THE PHYSICAL CONDITIONS OF A LENSED STAR-FORMING GALAXY AT Z=1.7

J. R. Rigby1,2,3, E. Wuyts4, M. Gladders5, K. Sharon6, and G. D. Becker7

1 Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101
2 Now at NASA Goddard Space Flight Center, Code 665, Greenbelt MD 20771
3 Carnegie Fellow
4 The University of Chicago
5 Cambridge University

ABSTRACT

We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift, extinction, star formation rate, ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios. The limit on [O III] 4363 Å tightly constrains the oxygen abundance via the “direct” or T_e method, for the first time in an average metallicity galaxy at $z \sim 2$. We compare this result to several standard “bright-line” O abundance diagnostics, thereby testing these empirically-calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, and explore the diversity of ionization conditions and mass-metallicity ratios at $z=2$.

Subject headings: galaxies: high-redshift—galaxies: evolution

1. INTRODUCTION

Our knowledge of the Universe’s star formation history has advanced remarkably in the past dozen years. First rest-UV photometry (Madau et al. 1996, 1998), then 24 μm Spitzer photometry for 0 < z < 2 galaxies (Caputi et al. 2007; Le Floc’h et al. 2005) and rest-UV photometry at higher redshift (e.g. Ouchi et al. 2009; Bouwens et al. 2010), has shown us that the SFR rises steeply from z=0 to z=1, has a broad plateau from z=1 to z=4–5, and falls off (with debated slope) out to reionization. Thus, the question, “What is the star formation history of the Universe?” has been answered reasonably, and the focus has shifted toward, “Which galaxies formed their stars when, and why, and how did that star-formation change those galaxies and their environments?”

While we have identified the galaxies that formed most of the Universe’s stars, we have much to learn about how that process occurred. One key question is, what were the physical conditions inside these galaxies—metallicity, abundance, extinction, stellar effective temperature, electron temperature and density—compared to star-forming galaxies today? How did these physical conditions evolve through episodes of star formation and gas accretion?

Until the era of extremely large telescopes arrives, our best chances to address this question are galaxies that are highly magnified by gravitational lensing. In such rare cases, magnification factors of 20–30 make diagnostic spectroscopy possible with current telescopes. Such work was pioneered in the galaxy cB58 by Pettini et al. (2000) and Teplitz et al. (2000), and can now be extended to a larger sample thanks to discoveries of bright lensed galaxies (e.g. Allam et al. 2007; Belokurov et al. 2007; Smail et al. 2007; Rigby et al. 2008; Koester et al. 2010.)

Table 1

<table>
<thead>
<tr>
<th>filter</th>
<th>t(s)</th>
<th>wavelength range(µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIRSPEC-1</td>
<td>1200</td>
<td>0.988–1.16</td>
</tr>
<tr>
<td>NIRSPEC-3</td>
<td>2400</td>
<td>1.14–1.43</td>
</tr>
<tr>
<td>NIRSPEC-6</td>
<td>1200</td>
<td>1.76–2.19</td>
</tr>
</tbody>
</table>

Among these new discoveries is RCSGA 032727-132609, or RCS0327 for short, at $z=1.7$ (Wuyts et al. 2010), discovered from the second Red Sequence Cluster Survey (RCS2; Gilbank et al. in prep.). With an integrated g-band magnitude of 19.15, we believe RCS0327 to be the brightest high-redshift lensed galaxy yet found. Wuyts et al. (2010) presents the discovery, spectroscopic confirmation, deep-follow-up imaging, spectral energy distribution modeling, and preliminary lensing analysis. In this paper, using 1.3 hr of integration with NIRSPEC on Keck, we determine with unprecedented precision the physical conditions of star formation in this hopefully–typical galaxy at the crucial epoch of $z \sim 2$.

2. METHODS

RCS0327 was observed on 04 Feb. 2010 UT with the NIRSPEC spectrograph (McLean et al. 1998) on the Keck II telescope. The weather was clear, and the seeing was measured as 0.85'' and 0.45'' when the telescope was focused during the night. We used the low-resolution mode and the 0.76'' × 42'' longslit. We targeted the brightest ~ 10'' of the arc, at a position angle of 134°, as shown in Figure 1. The target was acquired by offsetting from nearby stars on the near-IR slit-viewing camera, target acquisition was verified by direct imaging on this camera. The target was nodded along the slit in an AB pattern, with exposures of 600 s per nod. Table 1 summarizes the filters and exposure times. The A0V star HD 23683 was observed every hour as a telluric standard.

We reduced the spectra using the nirspec.reduce package written by G. D. Becker, which uses lamp exposures to flatten the data, the sky lines to wavelength calibrate, and optimally fits and subtracts the sky following Kelson (2003). For each frame, we measured the spatial profile of the lensed arc by fitting the brightest emission lines,
then used this spatial profile to optimally extract the spectrum.

The arc is extended over 38", roughly 10" of which was captured by the NIRSPEC slit. In a subsequent paper, we will analyze the spatial variation of physical conditions across the arc. In this letter, we consider the integrated spectrum.

Each extracted spectrum was corrected for telluric absorption and fluxed using the tool `xtellcor_general` (Vacca et al. 2003), using the closest-in-time observation of the AOV standard star. The flux level is thus appropriate for the fraction of the galaxy inside the slit, not for the whole galaxy. In §3.3 we estimate the factor by which our NIRSPEC fluxes should be scaled to represent the whole galaxy.

Using a telluric standard to flux the spectra provides excellent relative fluxing within a given filter, but because observations were taken in three separate filters, there can be offsets between filters due to differential slit losses, due for example to changes in seeing or pointing. In addition, the lines in filter NIRSPEC-6 are observed right at the edge of an atmospheric transmission window, and thus may suffer especially high telluric variability. We address these issues in §3.2.

For each filter, we combined the individual flux-calibrated 1D spectra with a weighted average, producing one fluxed spectrum for each of the three filters.

We fit line fluxes as follows. We fit each isolated line with a Gaussian to measure the line flux, using Levenberg-Marquardt fitting. The continuum used was the mean flux in an adjacent spectral region, chosen by hand for each line. For partially-overlapping lines, we simultaneously fit multiple Gaussians using A. Marble’s implementation of the IDL Levenberg-Marquardt least-squares fitting code `MPFITFUN` (Markwardt 2009). We report line fluxes in Table 3.

We assume a cosmology of $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$, and $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$. Solar abundances are taken from Table 1 of Asplund et al. (2009). The initial mass function (IMF) is Chabrier (2003) unless noted.

3. RESULTS

Figure 2 plots the spectra. The nebular emission lines are detected at very high signal-to-noise ratio (SNR); for example, we detect ~50,000 net counts in the Hβ line. Continuum is detected in filters NIRSPEC-1 and NIRSPEC-3 at SNR \gtrsim 1 per pixel. Continuum is not confidently detected near the lines of interest in NIRSPEC-6, which is unsurprising given the low atmospheric transmission at those wavelengths.

3.1. Extinction

The α, β, γ, and δ transitions of the Balmer series are detected; He is formally undetected. The correction for stellar absorption, $\sim2A$ (McCall et al. 1985), is negligible at these extremely high equivalent widths: $E_r = 430 \pm 70$ Å and 100 ± 20 Å for Hβ and Hγ.

