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The Upper Stage Reaction Control System provides three-axis attitude control for the

Ares I launch vehicle during active Upper Stage flight. The system design must accom-

modate rapid thruster firing to maintain the proper launch trajectory and thus allow for the

possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates

an increase in static pressure, known as waterhammer, whichpropagates throughout the

propellant system at pressures exceeding nominal design values. A series of development

tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using

a water-flow test article to better understand fluid performance characteristics of the Up-

per Stage Reaction Control System. A subset of the tests examined waterhammer along

with the subsequent pressure and frequency response in the flight-representative system

and provided data to anchor numerical models. This thesis presents a comparison of wa-

terhammer test results with numerical model and analyticalresults. An overview of the

flight system, test article, modeling and analysis are also provided.
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CHAPTER 1

INTRODUCTION

1.1 Background

The development of the Ares I launch vehicle is an essential step toward completion

of NASA’s Constellation Program. This vehicle will facilitate a new generation of space

access to the International Space Station, the moon, and other destinations within the solar

system. Ares I is a two-stage launch vehicle consisting of a solid First Stage, a bipropel-

lant Upper Stage, the Orion crew capsule and service module [2, 3]. The Upper Stage

utilizes a single J-2X Main Engine fueled by a combination ofliquid oxygen and liquid

hydrogen. During Upper Stage operation, the Upper Stage Reaction Control System (US

ReCS) will provide roll control capability during J2-X operation and three-axis attitude

control capability (roll, pitch, and yaw) after Main EngineCut-Off.

The US ReCS design utilizes a distributed, blow-down, monopropellant hydrazine sys-

tem capable of rapid pulsing at the 100 lbf class. Past NASA launch vehicles such as the

Saturn V [4] and the Space Transportation System (STS) [5] have employed localized,

bipropellant systems for reaction control. The Delta IV [6]and Mars Polar Lander [7],

developed by United Launch Alliance and Jet Propulsion Laboratory respectively, use at-

titude control systems similar to that of the US ReCS with the exception that they are

pressure-regulated systems operated at lower thrust levels than the US ReCS. Therefore,

1



the combination of a distributed blow-down system with higher thrust levels makes the

US ReCS, and all associated testing and analysis, relatively unique within the spacecraft

propulsion community.

Additionally, the methods used at MSFC for transient fluid-flow analysis on the US

ReCS vary from those documented in the literature for similar systems. Based on the

literature review, the Method of Characteristics has provento be the industry standard

with regards to these analyses; however, the work done at MSFC for the US ReCS uses

a Lumped Parameter Method. Past experience using both methods to model the same

system has shown that both provide comparable results, withthe exception being that the

Lumped Parameter Method, with respect to its application inthe modeling software, also

allows for consideration of cavitation in the fluid which is not accounted for in the Method

of Characteristics. In systems like the US ReCS, introduction of additional gas into the

system through cavitation or other means can have a significant impact on the system

dynamics and is thus important to characterize.

To date the analysis of these transient fluid-flows and their effects, specifically water-

hammer, on spacecraft propulsion systems similar to the US ReCS have not been widely

documented. Most available data for similar systems involve waterhammer due to priming

the fluid system and not due to thruster valve closing. Additionally, data for waterham-

mer in response to thruster valve closing exists only for smaller and less complex systems

[7, 8, 9, 10, 11, 12, 13]. Waterhammer is defined as a rise in static pressure inside a

closed system resulting from a sudden deceleration of a fluidsuch as that caused by a

valve closing. Viscous forces and tubing compliance tend todamp out the surge quickly,
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with the peak pressure lasting only a few milliseconds. The resulting pressure surge due

to valve closure can be more than twice the normal system operating pressure and can in

itself cause significant damage to system tubing and hardware if not properly accounted

for in the design. Additional concerns also arise if there isany residual gas remaining in

the system. During the few milliseconds in which these events occur, a localized pres-

sure increase can result in extreme heating of the gas due to anear-adiabatic compression.

Given the right conditions, these high temperatures can result in an adiabatic compression

detonation of the hydrazine at that location, which can leadto a catastrophic system fail-

ure. Due to these possible failure modes, requirements havebeen imposed upon the US

ReCS design that the Maximum Design Pressure (MDP) of the system encompasses all

transient surge pressure events. Therefore, it is important to sufficiently characterize US

ReCS performance during different mission scenarios in orderto provide a more robust

design.

