist to page (pagee) and

	
some appropriate scripting language. In some embodiments,

the text to send. If the message is of type RETURN _DATA
	

no manual intervention in the translation is provided. Those
with a pagee's pager number, then the database has returned

	
skilled in the art will readily understand that other appropriate

a pager number and the BEGIN _PAGING process is executed
	

notations and/or languages exist that are within the scope of
with a parameter containing the original message id (used as 25 this invention.
a key to the db-waiting set) and the passed pager number. The

	
In some embodiments, apparatus 2400 can include an ana-

third type of message that the Pager agent might receive is one
	

lyzer 406 to determine various properties of the formal speci-
of type STOP _PAGING. This message contains a request to

	
fication, such as the existence of omissions, deadlock, live-

stop paging a particular specialist (stored in the pagee param- 	 lock, and race conditions, as well as other conditions, in the
eter). When this message is received, the STOP_PAGING 30 formal specification 306, although one skilled in the art will
process is executed with the parameter of the specialist type.	 recognize that other additional properties can be determined
If the pager agent receives any other message than the above

	
by the analyzer 406. The analyzer 406 can solve the need in

three messages, an error message is returned to the sender of
	

the prior art to reduce errors.
the message (which is the first item of the list) stating that the

	
In some embodiments, a reverse translator 2402 receives

message is "UNRECOGNIZED". After this, the PAGER_ 35 the implementation 410 and generates a formal specification.
BUS process is again executed.	 The output of the reverse translator 2402 is a different formal

Some of the benefits of using R2D2C, and hence of using 	 specification than formal specification 306. There can be
Formal Requirements-Based Programming in system devel-	 some small differences between the formal specification gen-
opment include increasing assurance of system success by	 erated by reverse translator 2402 and formal specification
ensuring completeness and consistency of requirements, by 40 306, but the formal specifications generated by the reverse
ensuring that implementations are true to the requirements, 	 translator 2402 is substantially functionally equivalent to the
by ensuring that automatically coded systems are bug-free;

	
formal specification 306.

and by ensuring that implementation behavior is as expected.	 Apparatus 2400 can operate for a wide variety of languages
Another benefit is decreased costs and schedule impacts of

	
and applications, and thus apparatus 2400 can be generally

ultra-high dependability systems through automated devel- 45 applicable. Such applications can include, without limitation,
opment and yet another benefit is decreased re-engineering

	
distributed software systems, sensor networks, robot opera-

costs and delays.	 tion, complex scripts for spacecraft integration and testing,
FIG. 23 is a block diagram of a hardware and operating 	 and autonomous systems, but those skilled in the art will

environment 2300 in which a particular CSP implementation	 understand that other applications are contemplated.
of FIG. 22 is implemented. 	 50	 Apparatus 2400 components such as the translator 404,

translator 408, the analyzer 406, and the reverse translator
Policy Implementation
	

2402 can be embodied as computer hardware circuitry or as a
computer-readable program, or a combination of both, such

Referring to FIGS. 24 and 25, a particular scripting lan-	 as shown in FIG. 25. In another embodiment, apparatus 2400
guage implementation 2400 is described in conjunction with 55 can be implemented in an application service provider (ASP)
the system overview in FIG. 2 and the methods described in 	 system.
conjunction with FIGS. 5-16. 	 FIG. 25 illustrates an environment 2500 similar to that of

FIG. 24 is a block diagram of a particular implementation
	 FIG. 17, but with the addition of the translator 408, the ana-

of an apparatus 2400 capable of translating policies to a
	 lyzer 406 and the reverse translator 2402 that correspond to

formal specification, optionally analyzing the formal specifi- 60 some of apparatus 2400.
cation and translating the formal specification to a script and