Hα appears in filter NIRSPEC-6; Hγ and Hβ in NIRSPEC-3; and Hδ and Hϵ in NIRSPEC-1. Thus, the Hβ/Hγ and Hδ/He line ratios are free from relative fluxing errors. We measure Hβ/H$\gamma = 2.39 \pm 0.37$, which for Case B recombination at $T = 10^4$ K and $n_e = 100$ cm$^{-3}$ yields $E(B-V) = 0.23 \pm 0.23$.

The Hδ/He ratio of >1.87 does not constrain the extinction given measurement errors. We thus adopt the extinction from Hβ/Hγ. For R=3.1, this is $A_v = 0.7 \pm 0.7$. This uncertainty in the extinction will limit how well we can measure spectral diagnostics that span a large range of wavelength, for example R$_2$. A more precise measurement of the extinction must await simultaneous observations of Hα and Hβ, or a longer integration on Hγ and Hβ.

A line is detected at the position of Hδ, but is too strong to be Hδ alone. We suspect it is a blend of Hδ with two He I lines, as in seen in the Orion Nebula (Osterbrock et al. 1992).

3.2. Tweaking the flux calibration

As discussed in §2, there may be fluxing offsets among the three filters. We address this issue using the Balmer series. Assuming an extinction of $A_v = 0.7$ as measured from the Hβ/Hγ ratio in NIRSPEC-3, we tweak the relative scalings of the NIRSPEC-1 and NIRSPEC-6 spectra to bring Hα/Hβ and Hδ/Hβ to the appropriate ratios for this extinction. This increases the flux in NIRSPEC-1 by a factor of 1.15 relative to NIRSPEC-3, and decreases the flux in NIRSPEC-6 by a factor of 0.61 relative to NIRSPEC-3. These are reasonable corrections given the slitloss variation expected from seeing changes and atmospheric transparency issues in NIRSPEC-6. Fluxes reported in this paper reflect this scaling.

In Table 3 we report the line fluxes in filters NIRSPEC-1, -3, and -6. Linelux ratios within a filter should be highly precise, limited by the uncertainty in linefitting. When calculating a lineflux ratio for lines spanning different filters, one should include a 10% relative fluxing uncertainty.

3.3. Fraction of the galaxy covered

To estimate the fraction of the galaxy covered by the slit, we use the PANIC/Magellan images in J and Ks of Wuyts et al. (2010), which had seeing of FWHM=0.57" and 0.51". We estimate that 37 ± 5% of the total arc light falls into a slit positioned as in Figure 1, neglecting slitlosses. We compute slitlosses for seeing of 0.8-0.9" and pointing errors of 0.25". We conclude that 32% ± 4% (random) ± 1% (systematic) of the continuum light should have been captured by our NIRSPEC slit.

We now estimate this quantity in an alternate way. We measure the continuum adjacent to the 3737 Å and Hβ lines as 6.1×10^{-18} and 6.0×10^{-18} erg s$^{-1}$ cm$^{-2}$ Å$^{-1}$ (using a robust average), with measurement errors of 10–20%. These continua levels are 21% of the continuum intensity in the spectral energy distribution in Figure 7 of Wuyts et al. (2010), which is the best fit to the u, B, g, r, i, z, J, H, Ks photometry of the whole arc.

These two methods disagree by 38%. We suspect that the continuum method is as fault, as the continuum is not well detected, and small DC offsets might plausibly be introduced in sky subtraction. (Indeed, this uncertainty in the continuum level is why we chose to flux using AOV stars rather than multiplying line equivalent widths by f$_3$ from broadband photometry as in Teplitz et al. 2000.) Therefore, we adopt the first method, and will multiply our NIRSPEC fluxes by the reciprocal, 3.12 ± 0.4, to convert to the expected line flux over the whole arc.
3.4. Average Magnification

Wuyts et al. (2010) measure an average magnification of $u = 17.2 \pm 1.4$ for RCS0327. Our current lensing model, based on ground-based photometry (Wuyts et al. 2010), has insufficient spatial resolution to determine the magnification of each small knot. Thus, at present we cannot quote a reliable magnification for the portion of the arc that falls in our NIRSPEC slit. It is possible that some of the bright knots might be much more highly magnified than the arc on average. For the time being we will adopt the average magnification, with these caveats. Fortunately, except for the star formation rate derived from the Balmer lines, none of the results in this paper depend on the magnification within the NIRSPEC slit.

3.5. Redshift

We fit the mean emission line redshift as 1.7037 ± 0.0001 using the NIST line list, excluding [O II] 3727 because it is a partially resolved doublet. This compares perfectly with the redshift of rest-UV emission lines in our (not yet published) MagE/Magellan spectrum: 1.70369 ± 0.00006. The MagE spectrum also yields a redshift for absorption lines in the interstellar medium: from SiII 1260, Si II 1528, and Al II 1670, recommended to us by C. Tremonti as isolated ISM lines, we derive an ISM redshift of 1.702671 ± 0.0003. Thus, the MagE spectra show that the interstellar medium is blueshifted from the nebular lines by 110 ± 30 km s$^{-1}$. Our measured redshifts are 3 and 2σ higher than the 1.7000 ± 0.0008 reported by Wuyts et al. (2010) using a combination of the [O II] 3727 and C III] 1909 emission lines and the and Fe II and Mg II absorption lines. [Mike, can you ask your collaborators about this?]

3.6. Velocity width

We extract arclight spectra using the same apertures as the science frames, and combine in the same way. For each filter, we fit the instrumental linewidth versus wavelength relation with a linear fit, then interpolate the instrumental linewidth at the wavelength of each astronomical line of interest. For example, at the observed wavelength of Hα, the arclines have FWHM = 15.3Å compared to FWHM = 13.6Å observed for Hα; from this we infer $\sigma = 50 \pm 2$ km s$^{-1}$. For Hγ, Hδ, λ4959, and λ5007, we measure $\sigma = 76, 59, 49, 23$ km s$^{-1}$. With Hα, this gives an average nebular line velocity dispersion of $\sigma = 51$ km s$^{-1}$ consistent with the mean in the range of 9 km s$^{-1}$.

We fit the [O II] 3726, 3729 doublet with two Gaussians, fixing the line centers using the NIST vacuum wavelengths and redshift from §3.5, and forcing the two linewidths to be the same, while varying the continuum, line amplitudes, and the linewidth. This fitting finds that $\sigma = 51 \pm 1$ km s$^{-1}$ for [O II].

Because the lensing morphology of RCS0327 is complex, we cannot yet compute a meaningful effective radius, as needed to determine a dynamical mass from the velocity width. Upcoming HST observations should clarify this matter.

3.7. Star formation rate

Wuyts et al. (2010) estimated the SFR by fitting the broadband optical and near-IR photometry, finding a SFR constraint of $< 77 M_\odot$ yr$^{-1}$ for 40% solar metallicity. (For solar metallicity the SFR is lower.)

We also estimate the star formation rate from mid-IR photometry. From the MIPS/Spitzer 24 μm flux density 670 ± 70 μJy we measure for the counter-image, and scaling by the ratio of the magnifications, we find that RCS0327 should have an unlensed 24 μm flux density of 33 ± 4 μJy. This corresponds to a star formation rate of $38 \pm 9 M_\odot$ yr$^{-1}$ using the prescription of Rieke et al. (2009).