To accommadate this design process, development tests wereconducted at MSFC in

the fall of 2009 using a water-flow test article for the US ReCS inpreparation for the

Critical Design Review of the flight hardware. A variety of tests covering a range of

supply pressures and duty cycles were conducted to examine system responses for differ-

ent mission scenarios. Numerical models of the test articlefeed system were developed

in conjunction with the development testing for post-test data correlation. The primary

objective of these models was to accurately predict the initial surge pressure after valve

closure, while secondary objectives included the prediction of other aspects of the system

such as frequency and pressure response.
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Flowchart for Design, Test, and Analysis Data and Information Flow

Figure 1.1 shows a general flowchart representation of the information and data flow

through the system design, test, and analysis process. The chart shows how the flight sys-

tem design provided input to both the numerical models and the development test article.

The models of the flight system provided a foundation for the models of the test article.

Pre-test predictions from these models along with the capabilities and limitations of both

the test facility and test article were then used to develop the matrix of tests that were

conducted. Tests were completed, and the resultant data wasreviewed and analyzed. In

addition, the data was used to correlate the numerical models of the test article such that

they provided accurate predictions of the test article performance. From that point, the

updates made to the models of the test article were flowed backup to the flight system

models to provide a more accurate analytical representation of the flight system design.
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1.2 System Description

1.2.1 Flight System

The US ReCS is a blow-down monopropellant system consisting oftwo diametri-

cally opposed thruster modules (TM) mounted on the outer mold line of the Upper Stage

Aft Skirt. Each TM in the US ReCS contains six 100-lbf class thrusters, three primary

and three secondary, which in turn support the firing of multiple thrusters simultaneously

for 3-axis attitude control. Hydrazine propellant is contained within a single diaphragm

tank located on the J-2X thrust structure and is pressurizedwith gaseous helium. Perfor-

mance requirements for a nominal blow-down specify a minimum 90 lbf vacuum thrust

per thruster at the end of mission. The useable propellant load is 30 lbm. Based on these

requirements, a diaphragm tank was designed for a 1.25:1 blow-down ratio with a maxi-

mum expected operating pressure (MEOP) of 420 psia. The pressurized tank expels the

propellant through the main propellant feed line, which travels up the J-2X thrust structure

to the Aft Skirt. It then branches to distribute propellant to each TM.

The US ReCS is also equipped with lines for propellant loading,draining, and decon-

tamination. A single fill and drain line runs from the US ReCS service valve panel and

connects to the propellant feed system downstream of the tank. Two system purge lines

used for decontamination run from the service valve panel toeach of the two TMs. A CAD

(Computer Aided Design) representation of the system is shown in Figure 1.2, followed

by a functional schematic in Figure 1.3.
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Figure 1.2

US ReCS CAD Representation
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1.2.2 System Development Test Article

1.2.2.1 Test Article Overview

The US ReCS System Development Test Article (SDTA) was a flight-representative

simulator for the US ReCS flight system for Design Analysis Cycle3A-S-RevA [14]. It

was tested at the MSFC CDA to evaluate integrated system levelperformance charac-

teristics and verify analytical models as part of the critical design activities. The SDTA

used a single flight-similar diaphragm tank mounted in approximately the same relative

location and orientation as the flight tank. An ASME (American Society of Mechanical

Engineers) code tank was also incorporated into the test article for waterhammer testing

to avoid excessive pressure cycling of the diaphragm tank and to test over a range of spec-

ified regulated pressures. A propellant distribution manifold representative of the flight

configuration was fabricated with instrumentation ports for pressure transducers. Welded

assemblies were used when possible to provide similarity tothe flight propellant mani-

fold, with exceptions at flex hose fitting connections, inlets to the Thruster Control Valve

(TCV) assemblies, and break-point locations used to facilitate transportation. All SDTA

components were mounted on a test fixture designed to decouple feed system dynamics,

as shown in Figure 1.4. SDTA components were mounted to the test fixture using a similar

approach to flight bracketing such that the dynamic responseof the tubing was simulated.