	
In a computer-readable program embodiment, the pro-

reverse engineering (translating) a script into a formal speci- 	 grams can be structured in an object-orientation using an
fication (and possibly analyzing the formal specification), 	 obj ect-oriented language such as Java, Smalltalk or C++, and
according to an embodiment. Apparatus 2400 may solve the	 the programs can be structured in a procedural-orientation
need in the art for an automated, generally applicable way to 65 using a procedural language such as COBOL or C. The soft-
verify that implementations are a provably correct implemen- 	 ware components communicate in any of a number of ways
tation of a policy(s).	 that are well-known to those skilled in the art, such as appli-

US 7,886,273 B2
33

cation program interfaces (API) or interprocess communica-
tion techniques such as remote procedure call (RPC), com-
mon object request broker architecture (CORBA),
Component Object Model (COM), Distributed Component
Object Model (DCOM), Distributed System Object Model
(DSOM) and Remote Method Invocation (RMI). The com-
ponents can execute on as few as one computer as in computer
1702 in FIG. 17, or on at least as many computers as there are
components.

CONCLUSION

In autonomic computing, self-managed systems based on
high level guidance from humans have been gaining ground
as a significant new paradigm to facilitate the creation of
self-managing systems to deal with the ever increasing com-
plexity and costs inherent in today's (and tomorrow's) sys-
tems. Policies and policy based management is a key enabling
technology for achieving autonomicity. Described herein is a
method that produces fully (mathematically) tractable devel-
opment of policies for autonomic systems from requirements
through to code generation. The use of this method was illus-
trated through an example showing how user formulated poli-
cies can be translated into a formal mode which can then be
converted to code. The requirements-based programming
method described provides faster, higher quality develop-
ment and maintenance of autonomic systems based on user
formulation of policies.

The systems, method and apparatus described herein pro-
vide a way of analyzing policies for autonomic systems and
facilitates the generation of provably correct implementa-
tions automatically, which in turn provides reduced develop-
ment time, reduced testing requirements, guarantees of cor-
rectness of the implementation with respect to the policies
specified at the outset, and provides a higher degree of con-
fidence that the policies are both complete and reasonable.
The ability to specify the policy for the management of a
system and then automatically generate an equivalent imple-
mentation will greatly improve the quality of software, the
survivability of future missions, in particular when the system
will operate untended in very remote environments, and
greatly reduce development lead times and costs.

A system and method for generating scripts from require-
ments expressed as policies, is described according to an
embodiment. In some embodiments, the system and method
also allows for "reverse engineering," analysis, and correc-
tion of errors found in existing scripts. In some embodiments,
the method allows multiple existing scripts to be combined,
discrepancies resolved and re-generated as a single script in
which confidence can be placed in its correct implementation
of the stated requirements (which can be "captured" from the
existing implementation).

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose can be substituted for the specific
embodiments shown. This application is intended to cover
any adaptations or variations. For example, although
described in procedural terms, one of ordinary skill in the art
will appreciate that implementations can be made in an
object-oriented design environment or any other design envi-
ronment that provides the required relationships.

In some embodiments, a formal model is generated from
the policies. The formal model may then be analyzed for a
range of different possible errors in the policies. Additionally,
scripts may be generated that correspond to the policies.
Since the scripts can be generated automatically, there may be

34
a significantly reduced likelihood of error, and common "pro-
gramming" errors can be eliminated. These scripts may be in
a scripting language such as PERL, BioPerl, PYTHON, etc.
or in a language suitable for controlling machines, robots and

5 other devices.
Existing scripts can be combined, analyzed, and regener-

ated as a single script in the same language, or another lan-
guage, that increases accuracy and reduces common errors.

In particular, one of skill in the art readily will appreciate
io that the names of the methods and apparatus are not intended

to limit embodiments. Furthermore, additional methods and
apparatus can be added to the components, functions can be
rearranged among the components, and new components to
correspond to future enhancements andphysical devices used

15 in embodiments can be introduced without departing fromthe
scope of embodiments. One of skill in the art readily will
recognize that embodiments are applicable to future commu-
nication devices, different file systems, and new data types.

The terminology used in this application is meant to
20 include all object-oriented, database and communication

environments and alternate technologies which provide the
same functionality as described herein.

