The Study of the Optical Properties of Low Reflectance Surfaces in Spaceflight Instrumentation has a Long History

- Low reflectance surfaces have included the following:
 - Paints: Aeroglaze/Chemglaze Z30x products; Akzo “Cat-a-lac” products, et al.
 - Surface treatments: Various black anodizations (e.g. Martin Black, Infra-black et al.), depositions (e.g. Ball Black/NBS Black or NiP Black, Electro-less Ni, et al.)
- Fortunately, there are many good reviews and databases available on the reflectance of these surfaces
 - Stellar Optics Research International Corporation (SORIC) data base of optical scatter data; S.H.C.P. McCall, et al.

The Application of Low Reflectance Surfaces in Optical Instruments

- Low reflectance surfaces have wide application in optical instrument design
 - Detectors
 - Beam dumps
 - Solar collection applications
 - Beam dumps
 - Baffles, vanes, and stops
 - housings
- The choice of low reflectance surface is strongly application driven
 - Operating wavelength range of instrument
 - Angles of incidence and reflectance as defined by instrument’s optical configuration
 - Specular surface
 - Diffuse surface
 - Substrate material
 - Environment in which the surface is to be deployed
- This talk will focus on the application of low reflectance surfaces for stray/scattered light control in spaceflight instrumentation
Research Objectives

- Develop and apply MWCNTs to spacecraft instrument components and realize an improvement of a factor of 10 in reflectance over current surface treatments
 - Stage 1: tuning nanotube geometry on Si substrate to produce a 10x decrease in total and bidirectional reflectance
 - Stage 2: improve adherence onto Si
 - Stage 3: demonstrate adherence and optical performance on nanotubes on spacecraft instrument materials (e.g., Ti)

- This is not the first study of the optical properties of MWCNTs:

- We hope to perform the necessary engineering to make MWCNTs sufficiently robust to be used in spacecraft instrument stray scattered light control applications while maintaining optical performance over the UV to shortwave IR wavelength region.
 - Optical performance is monitored using 8° hemispherical reflectance and bidirectional reflectance distribution function (BRDF) measurements.

MWCNT Samples (2 of 3)

- Since the adhesion point of failure is at the catalyst/substrate level, we explored alternate substrate prep techniques
 - Explored Cr, Ti, and alumina thin film sticking layers under the Fe catalyst layer
 - Best results were achieved using the alumina thin film sticking layer
 - Sample: Enhanced adhesion MWCNTs on Silicon substrate

MWCNT Samples (1 of 3)

- Fabrication of vertically oriented MWCNT films was accomplished by catalyst-assisted chemical vapor deposition (CVD)
 - Al/Fe thin film thermally deposited on Si followed by exposure to H₂C=CH₂ feedstock gas at 750°C in a reducing environment
 - Varying catalyst thickness modulates MWCNT height
 - Sample: MWCNTs on Silicon substrate treated with oxidizing plasma

MWCNT Samples (3 of 3)

- Because it is brittle, Si is not the material of choice for instrument components which control stray or scattered light, such as baffles or stops
 - Explored nanotube growth on materials capable of supporting higher structural loads, such as titanium, inconel, and alumina
 - Sample: MWCNTs on Ti substrate
Measurement of 8° Directional/Hemispherical Reflectance

- MWCNT samples were measured for directional/hemispherical reflectance using a PE Lambda 950 spectrophotometer from 300 to 2000 nm.

Measurement of Bidirectional Reflectance Distribution Function (BRDF)

- BRDF:
 \[
 \text{BRDF} = \frac{dI(x, y, \phi, \theta)}{dA(x, \phi, \theta)}
 \]
- Initial measurements of BRDF made in-plane
 - 500 nm and 900 nm
 - 0° and 45° incident
 - -80° to -80° scatter

- Enhanced adhesion Si nanotubes exhibited BRDF values comparable to Ultrapol at 500 nm and 3 to 4x darker than Z306.

- Ti C nanotubes exhibited higher BRDF values with a pronounced retroreflection.

Si C nanotubes exhibited the lowest BRDF values at normal incidence for 500 and 900 nm illumination.

- 4 to 10x darker than Z306 paint.
- 2 to 4x darker than Ultrapol.
In Conclusion

- Normally illuminated, MWCNTs on Si substrate are 3 to 10x darker at 500nm and 900nm than commonly used spaceflight qualified paint
- At 45° illumination, MWCNTs on Si substrate show a clear specular peak. Interestingly, no retroscatter was detected
- Enhanced adhesion MWCNTs produced a black surface with 1.4x to 1.0x the reflectance of the Si MWCNT surface.
- MWCNTs on Ti substrate produced a black surface with 2x the reflectance of the Si MWCNT surface.
- A significant amount of testing is still required to qualify MWCNTs for space applications
 - Additional optical measurements: more wavelengths, incident angles, and scatter angles over full scattering hemisphere (currently underway)
 - Optical stability, uniformity, reproducibility (currently underway)
 - Mechanical stability: vibrate, shock, aging tests
 - Thermal behavior
 - Chemical & physical stability: hygroscopic, out-gassing properties
 - Radiation stability
 - Electrical stability: on-orbit charging

What is currently the “blackest ever black”?

In BBC News: February 6, 2003

Black is the new black (NIP)
British scientists say they have produced the “blackest ever” surface developed so far. The industrial coating for telescopes is one of the darkest and least reflective surfaces on Earth.
By minimising the scatter of stray light, it could improve the vision of telescopes, from amateur instruments to the mighty Hubble. It reflects 10 to 20 times less light than current coatings and has a number of applications in astronomy, such as on star trackers, which help spacecraft navigate.
"It's a very interesting surface to look at because it’s so black."
Dr Richard Brown, NPL

In Reuters: January 15, 2008

New material pushes the boundary of blackness...

CHICAGO | Tue Jan 15, 2008 6:30pm EST
CHICAGO (Reuters) - U.S. researchers said on Tuesday they have made the darkest material on Earth, a substance so black it absorbs more than 99.9 percent of light. Made from tiny tubes of carbon standing on end, this material is almost 30 times darker than a carbon substance used by the U.S. National Institute of Standards and Technology as the current benchmark of blackness.