Thirdly, we estimate the star formation rate from the NIRSPEC spectra, using the Hβ line flux within the aperture, assuming the extinction from Hβ/Hγ, and the SFR(Hα) conversion of Kennicutt (1998), modified for a Chabrier (2003) IMF following Eqn. 10 of Rieke et al. (2009):

$$L(H\alpha) = f(H\beta)(H\alpha/H\beta)4\pi d_L^2/u$$

$$= (3.2 \pm 0.1) \times 10^{-15} (3.6 \pm 0.8)4\pi d_L^2/u$$

$$= (2.25 \pm 0.5) \times 10^{44}/u$$

$$= (5.9 \pm 1.3) \times 10^{40}/uL_\odot$$

$$SFR(H\alpha) = 0.66 \times 7.9 \times 10^{-42} erg s^{-1}$$

RCS0327 should have an unlensed $210 \pm 60 M_\odot$ yr$^{-1}$, which is extremely high.

The star formation rate derived from the Balmer lines is much higher than inferred from the broadband photometry or the 24 μm flux. The cause is not measurement error nor fluxing error. (We have cross-checked the fluxing in multiple ways.) The Balmer lines are simply incredibly bright in these knots of RCS0327, with Hβ for example eight times brighter than in cB58.

By spectroscopically targeting the brightest knots in RCS0327, we may well be biased toward the regions with highest surface brightness and/or highest magnification. The current lensing map (Wuyts et al. 2010) lacks the high spatial resolution required to determine the magnification of each knot. However, it does suggest that the magnification of this part of the arc is significantly higher than other parts of the arc. Thus, the rough method of computing the total SFR is probably wrong because it uses the average magnification of the whole arc, rather than the magnification of each pixel within the NIRSPEC slit.

A simpler method would be to measure the emission line flux over the entire arc, or at least all of the counterarc, which is more compact and thus easier to map. Pending narrow-band HST imaging of Hβ should provide this coverage for RCS0327. For now, we recommend using the SFRs derived above from 24 μm and optical/IR photometry of the whole arc. While imaging is also biased toward regions of high surface brightness, and over-represents certain portions of the galaxy, it does capture

the entire image plane, and thus should deliver accurate quantities like average magnification, total magnitudes, and colors.

3.8. Ionization parameter

Figure 1 of Kewley & Dopita (2002) illustrates the \(\lambda 5007/\lambda 3727 \) flux ratio as a diagnostic of the ionization parameter. For an O abundance of 20-40% solar (on the Asplund system), eqn. 12 of Kewley & Dopita (2002) yields an ionization parameter of \(\log U = -2.73 \text{ to } -3.07 \) for \(A_v = 0.7 \). For \(A_v = 0 \), \(\log U \) is higher by 0.1 dex. The uncertainty due to extinction dominates over the flux uncertainty.

3.9. Electron Density

The two-component fit to the [O II] doublet in §3.6 found a line flux ratio of \(f(3726/3729) = 0.893 \pm 0.024 \). This ratio is density-dependent (see Figure 5.8 of Osterbrock & Ferland 2006.) Using stsdas.analysis.temden in iraf, our measurement corresponds to a tight measurement of the density: \(n_e = 235 \pm 36 \) at \(T_e = 10^4 \text{ K} \), and \(n_e = 252 \pm 30 \text{ cm}^{-3} \) at \(10^4 \text{ K} \).

The ratio of the C III 1907/1909 doublet also constrains the density (Rubin et al., their Figure 2.). Fitting the doublet in our Mage/Magellan spectra (Rigby et al. in prep.) in the same way as the 3727 doublet, we measure a flux ratio of \(f(1907/1909) = 2.4 \pm 0.4 \), which is unphysical by 2.4σ (the zero density limit is 1.43). This unphysical result is likely due to the skyline contamination; we conclude that the [S II] ratio does not constrain the electron density.

To summarize, the [O II] 3727 doublet ratio provides a tight density constraint, which is consistent with the low density regime indicated by the C III 1909 doublet. The [S II] doublet is contaminated by a skyline and provides no density constraint.

3.10. Electron Temperature

The ratio [O III] \(\lambda 5007+\lambda 4959)/\lambda 4363 \) constrains the electron temperature with almost no \(n_e \) dependence (c.f. Izotov et al. 2006; Figure 5.1 of Osterbrock & Ferland 2006). The ratio in RCS0327 is \(> 139 \) for \(A_v = 0.0 \), and \(> 121 \) for \(A_v = 0.7 \). Following Izotov et al. (2006), this corresponds to \(T_e \leq 1.14 \times 10^4 \text{ K} < 1.20 \times 10^4 \text{ K} \), and \(\leq 1.26 \times 10^4 \text{ K} \) for \(A_v = 0.0, 0.7, \) and 1.4.

3.11. Oxygen abundance

We constrain the oxygen abundance via the “direct” or \(T_e \) method following Izotov et al. (2006), using the non-detection of [O III] 4363 Å to constrain \(T_e \). [O II] 3727 Å and Hβ to constrain \(O^+ / H^+ \) and 4959, 5007, and Hβ to constrain \(O^+/H^+ \). Since He II 4686 is not detected, we can ignore the contribution of \(O^+ \). The result is \(12 + \log(O/H) > 8.15 \text{ for } A_v = 0.0 \) and \(> 8.14 \) for \(A_v = 0.7 \); these are 0.48 and 0.55 dex lower than the solar value of 8.69 ± 0.05 (Asplund et al. 2009).

We compare this “direct” lower limit on the oxygen abundance to results from the bright line diagnostics. We follow the calibrations for each diagnostic, then remove the relative offsets via the conversions of Kewley & Ellison (2008), so that all diagnostics are on the system of the N2 index of Pettini & Pagel (2004). The bright line results are as follows:

- The N2 index, \(\log([N II]/Hα) = -1.19 \pm 0.07 \), yields \(12 + \log(O/H) = 8.20 \pm 0.04 \) by the third-order polynomial calibration of Pettini & Pagel (2004), and \(8.22 \pm 0.04 \) by their linear fit. Both calibrations have a 1σ spread against \(T_e \) of 0.18 dex. Reddening is irrelevant.

- The N2 index of Denicoló et al. (2002) yields \(12 + \log(O/H) = 8.20 \pm 0.05 \).

- The O3N2 index, \(\log([5007/Hβ]/[NII]/Hα]) = 1.88 \pm 0.07 \), yields \(12 + \log(O/H) = 8.16 \pm 0.02 \) by the calibration of Pettini & Pagel (2004), which has a 1σ spread of 0.14 dex. Reddening is irrelevant.

- The index \(\log([NI]6584)/([OII]/Hα)] \) is \(-0.99 \pm 0.07 \) for \(A_v = 0 \) and \(-1.19 \pm 0.07 \) for \(A_v = 0.7 \). The calibration of Kewley & Dopita 2002 as modified by Kewley & Ellison 2008 produces a double-valued abundance: \(12 + \log(O/H) = 8.21, 8.34 \pm 0.06 \text{ for } A_v = 0; \) and \(12 + \log(O/H) = 8.21, 8.22 \pm 0.06 \text{ for } A_v = 0.7 \).