We claim:
1. A computer-accessible medium having executable

25 instructions to generate a system, the executable instructions
capable of directing a processor to perform:

receiving at least one policy of the system;
translating the at least one policy of the system to an imple-

mentation, and
30	 analyzing the formal specification,

wherein a policy includes a set of rules or principles that
describes constraints on system functionality and pre-
scribes how the system must behave;

wherein translating the at least one policy of the system
35 includes mapping a policy to a specific, single imple-

mentation as determined by the syntax and semantics of
a policy language, an underlying formal model, and
domain knowledge;

wherein an implementation is a set of artifacts that provides
a functional instance of the system; and

40 wherein analyzing the formal specification includes inter-
preting and applying mathematical logic to the formal
specification to identify inconsistencies, omissions,
redundancies, and errors, including system deadlock,
system livelock, and unreachable states, wherein apply-

45 ing mathematical logic includes applying axioms and
theorems of mathematics and logic, wherein system
deadlock is when at least two executing processes each
wait for the other to finish and may continue to do so
indefinitely, and wherein system livelock is when at least

50 two executing processes each wait for the other to finish,
but their relative internal states change continually dur-
ing execution without progress being made by either
process.

2. The computer-accessible medium of claim 1, wherein

55
the executable instructions further comprise translating the at
least one policy of the system to the implementation without
using an automated inference engine.

3. The computer-accessible medium of claim 1, wherein
the executable instructions further comprise translating the at
least one policy of the system to the implementation in refer-

60 ence to an inference engine, wherein an inference engine
iteratively applies a set of rules to a set of data representing a
problem to determine a solution to the problem by logical
manipulation and logical analysis of the data.

4. The computer-accessible medium of claim 1, wherein
65 the executable instructions further comprise

translating the at least one policy of the system to a formal
specification in reference to an inference engine,

US 7,886,273 B2
35

wherein translating the at least one policy of the system
to a formal specification includes interpreting the syntax
and semantics of the policy and matching the syntacti-
cally or logically equivalent representations in the for-
mal specification language, and wherein an inference
engine iteratively applies a set of rules to a set of data
representing a problem to determine a solution to the
problem by logical manipulation and logical analysis of
the data; and

translating the formal specification to an implementation,
wherein translating the formal specification to an imple-
mentation includes interpreting the syntax and seman-
tics of the formal specification and matching the syntac-
tically or logically equivalent representations in the
implementation language.

5. The computer-accessible medium of claim 4, wherein
the executable instructions further comprise applying math-
ematical logic to the formal specification in order to identify
a presence or absence of mathematical properties of the at
least one policy.

6. The computer-accessible medium of claim 4, the
medium further comprising:

executable instructions capable of directing the processor
to perform translating the formal specification to at least
one policy, wherein translating the formal specification
to at least one policy includes interpreting syntax and
semantics of the formal specification and matching the
syntactically or logically equivalent representation in
the at least one policy.

7. The computer-accessible medium of claim 5, the
medium further comprising:

executable instructions capable of directing the processor
to perform correcting the absence of the mathematical
properties in the policy, if the mathematical properties
are identified as absent in the policy, wherein correcting
includes detecting inconsistencies or other errors in the
formal specification and, if possible, identifying a por-
tion of the at least one policy lacking in the detected
inconsistencies or other errors and designating the por-
tion as a corrected policy.

8. The computer-accessible medium of claim 5, wherein
the mathematical properties of the at least one policy further
comprise

whether the formal specification implies a system execu-
tion trace that includes a deadlock condition;

whether the formal specification implies a system execu-
tion trace that includes a livelock condition; and

whether the formal specification implies a system execu-
tion trace that exhibits or does not exhibit a plurality of
other desirable or undesirable behaviors, including
safety properties, security properties, unreachable
states, inconsistencies, naming conflicts, unused vari-
ables, unexecuted code,

wherein a deadlock condition is when at least two execut-
ing processes each wait for the other to finish and may
continue to do so indefinitely, and wherein a livelock
condition is when at least two executing processes each
wait for the other to finish, but their relative internal
states change continually during execution without
progress being made by either process.