Four TCV assemblies were fabricated for installation at fourof the twelve possible

locations within the thruster modules (L1 through L12 in Figure 1.5). These assemblies

were capable of being moved between thruster valve locations depending on the required
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US ReCS SDTA CAD Representation

thrusters as specified for each test. The remaining locations were sealed to represent the

total thruster module manifold. Each assembly included a series-redundant TCV, a man-

ual metering valve, a turbine flow meter, and various instrumentation. The TCVs are

denoted in Figure 1.5 by TCV-Xu (upstream) and TCV-Xd (downstream). Downstream

of the TCVs, the manual metering valves (NV-X) allowed for flowrate calibration to a

nominal flow rate similar to that of the flight system. Turbineflow meters (FM-X) were

located downstream of the metering valves and measured the flow rate through the TCVs

as controlled by the metering valves. Additional instrumentation on each assembly in-

cluded thermocouples on the TCV and the downstream line, as well as a static pressure

transducer upstream and downstream of the metering valve.

8



Figure 1.5

US ReCS SDTA Functional Schematic
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1.2.2.2 System Instrumentation

Other system instrumentation included ten dynamic pressure transducers (HfP-XXX),

one at the end of each purge line on the service valve panel and, due to data-system chan-

nel availability, one each at eight of the twelve TCV locations in the thruster modules. A

breakdown of the system instrumentation by type is shown in Table 1.1 and is comparable

to the instrumentation described in the literature for similar tests [10, 9, 7]. Dynamic pres-

sure transducers and static pressure transducers were co-located in the same instrumenta-

tion block. Other static pressure measurements (P-XXX) were taken at various locations

throughout the system and are shown in Figure 1.5. The pressurization system for both

the diaphragm tank and the ASME code tank also contained multiple static pressure and

temperature measurements. Other instrumentation included biaxial strain gauges at four

of the twelve TCV locations to measure the effects of waterhammer on tubing, as well as

accelerometers on TCVs A and B to provide data during valve actuation.
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Table 1.1

System Instrumentation

Type Quantity Range
Data Rate 

(kHz)

Pressure Transducers - Static 33 0 to 2000 psig
10

1

1
2

Pressure Transducers - Dynamic 10 0 to 1000 to 5000 psid 50

Thermocouples 27 0 to 160°F 0.1

Accelerometers 2 0 to 25 g 50

Strain Guages 10
Axial and Hoop 0 - 70 

strain
50

Flow Meters 4

FM-A: 2.0 - 12.4 GPM; 

FM-B, FM-C, FM-D: 

0.6 - 5.0 GPM

1

1  For those adjacent to a dynamic transducer

2  Stand alone transducer
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CHAPTER 2

MODELING AND ANALYSIS

2.1 Modeling in the Time Domain

Waterhammer can be modeled using many different methods, such as Finite Element

Analysis [15], Method of Characteristics [7, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26],

and Impedance Analysis [8, 22]. Another method for modelingwaterhammer effects is

the Lumped Parameter Method, which is employed by the EASY5 analysis package used

at MSFC. MSCSoftware.EASY5 v.2008c© is a commercially available, dynamic system

modeling package with a heritage for modeling spacecraft propulsion systems. EASY5

is capable of modeling transient pressure wave phenomena, such as waterhammer, us-

ing transient forms of mass and energy conservation. The Thermal Hydraulic Library of

EASY5 is a collection of fluid components (pipes, valves, orifices, etc.) whose input pa-

rameters and output variables are connected to other components to form complex fluid

systems. EASY5 provides a robust modeling framework for waterhammer model devel-

opment and was used to simulate various systems on Ares I. TheEASY5 waterhammer

model of the US ReCS SDTA, shown in Figure 2.1, was initially based on an existing US

ReCS flight system model. However, throughout the SDTA data review and model corre-

lation process, many updates and changes were made to reflectthe differences between the

12



flight system and the test article. EASY5 components capableof modeling the transient

pressure waves were used instead of steady-state alternatives.
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Figure 2.1

EASY5 Waterhammer Model US ReCS SDTA

2.1.1 Thruster Control Valve Assemblies

The model incorporated a transient-momentum orifice in the case of the TCV assem-

blies. It was sized for a nominal flow rate and could be commanded open and closed based

on a pre-programmed duty-cycle. System characterization tests for the SDTA provided

flow rate data for the TCV assemblies as a function of inlet pressure, as shown in Fig-
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ure 2.2. The flow rate data for all TCV assemblies was combined and averaged, converted

to a discharge coefficient as a function of inlet pressure, and then incorporated into the

modeled TCV assemblies. Flow meter data measured downstreamof the TCVs were also

used to estimate a valve closing time. Likewise, high-frequency pressure data measured

upstream of the TCVs were used to establish a closing profile for the valves, shown in

