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ABSTRACT 

A method for predicting human muscle performance was developed. Eight test subjects 

performed a repetitive dynamic exercise to failure using a Lordex spinal machine. 

Electromyography CEMG) data was collected from the erector spinae. Evaluation ofthe EMG 

data using a 5th order Autoregressive CAR) model and statistical regression analysis revealed that 

an AR parameter, the mean average magnitude of AR poles, can predict performance to failure 

as early as the second repetition of the exercise. Potential applications to the space program 

include evaluating on-orbit countermeasure effectiveness, maximizing post-flight recovery, and 

future real-time monitoring capability during Extravehicular Activity. 
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INTRODUCTION 

For the last 30 years, Extravehicular activity (EVA) has been an important aspect of the 

human development and exploration of space. During this time, the frequency and duration of 

EVAs has increased along with the complexity of tasks to be performed. For example, during 

the assembly phase of the International Space Station (ISS), an average of 125 hours per year 

will be dedicated to EVA construction with an estimated 138 hours per year projected for on-

orbit maintenance (1) . EVAs are very strenuous due to a number of factors: 1] operational tasks 

performed in micro gravity are exceedingly more complex compared to unit gravity; 2] the EVA 

space suit restricts astronaut mobility; and 3] many tasks involve repetitive movements and/or 

the use of specialized tools. Human performance during EVA is further compounded by the 

effects of micro gravity on the musculoskeletal system. In space, antigravity muscles are 

particularly susceptible to deconditioning and exhibit reduced strength and endurance as well as 

atrophy. For example, a reduction of up to 18% of back muscle and 25% of leg muscle 

extension strength was observed after longer duration flights on MIR and Skylab (2). As muscle 

atrophy progresses with mission duration, operational tasks become more difficult due to 

decreased muscle strength and associated fatigue. Long-duration missions are associated with 

extended post-flight recovery times and increased risk of injury; i.e. , a 65% higher risk of back 

injury (2). Shuttle postflight data shows that approximately 65% of all crew members 

experience Space-Induced Back pain while on-orbit (7). Exercise countermeasures are currently 

being implemented in an attempt to minimize these adverse effects. However, there is a critical 

need for the capability to maximize muscle performance and minimize risk to crew members 

during EVA and intravehicular activities particularly on long-duration missions. Crew 

performance and safety would be enhanced if it were possible to accurately monitor and predict 
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muscle performance in real-time. The effectiveness of countermeasures could also be assessed 

and enhanced on an individual basis both on-orbit and postflight. 

This study evaluated the feasibility of developing a reliable, empirical model capable of 

predicting human performance early during dynamic repetitive exercise by applying 

autoregressive and linear regression analyses to EMG data. Although this analysis emphasizes 

the Erector spinae back muscle, it has the potential to be applied to other muscle groups. 

METHODS 

Subjects 

Test subjects (3 males, S females) were healthy and physically active with no prior 

history of chronic lower back pain. Their mean age was 28.4 years (range 20-39), mean height 

was 172.6 centimeters (range 144.8 to 188.0), mean weight was 71.6 kilograms (range 49.1 to 

117.7) and mean percentage of body fat was 14.3% (range 6.6 to 19.1 %). Informed consent was 

obtained from all subjects prior to testing. All test protocols were approved by the local IRB. 

SEMG Measurements 

Two pairs of silver-silver chloride surface electrodes (Sentry Medical Products) were 

placed bilaterally on the ES by measuring in line from the iliac crest to the center of the spinal 

colunm and then 2 cm lateral to the L3 vertebrae. The paired electrodes were placed 2 cm apart 

from each other with a reference or ground electrode over the upper thoracic spinous processes. 

SEMG data was collected using the Muscle Tester ME 3000 (Mega Electronics LTD, 

Kuopio, Finland). EMG signals were recorded with a continuous sampling mode at a frequency 

band of 500 kHz, sampling frequency of 1 kHz, and signal acquisition between DC and 1 kHz. 

The metered values recorded in memory were transferred, via an optical interface, to a PC for 

processing. 
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Dynamic test 

Test subjects were seated in a fully upright position in a Lordex Spinal Machine (Lordex 

Inc., Houston, Texas) and restrained across the upper thighs and at the knees and ankles. After 

65% percent of the subject's upper torso weight was quantified by the Lordex, the full range of 

motion was then performed by each subject; i.e., moving from the upright sitting position 

through to a maximum forward flexion position and then extending back to the initial upright 

position by the count of six (6 seconds) until unable to perform the full range of motion. 

Autoregressive Modeling 

A versatile model widely used to represent the SEMG signal at discrete time points [til] is 

the autoregressive (AR) model, also called a linear prediction model. The Power Spectral 

Density (PSD) or power distribution describes the power density along the frequency axis . The 

PSD associated with the AR model can be monitored while a test subject performs repetitive 

dynamic exercise. In the AR model, each sample say x(tn) , of the SEMG at time tn is described 

as a linear combination of p previous samples plus a random error term, en, which is independent 

of past samples (3 ,4) . 

p 

Xn = - L OkXII-k + ell 
h i 

(1) 

where Xn is the nth sample of the modeled signal at time tn , (a b .. . , ap) are the AR coefficients, en 

is the random error term at time tn , and p is the model order. 