9. The computer-accessible medium of claim 1, wherein
the implementation further comprises:

a script encoded in PERL language.
10. The computer-accessible medium of claim 1, wherein

the implementation further comprises:
a script encoded in BIOPERL language.
11. The computer-accessible medium of claim 1, wherein

the implementation further comprises:
a script encoded in PYTHON language.

36
12. The computer-accessible medium of claim 1, wherein

the implementation further comprises:
a script encoded in AWK language.
13. A computer-accessible medium having executable

5 instructions to generate a system from at least one policy, the
executable instructions capable of directing a processor to
perform:

translating the at least one policy to a formal specification;
translating the formal specification to one or more scripts

10	 implementing the system, and
analyzing the formal specification,
wherein a policy includes a set of rules or principles that

describes constraints on system functionality and pre-
scribes how the system must behave;

15 wherein translating the at least one policy to a formal
specification includes interpreting syntax and semantics
in the policy and matching the syntactically or logically
equivalent representations in the formal specification
language;

20 wherein translating the formal specification to one or more
scripts implementing the system includes interpreting
the expressions composing the formal specification and
matching syntactically or logically equivalent represen-
tations in the implementation scripting language; and

25 wherein analyzing the formal specification includes inter-
preting and applying mathematical logic to a formal
specification to identify inconsistencies, omissions,
redundancies, and errors, including system deadlock,
system livelock, and unreachable states, wherein apply-

30 ing mathematical logic includes applying axioms and
theorems of mathematics and logic, wherein system
deadlock is when at least two executing processes each
wait for the other to finish and may continue to do so
indefinitely, and wherein system livelock is when at least

35 two executing processes each wait for the other to finish,
but their relative internal states change continually dur-
ing execution without progress being made by either
process.

14. The computer-accessible medium of claim 13, wherein
4o

the executable instructions further comprise:
verifying the syntax of the at least one policy; and
mapping the at least one policy to a plurality of formal

specification segments,
45 wherein verifying the syntax includes interpreting and

logically analyzing syntax and semantics in the policy to
detect and identify violation of predetermined syntax
rules and conventions; and wherein mapping includes
assigning to the policy a plurality of formal specification

50	 segments by using a set of predetermined correspon-
dences.

15. The computer-accessible medium of claim 13, wherein
the executable instructions further comprise verifying consis-
tency of the formal specification, wherein verifying consis-

55 tency includes applying logic, mathematical laws, and
domain knowledge encoded in the system to detect and iden-
tify logical and mathematical inconsistencies in the formal
specification.

16. The computer-accessible medium of claim 13, the
60 medium further comprising executable instructions capable

of directing the processor to perform:
determining mathematical and logical properties of the

formal specification by an automated inference engine,
wherein an inference engine iteratively applies a set of

65 rules to a set of data representing a problem to determine
a solution to the problem by logical manipulation and
logical analysis of the data.

US 7,886,273 B2
37

17. The computer-accessible medium of claim 13, wherein
the executable instructions further comprise:

translating the at least one policy to a separate formal
specification without using an automated inference
engine, wherein translating the at least one policy of the 5

system to a formal specification includes interpreting the
syntax and semantics of the policy and matching the
syntactically or logically equivalent representation in
the formal specification language, and wherein an infer-
ence engine iteratively applies a set of rules to a set of io
data representing a problem to determine a solution to
theproblemby logical manipulation and logical analysis
of the data.