Table 2.1, and represented the flow cross-sectional area as afunction of time. Initially, this

profile was assumed to be a linear closing over 0.5 msec, but upon inspection of the data

a more parabolic closing profile over 0.4 msec was implemented in the model to better

represent the data.
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Typical Pressure and Flow Rate Response
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Table 2.1

TCV Closing Profile

Time (msec) Position * Flow Area (in
2
)

0 1 7.93 x 10
-3

0.3 0.75 5.95 x 10
-3

0.4 0 0.0

* (0=Closed, 1=Open)

2.1.2 System Tubing

Transient momentum pipe components were used for all the system tubing, from the

tank outlet to the thruster valve inlets. The appropriate lengths and inner diameters were

input into each component, along with the number of nodes foreach pipe section. An in-

crease in the number of nodes in each pipe section results in increased computational time

for the model; therefore, an iterative process was used to determine the minimum num-

ber of nodes required to sufficiently characterize the waterhammer pressure wave for each

pipe. The bulk modulus of the tubing material was input to produce more accurate speed

of sound calculations within each pipe component. Pressuredrops throughout the propel-

lant feed system were initially based on analytical relations and flight system conditions

but were updated to reflect the SDTA test data by modifying thesurface roughness of each

pipe component. A value for the tubing surface roughness wasinput based on published

information for stainless steel tubing. An input in each pipe component for a frequency-

dependent friction multiplier was also utilized to help dampen the pressure oscillations.
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While relative height changes in tubing runs were included inthe model, the contribu-

tion of tube bends to the pressure drop was considered negligible and was therefore not

included in the model.

2.1.3 ASME Code Tank

The ASME code tank used for waterhammer testing was not specifically modeled in

EASY5, but was represented as a boundary condition at a predefined pressure. This deci-

sion was justified based upon three reasons. First, the addition of the ASME code tank to

the model would increase the complexity of the model and provide a significant negative

impact on the run-time for each simulation. Second, only fivemilliseconds of steady-state

flow were simulated prior to the valve closing, so the water-volume change in the tank was

considered to be negligible. Third, with regards to the waterhammer event, neglecting to

model the tank will ensure less overall system damping to thepressure wave and thus a

more conservative result.

2.1.4 Entrained Gas

The capability to input the void fraction of entrained gas ina fluid also exists in EASY5

and affects the calculation of the fluid speed of sound and thesystem damping. The term

void fraction refers to the ratio of the total volume of undissolved gas present at steady-

state conditions to the total volume of the system, including both liquid and gas volume.

This value is highly dependent on the initial conditions of the system prior to liquid filling

and is one of the primary drivers behind vacuum-filling liquid propulsion systems similar
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to the US ReCS. As more gas is introduced into the system, it decreases the bulk speed of

sound of the fluid-gas mixture and increases the overall system damping. The void fraction

of entrained gas was determined using the system geometry and the pre-water-load pad

pressure. It was then possible to determine, assuming an isothermal compression, the final

volume of displaced gas that would eventually be trapped by the liquid fill. The model

assumed a homogenous mixture of gas and liquid, though realistically the bulk of the gas

was trapped in various locations throughout the system. However, since it was impossible

to determine with absolute certainty the location of those gas pockets, this assumption was

the best that could be made.

2.2 Analysis in the Frequency Domain

Frequency analysis is a useful method for data analysis, especially with regard to de-

termining the natural frequency and frequency matching in complex fluid systems such

as the US ReCS SDTA. The Fast Fourier Transform (FFT) was employed to convert both

experimental and simulation data into the frequency domainfor analysis utilizing Power

Spectral Density (PSD) curves [7]. MATLAB was used to perform FFTs to convert both

experimental and simulation data into Power Spectral Density (PSD) curves to aid in data

analysis and comparison. Straight-tube harmonics were also employed to provide a simple

and quick way of estimating major system frequencies. Comparing these results to PSD

curves of the test data and simulation results provided a secondary means for troubleshoot-

ing during the model correlation process in order to ensure that the major frequencies

exhibited by the test article were captured by the fluid model.
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2.3 Statistical Analysis