- The Ne302 index, \(\log([NeIII]λ3869)/([OII]/λ3727) = -0.96 \pm 0.07 \), yields \(12 + \log(O/H) = 8.19 \pm 0.08 \) via the calibration of Shi et al. (2007). Reddening is irrelevant. This diagnostic does not appear in Kewley & Ellison (2008), so we cannot remove any calibration offsets.

The R23 index, \(\log(([λ3727+λ4959+λ5007]/Hβ)] \), is unfortunately double-valued as well. We measure \(\log R_{23} = 0.94, 0.96, 0.99 \text{ for } A_v = 0.0, 0.7, 1.4 \), all with errorbars of ±0.02 from the propagated flux uncertainty. (This is similar to the value of 0.92 measured for cB58 by Teplitz et al. 2000.) Such a high \(R_{23} \) requires a high ionization parameter (\(\log U \geq -2.87 \) from Fig. 5. of Kewley & Dopita 2002). The several \(R_{23} \) calibrations methods use various means to separate the “lower branch” and “upper branch”, typically \([N II]/[O II] \) or \([N II]/Hβ \) (Kewley & Ellison 2008). Unfortunately, for RCS0327 these ratios are on the border between upper and lower branch. Thus, we compute the abundance for each branch:

- Zaritsky et al. (1994) published an R23 calibration for the upper branch only. We use it with caution since RCS0327 is not clearly in either the upper or lower branch. For \(A_v = 0 \), this calibration yields \(12 + \log(O/H) = 8.15 \pm 0.02 \). For \(A_v = 0.7 \), it yields 8.14 ± 0.02.
• The Pilyugin & Thuan (2005) method yields 12 + log(O/H) = 8.26 ± 0.05 and 8.07 ± 0.08 for the upper and lower branches for $A_v = 0.7$, and 8.19 and 8.22 (same errorbars) for $A_v = 0.7$.

• The Kobulnicky & Kewley (2004) method yields 12 + log(O/H) = 8.19 and 8.16 ± 0.02 for the upper and lower branches and $A_v = 0$, and 8.17 ± 0.02 for both branches at $A_v = 0.7$.

These inferred abundances are plotted in Figure 6.

3.12. Abundances of other elements

Following Izotov et al. (2006), we constrain the abundance of N$^+$, Ne$^{2+}$, Ar$^{3+}$, and Ar$^{3+}$ relative to H$^+$. Unlike O, the full suite of ionization states is not observed for these elements, so we must apply ionization correction factors to infer abundances.

• N: We derive 12 + log(N/H) > 6.53 (> 6.42) for $A_v = 0.0$ (0.7). Thus, N is depleted relative to the solar value by no more than 1.41 dex. The uncertainty from extinction is larger than from flux uncertainties.

• Ne: We derive 12 + log(Ne/H) > 7.33 ± 0.09, which is 0.60 dex below solar.

• Ar: We derive 12 + log(Ar/H) > 5.54 ± 0.18, which is 0.86 dex below solar.

Though we have measured lower limits on all abundances, we can tightly constrain the key abundance ratios, which depend only weakly on T_e.

• N/O: For the maximum allowed T_e, log(N/O) = –1.70 ± 0.02. If the A4363 flux is one-third the upper limit, then T_e is 70% of the maximum, and log(N/O) = –1.89 ± 0.04. These ratios are 0.84 ± 0.02 to 1.03 ± 0.04 dex below the solar abundance ratio.

• Ne/O: For the maximum allowed T_e, log(Ne/O) = –0.89 ± 0.09 for $A_v = 0$, which is 0.13 dex below the solar ratio. For $A_v = 0.7$ the ratio is log(Ne/O) = –0.72 ± 0.09, which is 0.04 dex above solar. At 70% of the maximum permitted T_e, the constraints are from 0.03 dex below to 0.14 dex above solar. Thus, no matter the actual T_e, the Ne/O ratio must be solar-like.

• Ar/O: For the maximum allowed T_e, log(Ar/O) = –0.89 ± 0.18, which is 0.13 dex below the solar value. For $T_e = 0.7T_{e,\text{max}}$, log(Ar/O) = –0.62 ± 0.18, which is 0.14 dex above solar.

Thus, RCS0327 has an abundance pattern in which the O abundance is at least 29% of solar, the Ne/O and Ar/O ratios are solar-like, and the N/O ratio is less than 15% of the solar ratio.

3.13. Joint constraints on physical conditions from photoionization models

As a cross-check on these diagnostics, we run spectral synthesis and photoionization models. The UV spectra come from Starburst 99 (v5.1, web version; Leitherer et al. 1999 and Vázquez & Leitherer 2005), assuming continuous star formation, an upper mass cutoff of 100 M$_\odot$, the default IMF parameters, the Padova AGB models, and with stellar metallicity set at 40% of solar. We feed these UV spectra to the photoionization code Cloudy version c08.00 (Ferland et al. 1998), running a grid of models of given electron density and starburst age, and in each model optimizing the metallicity and ionization parameter, as constrained by the measured line intensities relative to H$eta$, assuming a foreground screen extinction of $A_v = 0.7$, the measured uncertainties for lines contiguous with H$eta$, and 20% relative fluxing errors for noncontiguous lines. The abundance pattern is “H II” region. Our grid of electron density covers ±1σ of the value measured in §3.9.

Cloudy computes an average electron temperature of $T_e = 1.19$ to 1.24 x 10^4 K, which is consistent with the value inferred in §3.10. Cloudy converges on an oxygen abundance in the range 12+ log(O/H) = 8.07 to 8.13, and an ionization parameter in the range log U = –2.57 to –2.42. Figure 4 illustrates these constraints. Thus, Cloudy converges on an O abundance that is 0.1 dex lower than via the T_e method, and a log U that is higher by 0.4 dex than derived from the Kewley & Dopita (2002) method.

The source of this discrepancy may lie with different assumptions of abundance pattern, filling factor, atomic data, or ionizing stellar spectra compared to Kewley & Dopita (2002). Resolving this moderate discrepancy is outside the scope of this paper at this time, but it provides a caution that one must be careful, when comparing derived physical properties of galaxies, to use the same methodology. In this paper, we will adopt the log U derived via the Kewley & Dopita (2002) method, so that we may compare to other lensed galaxies in the literature.

Dust grains were not included in the Cloudy models. As a test, we added dust grains with the same metallicity and abundance pattern as the gas, which changed the inferred metallicity and ionization parameter by only 2% and 1%.

4. DISCUSSION

Since this is the first investigation of the rest-frame optical lines in RCS0327, only the brightest “knots” were targeted, representing only 32% ± 4% (random) ±1% (systematic) of the total light of the arc (§3.3). As such, we expect that these knots may have unusually high surface brightness and/or lensing magnification. Additionally, the lensing model shows that small portions of the galaxy are over represented in the giant arc, namely the core and one of the two spiral arms. Thus, the giant arc may not even be representative of the galaxy as a whole.

Since superb spectra can be quickly obtained for these bright knots, it is their physical conditions that we probe in this paper, with a caveat that these may not be “ordinary” regions of this galaxy. Once the arc has been fully mapped in these emission lines, and a high-resolution lensing map has been derived from HST imaging, we should understand how much the physical conditions vary across the source plane, and locate the brightest knots in the source plane. It will then be possible to fully contextualize our results in terms of the range of physical conditions across the spatial extent of RCS0327.