18. The computer-accessible medium of claim 13, wherein
the script further comprises:	 15

a script encoded in PERL language.
19. The computer-accessible medium of claim 13, wherein

the script further comprises:
a script encoded in AWK language.
20. The computer-accessible medium of claim 13, wherein 20

the script further comprises:
a script encoded in PYTHON language.
21. A system to validate a software system, the system

comprising:
an inference engine, wherein an inference engine itera- 25

tively applies a set of rules to a set of data representing a
problem to determine a solution to the problem by logi-
cal manipulation and logical analysis of the data;

a translator, operable to receive at least one policy of the
software system and to generate inreference to the infer- 30

ence engine a specification encoded in a formal specifi-
cation language, wherein a policy includes a set of rules
or principles that describes constraints on system func-
tionality and prescribes how the system must behave;
and	 35

an analyzer operable to perform model verification/check-
ing and determine existence of omissions, deadlock,
livelock, and race conditions or other problems and
inconsistencies in the formal specification, wherein a
deadlock condition is when at least two executing pro- 40

cesses each wait for the other to finish and may continue
to do so indefinitely, wherein a livelock condition is
when at least two executing processes each wait for the
other to finish, but their relative internal states change
continually during execution without progress being 45

made by either process, and wherein race condition is
when progress of at least two separate processes is each
dependent upon the state of another part of the system in
such way that a first process can alter that state before the
second process alters the state.	 50

22. The system of claim 21, wherein the translation of the
at least one policy into a specification is carried out without
human intervention.

23. A computer-accessible medium having executable
instructions to validate a system, the executable instructions 55

capable of directing a processor to perform:
receiving at least one policy of the system, wherein a policy

includes a set of rules or principles that describes con-
straints on system functionality and prescribes how the
system must behave;	 60

translating the at least one policy of the system to a formal
specification, wherein translating the at least one policy
of the system to a formal specification includes inter-
preting the syntax and semantics of the policy and
matching the syntactically or logically equivalent repre- 65

sentation in the formal specification language, and
wherein an inference engine iteratively applies a set of

38
rules to a set of data representing a problem to determine
a solution to the problem by logical manipulation and
logical analysis of the data;

translating the formal specification to an implementation,
wherein translating the formal specification to an imple-
mentation includes interpreting the sequence of the syn-
tax and semantics of a formal specification language and
matching the syntactically or logically equivalent repre-
sentations in the implementation language and wherein
an implementation is a set of artifacts that provides a
functional instance of the system; and

analyzing the formal specification, wherein analyzing the
formal specification includes interpreting and applying
mathematical logic to a formal specification to identify
inconsistencies, omissions, redundancies, and errors,
including system deadlock, system livelock, and
unreachable states, wherein applying mathematical
logic includes applying axioms and theorems of math-
ematics and logic, wherein system deadlock is when at
least two executing processes each wait for the other to
finish and may continue to do so indefinitely, and
wherein system livelock is when at least two executing
processes each wait for the other to finish, but their
relative internal states change continually during execu-
tion without progress being made by either process.

24. The computer-accessible medium of claim 23, wherein
the executable instructions further comprise:

translating the at least one policy of the system to the
formal specification, without the use of an automated
inference engine, wherein an inference engine itera-
tively applies a set of rules to a set of data representing a
problem to determine a solution to the problem by logi-
cal manipulation and logical analysis of the data.

25. The computer-accessible medium of claim 23, wherein
the executable instructions further comprise:

translating the at least one policy of the system to the
formal specification, in reference to an inference engine,
wherein an inference engine iteratively applies a set of
rules to a set of data representing a problem to determine
a solution to the problem by logical manipulation and
logical analysis of the data.

26. The computer-accessible medium of claim 23, wherein
the executable instructions further comprise

applying mathematical logic to the formal specification in
order to identify a presence or absence of mathematical
properties of the at least one policy.

27. The computer-accessible medium of claim 26, wherein
the mathematical properties of the formal specification fur-
ther comprise:

whether the formal specification implies a system execu-
tion trace that includes a deadlock condition;

whether the formal specification implies a system execu-
tion trace that includes a livelock condition; and

whether the formal specification implies a system execu-
tion trace that exhibits or does not exhibit a plurality of
other desirable or undesirable behaviors, including
safety properties, security properties, unreachable
states, inconsistencies, naming conflicts, unused vari-
ables, and unexecuted code,

wherein a deadlock condition is when at least two execut-
ing processes each wait for the other to finish and may
continue to do so indefinitely, and wherein a livelock
condition is when at least two executing processes each
wait for the other to finish, but their relative internal
states change continually during execution without
progress being made by either process.