In addition to examining the data in both the time and frequency domain, statistical

analyses were also employed to provide further comparisonsbetween the test data and

simulation results. Percent error for each individual pressure measurement were compared

between tests, and average percent errors for entire tests were used as one of many metrics

for establishing satisfactory agreement between the testsand simulations. Generally, the

lower the average percent error the better with regards to these model correlations. Another

tool utilized was standard deviations, which allowed the examination of the variation in

measured pressure over multiple runs of a single test series. These values provided another

means for troubleshooting during the model correlation process. Low standard deviations

were indicative of consistent and repeatable pressure measurements, while high values

suggested inconsistencies in the system between tests or possibly even instrumentation

error.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Experimental

Eighty-two tests specific to waterhammer were conducted during testing of the US

ReCS SDTA using an array of supply pressures, TCV sequences, TCV configurations,

and overall system configurations. Most TCV sequences were run at a low (315 psia),

nominal (385 psia), or high supply pressure (410 psia) in reference to the flight system

MEOP of 420 psia. Testing was performed in three different system configurations. The

first configuration is represented schematically in Figure 1.5. TCVs A, B and C were

located at L3, L2, and L1, respectively, in the -Zs Thruster Module (TM) with TCV-D

being located at L6 in the +Zs TM. The second configuration required repositioning of

two TCVs such that each TM was configured with a primary and redundant roll TCV.

TCVs A and B were relocated to L7 and L12 respectively, while TCVs C and D remained

in the same locations (L1 and L6, respectively). The third configuration was the same as

the second configuration with the exception that the purge lines were removed. The surge

pressures measured at the service valves in the purge lines met or exceeded those measured

in the TMs during many of the previous tests; therefore, a third configuration was tested.

Out of the eighty-two total waterhammer tests, a set of twelve nominal baseline tests

were conducted using the first configuration to provide data points to demonstrate system
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repeatability during testing. One of the twelve tests (testWH6r) was chosen as a baseline

for model correlation due to the simplistic nature of the test. Test WH6r used a supply

pressure of 395 psia and a duty cycle of eight two-second pulses, as shown in Table 3.1

[27]. A typical pressure response measured at HfP-403 at theinlet of TCV-A for a single

pulse during test WH6r is shown in Figure 3.1.

Table 3.1

Duty Cycle WH6, used for Test WH6r

Time (sec) TCV-A TCV-B TCV-C TCV-D

0.0 OPEN CLOSED CLOSED CLOSED

2.0 CLOSED - - -

4.0 - OPEN - -

6.0 - CLOSED - -

8.0 - - OPEN -

10.0 - - CLOSED -

12.0 - - - OPEN

14.0 - - - CLOSED

16.0 OPEN - - -

18.0 CLOSED - - -

20.0 - OPEN - -

22.0 - CLOSED - -

24.0 - - OPEN -

26.0 - - CLOSED -

28.0 - - - OPEN

30.0 - - - CLOSED

The data displayed in Figure 3.1 show the closure of TCV-A in test WH6r at 4.97

seconds, as measured by HfP-403. The resultant pressure oscillations resemble a decaying

sinusoid, a behavior typical of fluid damping and frictionaleffects. The amplitude of the

pressure wave decayed exponentially and resulted in pressure reductions of 25% within
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50 msec and 95% within 500 msec. The wave continued to dampen,approaching the

static supply pressure before the next pulse was initiated.The peak pressure for this case

was approximately 830 psia using HfP-403 at the inlet of TCV-A, with a slightly lower

pressure of 785 psia measured in the corresponding purge line at HfP-103.
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Figure 3.1

Pressure Response During Test WH6r at TCV-A

Figure 3.2 represents the frequency response of the system at HfP-403 for test WH6r,

with the natural frequency of the system occurring at approximately 30 Hz. It was found

that the resulting PSD curve for the static pressure transducer data exhibited a structure

similar to that of the high frequency transducer data. Pressure data at all TCVs were

compared and produced results similar to Figure 3.2, both inmagnitude and frequency.

21



This suggests the frequency spectrum of the pressure data within the TMs are equivalent,

irrespective of pressure transducer location. The pressure data at the TCV locations were

then compared to that recorded at the purge valves. The PSD curve at each purge valve

also produced a similar spectrum to that present in the TMs.
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Figure 3.2

Frequency Domain Representation of Experimental SDTA Data

3.2 Analytical vs. Experimental

Simulations for the US ReCS SDTA EASY5 model were run using the methodology

laid out in the previous chapter. The appropriate values forsystem dimensions were input,

along with friction parameters and a gas-liquid void fraction. Pre-test predictions showed

good correlations for maximum surge pressure to within 15% of the test data. The flow

22



rates and pressure drops through the system also matched well with the test data. How-

ever, other aspects of the model results, such as the dampingand frequency of the pressure

response, exhibited significant differences. The simulation results were underdamped and

displayed a higher natural frequency (approximately 45 Hz)than that of test data, though

the natural frequency did change slightly from test to test.This change in frequency be-

tween tests could be attributed to varying amounts of water in the ASME code tank, as

well as the amount and location of trapped gas in the system.