The corresponding generating polynomial in the complex plane: 

p 

P(z) = 1 + L OkZk 
k=1 

(2) 



1- --~-~-----

6 

plays an important role in characterizing the behavior of Xn. In particular, H(z), the transfer 

function can be explicitly expressed as (3): 

I 
H(z)=-. 

P(z) 
(3) 

In the complex plane, H(z) has poles (z" ... , zp); i.e., the zeros of P(z) but no zeros. The 

transfer function H(z), and hence the whole process, is stable over time if and only if all poles lie 

strictly inside the unit circle; i.e. , IZ;I < I (6). 

For a given sequence of data {xn}, the coefficients {ad can be estimated by solving the 

Yule-Walker equations (8) if the model orderp is known. From the ak, the poles {Zk} ofH(z) 

can then be calculated as the solutions to P(z) = O. In general, the poles occur in pairs of 

complex conjugates. If p is odd, then there is at least one real pole. Comparisons between 

SEMG signals obtained under different physiological states can be summarized in terms of the 

behavior of the AR poles or AR coefficients as the EMG signal progressively changes during 

repetitive dynamic exercise. Some evidence suggests (5) that the power distribution ofthe 

SEMG changes according to a person's physiological and psychological state during repetitive 

dynamic exercise. 

The AR model order was determined by comparing the PSD for a candidate p-th order 

with an empirical PSD obtained directly from the data. In obtaining the empirical PSD, no 

assun1ption for any particular model was made for {xn}. The empirical PSD was calculated 

using the Fast Fourier Transform. When the AR model holds, the PSD has the form (3): 

S(w) = ------=-2 where j=../-1. (4) 
P 'ru/< 

1+ Iake~J 
k=1 

j 
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The AR PSD for various model orders was compared with the empirical PSD. This comparison 

was performed separately for each repetition of the dynamic exercise over its corresponding 

block of samples. A 5th order AR model, p = 5, was selected since it was the closest fit between 

the two PSDs. AR models withp < 5 did not adequately match the empirical PSD for this EMG 

data. Those with p > 5 were umeliable, modeling random noise fluctuations. Five distinct poles 

were calculated for separate AR models and fit to the SEMG signal over 1024 samples for each 

repetition. The five poles are representative of the dynamic muscle performance process and are 

utilized to calculate derived AR parameters to predict a subject's ability to exercise to failure. 

Statistical Regression Analysis 

For linear regression analysis, STATA statistical software was used (Stata Corporation, 

1999). Inputs to STAT A were the derived AR parameters described below. 

RESULTS 

Statistical data analysis of derived AR parameters for prediction of Rmax 

After EMG data processing and evaluation using a 5th order AR model, analysis was 

performed to identify simple functions of the AR poles as potential predictors of the maximum 

number of repetitions (Rmax) that a test subject could perform prior to failure. With a 5th order 

AR model, there are five poles, one of which is real, the others appearing as two conjugate pairs 

of complex numbers. Let Zikn = X;kn + jYikn be the nth pole at the kth repetition for the ith test 

subject, where j == r-J. The poles are numbered as follows: n = 1: complex pole with smaller 

real part, positive imaginary part; n = 2: complex pole with smaller real part, negative imaginary 

part; n = 3: complex pole with larger real part, positive imaginary part; n = 4: complex pole 

with larger real part, negative imaginary part; and n = 5: real pole. It was hypothesized that 

either the rate of change or the average position of the poles could reflect fatigue across subjects. 
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For each repetition throughout the exercise, poles with the largest real parts (n = 3 and n = 4) 

remained largely stationary, whereas the real pole (n = 5) and the poles with smaller real parts (n 

= 1 and n = 2) moved within the complex plane. 

Six candidate predictors of performance were chosen consisting of the average value and 

average rate of change over repetitions 2-8 for: 1] real pole, 2] average real part of AR poles, and 

3) average magnitude of AR poles. Average rates of change were estimated by least squares 

regression. To predict the maximum number of repetitions (Rmax) before failure, the calculation 

of the predictors was limited to repetitions 2-8 since the 9th repetition was the earliest any test 

subject reached failure. Based on simple correlations with Rmax, the mean average magnitude of 

AR poles across repetitions was the best single predictor (r = 0.75). 

The mean average magnitude of AR poles over all repetitions is given by 

(7) 

where 

(8) 

d . 1 th I h kth .. £ h .th b ' an Z ikll = X ila, + j Yila , IS t le n po e at t e repetI t10n or tel test su ~ ect. 

There were several reasons for selecting repetitions 2-6 for the prediction of Rmax. The range of 

Rmax for all eight test subjects was 8 to 27. Thus, for this data set, the intent was to calculate ~ 

over fewer than 8 repetitions and to predict Rmax as early as possible. 