US 7,886,273 B2
39

28. The computer-accessible medium of claim 23, wherein
the implementation further comprises:

a script encoded in PERL language.
29. The computer-accessible medium of claim 23, wherein

the implementation further comprises:
a script encoded in BIOPERL language.
30. The computer-accessible medium of claim 23, wherein

the implementation further comprises:
a script encoded in PYTHON language.
31. The computer-accessible medium of claim 23, wherein

the implementation further comprises:
a script encoded in AWK language.
32. The computer-accessible medium of claim 23, the

medium further comprising:
executable instructions capable of directing the processor

to perform translating the implementation to a formal
specification, wherein translating the implementation to
a formal specification includes interpreting an imple-
mentation language and matching the syntactically or
logically equivalent representations of the formal speci-
fication; and

translating the formal specification to at least one policy,
wherein translating the formal specification to at least
one policy includes interpreting syntax and semantics of
the formal specification and matching the syntactically
or logically equivalent representations in the at least one
policy.

33. A computer-accessible medium having executable
instructions to validate a system, the executable instructions
capable of directing a processor to perform:

receiving a formal specification of the system;
translating the formal specification to an implementation,

wherein translating the formal specification to an imple-
mentation includes interpreting the syntax and seman-
tics of a formal specification language and matching the
syntactically or logically equivalent representations in
the implementation language and wherein an implemen-
tation is a set of software that provides a functional
instance of the system; and

analyzing the formal specification, wherein analyzing the
formal specification includes interpreting and applying
mathematical logic to a formal specification to identify
inconsistencies, omissions, redundancies, and errors,
including system deadlock, system livelock, and
unreachable states, wherein applying mathematical
logic includes applying axioms and theorems of math-
ematics and logic, wherein system deadlock is when at
least two executing processes each wait for the other to
finish and may continue to do so indefinitely, and
wherein system livelock is when at least two executing
processes each wait for the other to finish, but their
relative internal states change continually during execu-
tion without progress being made by either process.

34. The computer-accessible medium of claim 33, wherein
the executable instructions further comprise

applying mathematical logic to the formal specification in
order to identify a presence or absence of mathematical
properties of the implementation.

35. The computer-accessible medium of claim 34, wherein
the mathematical properties of the formal specification fur-
ther comprise:

whether the formal specification implies a system execu-
tion trace that includes a deadlock condition;

whether the formal specification implies a system execu-
tion trace that includes a livelock condition; and

whether the formal specification implies a system execu-
tion trace that exhibits or does not exhibit a plurality of

40
other desirable or undesirable behaviors including
safety properties, security properties, unreachable
states, inconsistencies, naming conflicts, unused vari-
ables, unexecuted code,

5 wherein a deadlock condition is when at least two execut-
ing processes each wait for the other to finish and may
continue to do so indefinitely, and wherein a livelock
condition is when at least two executing processes each
wait for the other to finish, but their relative internal

to	 states change continually during execution without
progress being made by either process.

36. The computer-accessible medium of claim 33, the
medium further comprising executable instructions capable
of directing the processor to perform

15 translating the formal specification to at least one policy,
wherein translating the formal specification to at least
one policy includes interpreting syntax and semantics of
the formal specification and matching the syntactically
or logically equivalent representations in the at least one

20	 policy.
37. The computer-accessible medium of claim 33, wherein

the implementation further comprises:
a script encoded in PERL language.
38. The computer-accessible medium of claim 33, wherein

25 the implementation further comprises:
a script encoded in BIOPERL language.
39. The computer-accessible medium of claim 33, wherein

the implementation further comprises:
a script encoded in PYTHON language.

so	 40. The computer-accessible medium of claim 33, wherein
the implementation further comprises:

a script encoded in AWK language.
41. A computer-accessible medium having executable

35 instructions to validate a system, the executable instructions
capable of directing a processor to perform

receiving an implementation of the system, wherein an
implementation is a set of artifacts that provides a func-
tional instance of the system;