For now, we assume that the knots for which we
have spectra are representative. Since these are highest-quality rest-frame optical spectra ever obtained for a $z=2$ galaxy, and yield precise measurements of the physical conditions, we now consider these measurements in the context of the literature, and the conditions under which stars form in the distant universe.

4.1. Extinction

The following E(B-V) extinctions have been measured from Balmer decrements in lensed blue galaxies: 0.27 for cB58 (Teplitz et al. 2000); 0.28 ± 0.04 for the Clone (Hainline et al. 2009); 0.45 ± 0.04 for the Cosmic Horseshoe (Hainline et al. 2009); 0.59 ± 0.08 for J0900 (Bian et al. 2010); 0.67 ± 0.21 for the 8 o'clock arc (Finkelstein et al. 2009). Our measurement of E(B-V) = 0.23 ± 0.23 for RCS0327 is consistent with the lower part of this range, but the errorbar is large, stemming mostly from the flux uncertainty in H$_\gamma$. A spectrograph that obtains H$_\alpha$ and H$_\beta$ simultaneously, for example FIRE on Magellan or LUCIFER on LBT, would provide a very precise measurement of the Balmer decrement in this galaxy, allowing a detailed comparison of the relative extinctions suffered by the gas and the stars.

4.2. The reliability of O abundance diagnostics at $z=2$

For RCS0327, the non-detection of [O III] 4363 Å sets a strict constraint on the oxygen abundance via the “direct” T_e method: it must be no more than 0.55 dex (0.48 dex) below the solar value for $A_V = 0.7$ ($A_V = 0$), or 28% and 33% as percentages of solar. Neon provides a cross-check on this abundance measurement. Since both Ne and O are alpha-group elements, their ratio should be solar-like, and indeed our measured ratio is solar with an uncertainty of ±0.14 dex. We believe this to be the first time the Ne/O ratio has been measured at $z \sim 2$.

We now accept the T_e method’s oxygen abundance measurement, and assess the reliability of the “bright line” diagnostics.

These diagnostics are empirically calibrated at $z=0$ against the T_e method, or calibrated with photionization models. As such, they implicitly assume densities and ionization parameters typical of nearby galaxies, which may not be appropriate for high-redshift galaxies, for reasons of luminosity bias and evolution in the galaxy population. In addition, these diagnostics have significant relative offsets (up to 0.7 dex) at $z=0$ whose origins are not understood and which must be empirically calibrated away using SDSS galaxies (Kewley & Ellison 2008); it is not clear that for rapidly star-forming $z=2$ galaxies these offsets will be the same.

Thus, it is important to test these bright-line diagnostics in situ at $z=2$. Figure 6 compares the O abundances inferred from 3.11 for the bright-line diagnostics in RCS0327. For ease of comparison, we plot $A_{V'} = 0$ and $A_V = 0.7$ separately. We divide the calibrations into five categories: [N II]/[O II], Ne302, N2, O3N2, and R23 methods.

The $[\text{N II}]/[\text{O II}]$ diagnostic (Kewley & Dopita 2002) is consistent with the T_e method, in part because its double-valued results and large errorbars cover 0.3 dex of parameter space. Because this index has a large extinction correction, we cannot adequately test it until the extinction of RCS0327 is more precisely measured.

The Ne302 diagnostic is consistent with the T_e method, especially for $A_V > 0$.

The N2 calibrations of Pettini & Pagel (2004) and Denicolò et al. (2002) are consistent with the lower limit from the T_e method, especially for $A_V > 0$. This test is especially important, since this diagnostic is the one used to measure the evolution in the mass-metallicity relation from $z=0$ to $z=2$ (Erb et al. 2006) and $z=3$ (Manucci et al. 2009; Maiolino et al. 2008).

The O3N2 diagnostic (Pettini & Pagel 2004) yields an abundance that is 2.5σ below the T_e lower limit for $A_V = 0$, and is thus inconsistent with the T_e limit. However, moderate extinction ($A_V = 0.7$) makes the results consistent. The O3N2 result is lower than the abundances from the N2 and [N II]//[O II] indices.

The R23 index has a large extinction correction. As such, it is difficult to assess the performance of this diagnostic given the current uncertainty in the extinction of RCS0327. For $A_V = 0$, only the upper branch of Pilyugin & Thuan (2005) is consistent with the T_e result; for $A_V = 0.7$ the Pilyugin & Thuan (2005) method is also consistent. The Zaritsky et al. (1994) method produces an inconsistent result, but this is unsurprising since it is only valid for high metallicity.

This is the first test in situ at $z=2$ of the bright line abundance diagnostics for a star-forming galaxy of typical metallicity. To summarize, the R23 and [N II]//[O II] methods are not inconsistent with the T_e method so long as the extinction exceeds zero; the definitive test must await a more precise extinction measurement, since both diagnostics have large reddening corrections. The Ne302 diagnostic is consistent with the T_e method, though the errorbars are larger than for N2 and O3N2, since [Ne III] is not a terribly bright line. The N2 and O3N2 methods are most constraining given the current extinction measurement; of these, the N2 results are entirely consistent with the T_e method, and the O3N2 diagnostic is consistent only given significant but plausible extinction.

The only published T_e detection at $z=2$ of which we are aware is in Lens22.3, a low mass, low-metallicity galaxy behind Abell 1689 (Yuan & Kewley 2009). The T_e method yields $12 + \log(O/H) = 7.5 \pm 0.1$ for zero extinction and 7.3 ± 0.1 for high extinction. We apply the Pettini & Pagel (2004) N2 and O3N2 calibrations to the published line fluxes of Yuan & Kewley (2009) (N II is not detected). From N2 < 2.30 comes an abundance of $12 + \log(O/H) < 7.47$ (7.59) using the third-order (linear) N2 calibration. The O3N2 index, log(O3N2) > 3.11, yields $12 + \log(O/H) < 7.73$ on the original Pettini & Pagel (2004) scale, which is outside the range that can be converted to the N2 frame (Kewley & Ellison 2008). These N2 and O3N2 measurements are consistent with the T_e result. However, all these diagnostics are highly inconsistent with the R23 result of $12 + \log(O/H) = 8.0 - 8.3$ (Yuan & Kewley 2009).

Yuan & Kewley (2009) noted the discrepancy between the R23 and T_e results, and attributed the fault to the T_e method. Given the consistency between the N2, O3N2, and T_e methods, we suggest that it may instead be R23 that is failing in Lens22.3.
4.3. The reliability of O abundance diagnostics in other $z=2$ lensed galaxies

Only in RCS0327 and Lens22.3 are the spectra sufficient to measure abundances via the T_e method. However, the bright line diagnostics have been used for a number of galaxies. A re-analysis of the mass-metallicity relation at $z \geq 2$ is outside the scope of this paper. However, it is appropriate at this juncture to re-examine the N2 and O3N2 diagnostics in light of the results above. In Figure 7 we plot the mass-metallicity relation at $z=2$, using literature results for lensed and unlensed galaxies, and our results for RCS0327. For fair comparison, we convert stellar masses to the Chabrier (2003) IMF, take line fluxes from the literature and apply the N2 and O3N2 calibrations of Pettini & Pagel (2004), brought to the N2 system via the conversion7 of Kewley & Ellison (2008).