The best predictor of Rmax was the mean average magnitude of AR poles calculated by 

summing all the average magnitudes of AR poles across repetitions and then dividing the total 

average magnitude of AR poles by the number of repetitions performed. To construct a predictor 

for the maximum number of repetitions, a linear regression was fit to the data 
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(9) 

where Rrnax is the response variable for the ith subject (for repetitions 2 through 6) . The model 

parameters fJo and fJl are fixed constants and Ci is the error amount equal to the increment by 

which the ith individual Rrnax value fails to lie on the regression line. Estimates bo and b l of ~o 

and ~ I were calculated by least-squares leading to the prediction function R max for a new test 

subject, given by 

(10) 

where M is the mean average magnitude over early repetitions 2-6 for the new test subject The 

coefficient b l was significantly different from zero at a level of P = 0.05. The predicted versus 

actual number of repetitions, Rrnax, based on the calculated mean average magnitude of AR poles, 

Ai, over repetitions 2 through 6 showed values of r = 0.75 and P = 0.03 (see Figure 1). Results 

revealed that the values of Mi were smaller in male test subjects compared to female, with males 

performing fewer repetitions than females (see Figure 2). 

DISCUSSION 

A 5th order AR-based statistical model was developed to predict ES muscle performance 

to failure based on early performance during repetitive dynamic exercise; i.e. , as early as the 

second repetition. This model utilizes a linear function of the average magnitude of AR poles, 

obtained from AR models fit separately to the SEMG signal for each repetition in order to 

predict performance. The best predictor of Rrnax for repetitive dynamic exercise to failure was 

the mean average magnitude of AR poles with r = 0.75 and P = 0.03. Although the P value is 

statistically significant, a slightly higher r value of 0.85 would be indicative of a more powerful 

l 
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predictor. It is anticipated that the inclusion of a larger number of test subjects in future studies 

would result in an increased r value. 

An advantage of this model compared to previous approaches is that five parameters (AR 

poles) per repetition are quantified and available for analysis as potential predictors of muscle 

performance. In this preliminary study, the mean average magnitude of AR poles was used to 

predict muscle performance. However, in future studies, combining the mean average 

magnitude of AR poles with one or more of the other AR parameters may further enhance 

predictability of muscle performance. In contrast, the mean, median, and mean power frequency 

EMG-derived parameters consist of single values per repetition and have thus far been used 

exclusively to document not predict, performance to failure for repetitive dynamic exercise. 

Overall, a trend toward smaller mean average magnitude values was observed in male 

test subjects compared to female. In addition, males tended to perform fewer repetitions for this 

particular dynamic repetitive back exercise. This observation may reflect inherent differences in 

back muscle physiology between the sexes, since differences in distribution of fiber types and 

sizes have been established. Tllis possible interrelationship will receive further investigation. 

Previous investigations applying AR modeling to EMG have largely focused on the use 

of the AR coefficients to detect changes indicative of muscle fatigue. This is in contrast to the 

study reported herein which applies AR modeling to EMG: 1] to analyze parameters calculated 

from the AR poles (i.e. , average magnitude) to identify a reliable predictor of muscle 

performance to failure; and 2] to develop a model capable of predicting the maximum number of 

repetitions, Rmax, a test subject can perform early on during repetitive dynamic exercise-- not 

simply to monitor AR coefficient variations as the muscle fatigues. 

\ 
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This new model has the potential to meet several immediate needs for the space program. 

These include: 1] development of on-orbit capability to monitor reduced muscle performance 

associated with the progression of atrophy; 2] the monitoring and evaluation of in-flight 

countermeasure effectiveness; and 3] enhanced postflight astronaut recovery by enabling the 

development and implementation of individualized rehabilitation programs to reduce injury. 

With further development, this approach may provide the capability for achieving real-time 

monitoring of muscle performance for repetitive movement during EVA operations. This real-

time monitoring capability may be used to enhance astronaut performance, maximize safety 

during operational tasks, and optimize work-task sequencing and rest periods, since it is only 

during the actual execution of EV A tasks that an accurate assessment can be obtained. This is 

particularly relevant due to the greater utilization of senior astronauts. 

In summary, a method for predicting muscle performance was developed for dynamic 

repetitive exercise to failure for the ES muscle. Future research directions would include the 

application of this model to: 1] other muscle groups; 2] different types of repetitive exercise in 

different environments; and 3] the development of a capability for real-time assessment of 

muscle performance. 

\ 
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FiGURE LEGENDS 

Figure 1- Predicted versus actual maximum number of repetitions (Rmax) based on calculated 

mean average magnitude of AR poles (~) over repetitions (2-6) for test subjects (TS 1-4, 

TS7-10) during repetitive dynamic exercise to failure. Prefix "M" designates male test 

subjects and "F" indicates female. P = 0.037, r = 0.73 for the regression line in this Figure. 

Figure 2- Mean average magnitude (~) of AR poles versus number of repetitions (k) for the 

dynamic repetition exercise to failure for all test subjects. Male test subjects are numbers 3, 

8, and 9 are designated by the prefix "M"; e.g., M-TS3. Female test subjects are 1, 2, 4, 7, 

and 10 and are designated by the prefix "F"; e.g. , F-TS4. 