40 translating the implementation to a formal specification,
wherein translating the implementation to a formal
specification includes interpreting an implementation
language and matching the syntactically or logically
equivalent representations of the format specification;

45	 and
analyzing the formal specification, wherein analyzing the

formal specification includes interpreting and applying
mathematical logic to a formal specification to identify
inconsistencies, omissions, redundancies, and errors,

50 including system deadlock, system livelock, and
unreachable states, wherein applying mathematical
logic includes applying axioms and theorems of math-
ematics and logic, wherein system deadlock is when at
least two executing processes each wait for the other to

55 finish and may continue to do so indefinitely, and
wherein system livelock is when at least two executing
processes each wait for the other to finish, but their
relative internal states change continually during execu-
tion without progress being made by either process.

60	 42. The computer-accessible medium of claim 41, wherein
the executable instructions further comprise

applying mathematical logic to the formal specification in
order to identify a presence or absence of mathematical
properties of the specification.

65 43. The computer-accessible medium of claim 42, wherein
the mathematical properties of the formal specification fur-
ther comprise:

US 7,886,273 B2
41

whether the formal specification implies a system execu-
tion trace that includes a deadlock condition;

whether the formal specification implies a system execu-
tion trace that includes a livelock condition; and

whether the formal specification implies a system execu-
tion trace that exhibits or does not exhibit a plurality of
other desirable or undesirable behaviors including
safety properties, security properties, unreachable
states, inconsistencies, naming conflicts, unused vari-
ables, unexecuted code,

wherein a deadlock condition is when at least two execut-
ing processes each wait for the other to finish and may
continue to do so indefinitely, and wherein a livelock
condition is when at least two executing processes each
wait for the other to finish, but their relative internal
states change continually during execution without
progress being made by either process.

44. The computer-accessible medium of claim 41, wherein
the implementation further comprises:

a script encoded in PERL language.
45. The computer-accessible medium of claim 41, wherein

the implementation further comprises:
a script encoded in BIOPERL language.
46. The computer-accessible medium of claim 41, wherein

the implementation further comprises:
a script encoded in PYTHON language.
47. The computer-accessible medium of claim 41, wherein

the implementation further comprises:
a script encoded in AWK language.
48. A computer-accessible medium having executable

instructions to validate a system, the executable instructions
capable of directing a processor to perform:

receiving a formal specification of the system;
translating the formal specification to at least one policy,

wherein translating the formal specification to at least
one policy includes interpreting syntax and semantics of
the formal specification and matching the syntactically
or logically equivalent representations in the at least one
policy and wherein a policy includes a set of rules or
principles that describes constraints on system function-
ality and prescribes how the system must behave; and

analyzing the formal specification, wherein analyzing the
formal specification includes interpreting and applying
mathematical logic to a formal specification to identify
inconsistencies, omissions, redundancies, and errors,
including system deadlock, system livelock, and
unreachable states, wherein applying mathematical
logic includes applying axioms and theorems of math-
ematics and logic, wherein system deadlock is when at
least two executing processes each wait for the other to
finish and may continue to do so indefinitely, and
wherein system livelock is when at least two executing
processes each wait for the other to finish, but their
relative internal states change continually during execu-
tion without progress being made by either process.

49. The computer-accessible medium of claim 48, wherein
the executable instructions further comprise

applying mathematical logic to the formal specification in
order to identify a presence or absence of mathematical
properties of the formal specification.

50. The computer-accessible medium of claim 49, wherein
the mathematical properties of the formal specification fur-
ther comprise:

whether the formal specification implies a system execu-
tion trace that includes a deadlock condition;

whether the formal specification implies a system execu-
tion trace that includes a livelock condition; and

42
whether the formal specification implies a system execu-

tion trace that exhibits or does not exhibit a plurality of
other desirable or undesirable behaviors including
safety properties, security properties, unreachable

5	 states, inconsistencies, naming conflicts, unused vari-
ables, unexecuted code,

wherein a deadlock condition is when at least two execut-
ing processes each wait for the other to finish and may
continue to do so indefinitely, and wherein a livelock

to condition is when at least two executing processes each
wait for the other to finish, but their relative internal
states change continually during execution without
progress being made by either process.