We plot four lensed galaxies in Figure 7: cB55 (Teplitz et al. 2000), J0900+2234 (Bian et al. 2010), the 8 o’clock arc (Finkelstein et al. 2009), and RCS0327 (this work). These four galaxies span a range of 400 in stellar mass, extending below the mass range probed by stacked samples (Erb et al. 2006). In all four cases, the O3N2-derived abundances are systematically lower than those derived from N2, strikingly so in the case of the 8 o’clock arc. (Recall that the relative offset between these indices, as measured in SDSS at $z=0$, has already been removed.) These offsets were noted for each galaxy in their respective papers, but were dismissed as less than the calibration dispersion of the diagnostics. The Clone and Horseshoe lack stellar mass measurements to plot them on Figure 7, but comparison of their N2 and O3N2-derived abundances shows the same trend: the O3N2 index is low by 0.16 and 0.07 dex.

It is clear from a consideration of all six lensed galaxies that the O3N2 and N2 indices are systematically offset at $z=2$. While this offset is small for the galaxies of intermediate metallicity, it is large for the 8 o’clock arc at the high metallicity end. This behavior is not surprising when we consider that O3N2 has $5007/H_\alpha$ in the numerator, and that what makes $z=2$ galaxies stand out in the BPT diagram is their high $5007/H_\beta$ compared to SDSS galaxies. Thus, we suggest that high ionization conditions in $z=2$ galaxies cause the O3N2 diagnostic to function poorly at these redshifts.

4.4. Lensed galaxies and the $z=2$ mass-metallicity relation

RCS0327 has a stellar mass of $\log(M_*) = 10.0 \pm 0.1 M_\odot$ (Wuyts et al. 2010), which is 0.94 ± 0.14 dex lower than the Schechter function parameter $M_{\star,0}$ at $z=2.0$ (Marchesini et al. 2009), and lower than most of the Lyman break galaxies in Erb et al. (2006). The low measured velocity dispersion qualitatively supports a low mass. In the mass-metallicity plane, RCS0327 lies significantly, 0.17 ± 0.04 dex, below the $z=2$ relation of Erb et al. (2006). This offset is too large to be measurement error, and so we attribute it instead to a real abundance difference: RCS0327 is metal-poor by about 50% for its stellar mass and redshift, compared to Erb et al. (2006). This offset is particularly apparent when comparing to J0900+2234 (Bian et al. 2010), which has almost the same N2 derived oxygen abundance, but one-third the stellar mass. J0900+2234 sits next to the lowest-mass bin of Erb et al. (2006) (a non-detection), and thus improves our knowledge of the $z=2$ mass-metallicity relation at the low-mass end.

On the high-mass end, the N2-derived oxygen abundance of the 8 o’clock arc is quite consistent with the high mass side of Erb et al. (2006), perhaps 0.05-0.08 dex low. By contrast, at the very low-mass end, cB38 lies far off the relation, having a very low stellar mass but a high oxygen abundance, more typical of the mass-metallicity relation at $z=0$ than at $z=2$–3. Thus, even from a modest sample of four lensed galaxies, we are already beginning to probe the intrinsic spread in the mass-metallicity relation at $z=2$.

4.5. Abundance pattern

In §3.12 we constrained the N/O ratio as $\log(N/O) \leq -1.70$. For plausible values of T_e, the ratio can be lower by 0.2 dex. These abundances are startlingly close to the values measured for cB55: $\log(N/O) = -1.76 \pm 0.2$ dex (Pettini et al. 2002) and $12 + \log(O/H) = 8.26$ (Teplitz et al. 2000). Even though RCS0327’s stellar mass is 18 times larger than cB55’s, and its redshift lower, star formation in these two galaxies has produced very similar ratios of N, O, and H. UV spectroscopy for RCS0327, as in Pettini et al. (2002) for cB55, should allow element-by-element comparison of abundance ratios.

For now, we concentrate on the N/O ratio. RCS0327 lies near the intersection of the primary and secondary N production lines. In other words, it lies right on the trend for secondary N production, and is somewhat below the primary plateau of $\log(N/O) \sim -1.5$. As such, its N/O ratio is at the low end of what has been measured for H II regions in spiral galaxies of comparable O abundance, and is typical of dwarf galaxies (van Zee et al. 1998). Analytic models such as Henry et al. (2000) combine both N production mechanisms to produce smooth curves of N/O versus O. RCS0327 lies on these curves near the “knee”, where the N/O ratio rapidly transitions from being independent of the oxygen abundance (“primary” production), to being highly dependent on the O abundance (“secondary” production). Comparing RCS0327 and cB58 to the numerical models of Henry et al. (2000) (their Figure 3b) suggests that both galaxies have relatively high star formation efficiencies. With a sample of two galaxies, it is premature to draw conclusions about how galaxies build up their nitrogen, but the strict N/O and O measurements we have made bode well for the future, if such work can be repeated for a larger sample.

4.6. Ionization parameter

The 5007/3727-derived ionization parameters reported by Hainline et al. (2009) used the old O abundance scale, and thus assume too high a metallicity for these systems. On the Asplund system, 40% solar metallicity, we recalulate and find log $U = -2.8$ for the Horseshoe and -2.7 for Clone without extinction. Taking line fluxes from

7 This conversion is modest (< 0.05 change in $12 + \log(O/H)$) at these metallicities.

8 Teplitz et al. (2000) infer an N/O ratio that is higher by 0.5 dex, a discrepancy discussed by Pettini et al. (2002).
(Teplitz et al. 2000), we find log $U = -2.85$ for cB58 without extinction. Extinction dominates the errors, and acts to lower the ionization parameter.

These ionization parameter measurements are entirely consistent with the -2.73 for RCS0327 for $A_v = 0.7$ that we measure on the same system. Thus, the four lensed galaxies examined to date all have similar high ionization parameters.

4.7. Electron density

In §3.9 we derived an electron density of $n_e = 252^{+30}_{-30}$ cm$^{-3}$ at 1.2×10^4 K from the [O II] $\lambda 3726, 3729$ doublet ratio. This is the most precise such measurement at such high redshift. We now compare to density constraints from the literature for other lensed galaxies.

Hainline et al. (2009) measured the [S II] $\lambda 6717, 6731$ flux ratio in two lensed galaxies. For the Clone, the result is 0.9 ± 0.1 by extracting the fluxes in each of two apertures and summing, versus 0.75 ± 0.25 by extracting all at once. For the Horseshoe, the result from the summed aperture is 1.0 ± 0.35. Using iraf’s tendif at $T_e = 10^4$ K, these ratios indicate densities of 900^{+500}_{-300} cm$^{-3}$ and 1700^{+14000}_{-11000} cm$^{-3}$ for the Clone, and 600^{+2400}_{-500} cm$^{-3}$ for the Horseshoe. Bian et al. (2010) measured a [S II] flux ratio of 0.86 ± 0.2 for the sum of both apertures in J0900, which yields a density of 1100^{+1700}_{-600} cm$^{-3}$. In the rest-UV, Quider et al. (2009) measure a C III] flux ratio of $f(1906)/f(1908) = 1.1 ± 0.2$ for the Horseshoe, corresponding to a density range of $5000-25000$ cm$^{-3}$, which is inconsistent with the density range measured by Hainline et al. (2009).