51. A computer-accessible medium having executable
15 instructions to validate a system, the executable instructions

capable of directing a processor to perform:
translating a plurality of policies to a plurality of formal

specifications; combining the plurality of formal speci-
fications to a singular formal specification, wherein

20 combining the plurality of formal specifications to a
singular formal specification includes using mathemati-
cal logic to produce a single logical equivalent of the
plurality of formal specifications in a sequence of for-
mal-specification-language expressions from another

25 sequence of formal-specification-language expressions,
and wherein a policy includes a set of rules or principles
that describes constraints on system functionality and
prescribes how the system must behave;

30 analyzing the singular formal specification, wherein ana-
lyzing the formal specification includes interpreting and
applying mathematical logic to a formal specification to
identify inconsistencies, omissions, redundancies, and
errors, including system deadlock, system livelock, and

35 unreachable states, wherein applying mathematical
logic includes applying axioms and theorems of math-
ematics and logic, wherein system deadlock is when at
least two executing processes each wait for the other to
finish and may continue to do so indefinitely, and

40 wherein system livelock is when at least two executing
processes each wait for the other to finish, but their
relative internal states change continually during execu-
tion without progress being made by either process;

correcting absence of the mathematical properties in the
45 singular formal specification, wherein correcting

includes detecting inconsistencies or other errors in the
formal specification and replacing the inconsistencies or
errors with the correct property or properties; and

translating the formal specification to a policy, wherein
50 translating the formal specification to a policy includes

interpreting syntax and semantics of the formal specifi-
cation and matching the syntactically or logically
equivalent representations in the policy.

52. The computer-accessible medium of claim 51, wherein
55 the executable instructions further comprise

applying mathematical logic to the singular formal speci-
fication in order to identify a presence or absence of
mathematical properties of the singular formal specifi-
cation.

60
53. The computer-accessible medium of claim 52, wherein

the mathematical properties of the singular formal specifica-
tion further comprise:

whether the singular formal specification implies a system
65	 execution trace that includes a deadlock condition;

whether the singular formal specification implies a system
execution trace that includes a livelock condition; and

US 7,886,273 B2
43

whether the singular formal specification implies a system
execution trace that exhibits or does not exhibit a plural-
ity of other desirable or undesirable behaviors,

wherein a deadlock condition is when at least two execut-
ing processes each wait for the other to finish and may 5
continue to do so indefinitely, and wherein a livelock
condition is when at least two executing processes each
wait for the other to finish, but their relative internal

44
states change continually during execution without
progress being made by either process.

54. The computer-accessible medium of claim 53, wherein
the desirable or undesirable behaviors is taken from the list
consisting essentially of safety properties, security proper-
ties, unreachable states, inconsistencies, running conflicts,
unused variables, and unexecuted code.

	7886273-p0001
	7886273-p0002
	7886273-p0003
	7886273-p0004
	7886273-p0005
	7886273-p0006
	7886273-p0007
	7886273-p0008
	7886273-p0009
	7886273-p0010
	7886273-p0011
	7886273-p0012
	7886273-p0013
	7886273-p0014
	7886273-p0015
	7886273-p0016
	7886273-p0017
	7886273-p0018
	7886273-p0019
	7886273-p0020
	7886273-p0021
	7886273-p0022
	7886273-p0023
	7886273-p0024
	7886273-p0025
	7886273-p0026
	7886273-p0027
	7886273-p0028
	7886273-p0029
	7886273-p0030
	7886273-p0031
	7886273-p0032
	7886273-p0033
	7886273-p0034
	7886273-p0035
	7886273-p0036
	7886273-p0037
	7886273-p0038
	7886273-p0039
	7886273-p0040
	7886273-p0041
	7886273-p0042
	7886273-p0043
	7886273-p0044
	7886273-p0045
	7886273-p0046
	7886273-p0047
	7886273-p0048