Thus, these literature measurements of electron density are in the range $600-5000$ cm$^{-3}$, albeit with large errorbars. The low precision of these measurements indicates a clear need for deeper spectra to better measure electron density. Nevertheless, the current measurements for the Clone, Horseshoe, and J0900 favor high electron densities, much higher than the precise value we measure for RCS0327. Thus, at present it is not clear what is a typical electron density for a star forming galaxy at these epochs. Additional high-quality measurements are urgently needed.

4.8. Location in the BPT diagram

The “BPT” diagnostic diagram of Baldwin et al. (1981) is commonly used to characterize the ionization conditions in galaxies. For RCS0327, we measure line ratios of log ([N II] 6583 / Hα) $= -1.18 ± 0.07$, and log $(5007/H$β$) = 0.69 ± 0.02$ for $A_v=0$ and 0.13 less than that for $A_v = 0.7$. In Figure 5 we plot RCS0327 on the BPT diagram; its high OIII/Hβ and extremely low NII/Hα place it in the upper left quadrant, close to the maximal starburst line.

This is an exceptional position compared to the $z=0$ SDSS, which has only 5 galaxies in that region of the BPT diagram. However, $z=0$ IR-luminous galaxies do occupy that space: Kewley et al. (2001) have 9 galaxies with $NII/H\alpha < -1$. Since extreme star formation is rare in the local universe, these luminous star-forming galaxies may be a better basis for comparison than SDSS.

It has previously been noted that $z \geq 1$ galaxies tend to be offset toward higher $5007/H$β ratios in the BPT diagram (Shapley et al. 2005; Erb et al. 2006; Kriek et al. 2007). Brinchmann et al. (2008) proposed that this is caused by an elevated ionization parameter at higher redshift, and enumerated the following possible underlying causes: a top-heavy initial mass function; higher electron densities; a higher volume filling factor; or a higher escape fraction of UV photons.

Figure 5 shows that of the lensed galaxies, J0900 and the Clone show an offset similar to that of the Erb et al. (2006) stacked galaxies, while the 8 o’clock arc is considerably higher, as discussed by Finkelstein et al. (2009). By contrast, RCS0327 and cB58 are not as offset – they lie between the Erb et al. (2006) points and the $z=0$ IR-luminous galaxies.

RCS0327 has a electron density ($n_e = 235^{+50}_{-25}$ cm$^{-3}$) that is lower than the best-fitting densities for the Clone, Horseshoe, and J0900, though these measurements have large errorbars. Its measured ionization parameter ($2.9 ± 0.17$ for $A_v = 0.7$) is entirely consistent with measurements of the same diagnostic in the Horseshoe, Clone, and cB58. Thus, in two ways RCS0327 contradicts the picture of Brinchmann et al. (2008) for BPT behavior at $z=2$: First, even though its ionization parameter is as high as other $z=2$ galaxies, it is not as offset in the BPT diagram; second, the reason for its high ionization parameter is apparently not high electron density.

Of the IR-luminous sample of Kewley et al. (2001) with $NII/H\alpha < -1$, the median electron density is ~ 100 cm$^{-3}$. This is another case in which offsets in the BPT diagram do not appear to be caused by high density.

At present, too few $z=2$ galaxies have the high-quality spectroscopy necessary to fully map their behavior in the BPT diagram, and link offsets back to evolution in physical conditions. This will presumably change as new lensed galaxies are pursued, and as new multi-object near-IR spectrographs push down the luminosity function of the non-lensed galaxy population. That said, RCS0327 suggests that the physical conditions in high-redshift star forming galaxies are more heterogeneous than has been previously suggested.

Last in our discussion of the BPT diagram, we note that RCS0327’s extreme location places it as far as possible from the $z=0$ AGN locus. Thus, it is unlikely that the nebular emission of this galaxy is dominated by an AGN, though we have not ruled out a low-luminosity AGN (c.f. Greene & Ho 2007).

5. Conclusions

The spectra published here, totaling 1.3 hr of integration, demonstrate the power of gravitational lensing to explore the physical conditions of star formation at the epoch when most of the Universe’s stars formed.

For the second time in any galaxy at $z \sim 2$, and for the first in an average-metallicity galaxy, we tightly constrain the O abundance using the “direct” T_e method, thanks to the very constraining non-detection of [O III] $\lambda 4363$. We use this constraint to test the bright-line diagnostics of oxygen abundance, which are the easiest to measure, but are empirically calibrated at $z=0$ and thus incorporate assumptions about density and ionization parameter that may well be wrong at $z=2$. 9

9 The Horseshoe is not plotted because Hβ was contaminated by a skyline (Hainline et al. 2009). CBS58 was not plotted because [S II] was not observed.
We find that the O abundance inferred from the N2 index (the ratio of [N II]/Hα) agrees closely with the T_e method and has small errors. Ne302 also performs well, albeit with larger errors since [Ne III] is not a bright line. N203 and R23 depend so strongly on the extinction that we cannot definitively assess their performance in RCS0327, though they appear to work for the current best estimate of the extinction, A_v = 0.7. This is especially interesting because R23 spectacularly fails in Lens22.3 (Yuan & Kewley 2009), the only published example of an [O III] 4363 detection at z~2.

The O3N2 diagnostic is on the border of disagreeing with T_e in RCS0327, depending on extinction. Comparing to the N2 index, O3N2 predicts systematically lower abundances in five z~2 lensed galaxies, dramatically so at near-solar metallicity. We suggest that O3N2 does not work in z~2 galaxies, perhaps because of higher ionization parameters compared to z=0 where this diagnostic is calibrated.

After all, O3N2 is effectively a location in the BPT diagram, and it has been shown, via small samples of lensed galaxies and stacked samples of unlensed galaxies, that z~2 galaxies are offset in the BPT diagram, with higher 5007/H3, than the cloud of SDSS galaxies at z=0. Indeed, RCS0327 offset in the BPT diagram compared to the SDSS and Kewley et al. (2001) galaxies, as offset as cB58 is, but not as offset as other z~2 galaxies. This is particularly interesting given that the measured ionization parameter for RCS0327 is just as high as in the Horseshoe, the Clone, and cB58.

We also constrain the electron density to ±12%. Thus, we conclude that while RCS0327 has a high ionization parameter, this is not caused by a particularly high density. This runs contrary to the tentative conclusions from previous work. As Brinchmann et al. (2008) cautioned, a number of effects can raise the ionization parameter: a top-heavy IMF, a higher UV escape fraction, a higher filling factor, or a higher density. In the case of RCS0327, we find that high density is not the cause. We conclude that it is premature to blame high density for the high ionization parameters of z~2 star-forming galaxies.

We measure the relative abundances of N, Ne, and Ar compared to O. The Ne/O and Ar/O ratios are solar with uncertainties of ±0.14 dex, which is reassuring since all these elements are alpha-process and should enrich in lockstep. We believe this to be the first time the Ne/O ratio has been measured at z ~ 2. The N/O ratio is one dex below the solar value, indicating that secondary N production has not yet begun in earnest. The O abundance and N/O ratio are startlingly similar to those of cB58; it is not clear whether this agreement is merely coincidental, or indicates characteristic values for star-forming galaxies at this epoch.

6. Future Directions

This is by no means the last word on RCS0327 or on diagnostic spectroscopy of lensed galaxies. The following observations should significantly increase what can be learned about the physical conditions of RCS0327. First, a direct measurement [O III] 4363, or an even stricter upper limit, should provide a more stringent test of the bright-line O abundance diagnostics. This comparison, and a host of other constraints, are limited by the current uncertainty in the measured extinction. This would be improved by a deeper integration of Hβ/Hγ or a simultaneous measurement of Hα/Hβ.

Thus far, we have considered only the spatially-integrated spectrum across the brightest portion of the arc. It will be fascinating to spatially map the physical conditions across this portion, and the fainter sections, of the arc, to see how widely these physical parameters vary across the galaxy. Of course, such work requires a better lensing model, which will be enabled by pending HST observations.

Finally, we humbly remember that a single galaxy can be a maverick, and that only by repeating this work in a representative sample of lensed galaxies will the physical conditions of star formation at this epoch be confidently characterized. Larger samples will also fill in the BPT and mass-metallicity relations, exploring the scatter in these relations and the reasons behind it.

Acknowledgments: We thank the IRTF SpeX team for making public their telluric correction routine and their tool to find telluric standard stars, at http://irtfweb.ifa.hawaii.edu/spex/. We thank Kevin Schawinski for code to generate the SDSS contours in figure 5, which is adapted from Schawinski et al. (2010); we thank Fuyan Bian for code to generate Figure 7, which is adapted from Bian et al. (2010). JRR gratefully acknowledges the financial support and intellectual freedom of a Carnegie Fellowship.

Data presented herein were obtained at the W.M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. We acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

REFERENCES

Table 2
Measured line fluxes for RCS0327

<table>
<thead>
<tr>
<th>line</th>
<th>(\lambda_{\text{obs}})</th>
<th>flux</th>
<th>dflux</th>
</tr>
</thead>
<tbody>
<tr>
<td>O II 3727</td>
<td>1.00808</td>
<td>72.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Ne III 3869</td>
<td>1.046273</td>
<td>7.8</td>
<td>1.3</td>
</tr>
<tr>
<td>H(\alpha) + He I 3890</td>
<td>1.05195</td>
<td>6.6</td>
<td>0.4</td>
</tr>
<tr>
<td>H(\beta)</td>
<td>1.0720</td>
<td><3.8 limit</td>
<td></td>
</tr>
<tr>
<td>H(\gamma)</td>
<td>1.1093</td>
<td>7.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Filter N3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(\gamma)</td>
<td>1.17385</td>
<td>13.5</td>
<td>2</td>
</tr>
<tr>
<td>O III 4363</td>
<td>1.1800</td>
<td><1.5 limit</td>
<td></td>
</tr>
<tr>
<td>Ar IV 4741</td>
<td>1.2825</td>
<td><3.0 limit</td>
<td></td>
</tr>
<tr>
<td>H(\beta)</td>
<td>1.31473</td>
<td>32.4</td>
<td>1.1</td>
</tr>
<tr>
<td>O III 4959</td>
<td>1.34111</td>
<td>49.3</td>
<td>1.6</td>
</tr>
<tr>
<td>O III 5007</td>
<td>1.35400</td>
<td>159</td>
<td>1.4</td>
</tr>
<tr>
<td>Filter N6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N II 6548</td>
<td>1.77115</td>
<td>3.85</td>
<td>0.8</td>
</tr>
<tr>
<td>H(\alpha)</td>
<td>1.77488</td>
<td>116</td>
<td>1.2</td>
</tr>
<tr>
<td>N II 6583</td>
<td>1.78002</td>
<td>7.4</td>
<td>1.2</td>
</tr>
<tr>
<td>S II 6716</td>
<td>1.81663</td>
<td>6.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Ar III 7136</td>
<td>1.9296</td>
<td>2.8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Note. — Measured line fluxes. Columns are line ID, observed wavelength, line flux in units of \(10^{-16} \text{ erg s}^{-1} \text{ cm}^{-2}\), and uncertainty in the line flux.

References:
Figure 1. Finderchart for RCS0327. This J-band image from Wuyts et al. (2010) illustrates how we positioned the NIRSPEC slit, which is $42 \times 0.76''$. N is up and E is left.
Figure 2. The NIRSPEC spectra. The fluxed spectra are plotted in black, with the 1σ error spectrum in red. Blue labels mark detected emission lines, and lines for which we measure upper limits.
Rest-frame optical spectroscopy of a giant arc

Figure 3. Two-component Gaussian fit to the [O II] 3726, 3729 doublet. Red lines show the fit to each emission line; a green line shows the summed fit. Blue shows the 1σ error spectrum.

Figure 4. Starburst99 + Cloudy models, for constant star formation. A grid of models was run, varying the electron density through ±1σ of the value measured in §3.9, and the starburst age. The input spectrum changes slightly due to stochastic effects. The filled circles show models with the density measured assuming $T_e = 1.2 \times 10^4$ K, and open circles show models using the density measured assuming $T_e = 10^4$ K. The measured spectral lines and the density measurement tightly constrain the ionization parameter and metallicity.
Figure 5. The BPT diagram. The $z=0$ relation is defined by the SDSS DR7 spectroscopic sample (Abazajian et al. 2009; black dots), and by the IR-bright galaxies of Kewley et al. (2001) (orange asterisks). Stacked samples of galaxies at $z=2$ are from Erb et al. (2006) (blue diamonds); lensed $z=2$ galaxies are from Bian et al. (2010), Teplitz et al. (2000), and Finkelstein et al. (2009) (green diamonds), and this work (red diamond).
Figure 6. Comparison of oxygen abundance diagnostics for RCS0327. The top panel assumes $A_v = 0$, and the bottom panel assumes $A_v = 0.7$. The relative calibration offsets observed at $z=0$ (Kewley & Ellison 2008) have already been removed; all indices are on the relative frame of N2 in Pettini & Pagel (2004).
Figure 7. The Mass–Metallicity relation at z=0 and z=2. SDSS galaxies define the z=0 relation (grey cloud). The z=2 relation is shown by stacked spectra of unlensed z=2 LBGs from Erb et al. (2006) (hollow squares), as well as four lensed galaxies at z~2: J0900+2234 from Bian et al. (2010); cB58 from Teplitz et al. (2000) and Siana et al. (2008); the 8 o’clock arc from Finkelstein et al. (2009); and RCS0327 from this work (filled points). For consistency, when authors fit stellar masses using a Salpeter IMF, we have converted to a Chabrier (2003) IMF by dividing M_* by 1.8. Squares and circles show abundances determined from the N2/Hα and O3N2 calibrations of Pettini & Pagel (2004), respectively, where the O3N2 abundances have been brought onto the N2/Hα relative system using the small conversion of Kewley & Ellison (2008). An arrow shows the lower limit on abundance derived from the T_* method for RCS0327. Errorbars on the data show the propagated flux uncertainty. The errorbars at upper left show the 1σ calibration uncertainties of Pettini & Pagel (2004).