Modifications were made to the model in several areas in an attempt to correct these

discrepancies. The number of nodes in each pipe segment was examined and, in most

cases, increased in order to refine each segments ability to capture the amplitude of the

pressure wave. A range of values for both the frequency dependent friction multiplier and

the gas-liquid void fraction were examined to determine their effects on both frequency

and damping. FFTs of both the test data and simulation results were also employed in an

attempt to identify the source of the frequency differences. The high-frequency pressure

measurement (HfP-403) at the inlet of TCV-A for the first pulseof test WH6r was used

during these modifications for model calibration.

The final simulation and analysis results compared with testWH6r are shown for the

time domain in Figures 3.3 and 3.4 and for the frequency domain in Figure 3.5. Since

the calculations for MDP only include the maximum surge pressure seen in the system,

regardless of where it occurs, Table 3.2 shows the comparison of the maximum pressures in

the test data versus that from the simulations. The maximum surge pressure in the system

was predicted to within 2.5% (Table 3.2), an approximate 12.5% improvement over the
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pre-test predictions. It should be noted that the EASY5 model predicts the maximum

surge pressure to occur at HfP-103 in the -Zs TM purge line, whereas the test data shows

the maximum occurring at HfP-403 in the -Zs TM at the inlet to TCV-A. For HfP-403,

the model predicts the surge pressure to within 2.0%.The average percentage error for all

high frequency pressure measurements throughout the system for the initial surge pressure

peak was 5.21%.
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Figure 3.3

Test vs. Simulation: Full Simulation

The model also predicts the natural frequency of the system around 30 Hz, along with

other notable frequencies found in the test data at approximately 40 Hz and in the 700-800

Hz range. The 40 Hz frequency is thought to correspond to the propagation of pressure
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Test vs. Simulation: TCV closure and the first few pressure oscillations
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Test vs. Simulation: PSD Curves for HfP-403 at TCV-A
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Table 3.2

Percent Error Between Test Data and Model Predictions

Table 3 – Percent Error Between Test Data and Model Predictions 

Test Model % Error Test Model % Error Test Model % Error

HfP-101 540 528 2.22% 531 528 0.56% 518 525 1.35%

HfP-103 623 683 9.63% 621 683 9.98% 622 679 9.16%

HfP-304 429 435 1.40% 428 435 1.64% 419 433 3.34%

HfP-306 439 427 2.73% 434 427 1.61% 423 425 0.47%

HfP-310 345 427 23.77% 361 427 18.28% 416 424 1.92%

HfP-312 362 427 17.96% 382 427 11.78% 411 424 3.16%

HfP-401 571 506 11.38% 553 506 8.50% 542 503 7.20%

HfP-402 542 529 2.40% 540 529 2.04% 560 526 6.07%

HfP-403 676 678 0.30% 640 678 5.94% 687 674 1.89%

HfP-407 520 567 9.04% 500 567 13.40% 477 564 18.24%

Maximum Pressure 676 683 1.04% 640 683 6.72% 687 679 1.16%

Average Percent Error 8.08% 7.37% 5.28%

Test Model % Error Test Model % Error Test Model % Error

HfP-101 640 638 0.31% 646 643 0.46% 632 627 0.79%

HfP-103 746 766 2.68% 744 773 3.90% 757 802 5.94%

HfP-304 515 529 2.72% 519 534 2.89% 509 521 2.36%

HfP-306 521 525 0.77% 528 530 0.38% 517 512 0.97%

HfP-310 420 526 25.24% 446 531 19.06% 506 511 0.99%

HfP-312 437 522 19.45% 469 527 12.37% 503 512 1.79%

HfP-401 662 636 3.93% 692 642 7.23% 675 601 10.96%

HfP-402 637 627 1.57% 660 633 4.09% 656 629 4.12%

HfP-403 776 801 3.22% 827 808 2.30% 813 798 1.85%

HfP-407 614 644 4.89% 628 650 3.50% 607 672 10.71%

Maximum Pressure 776 801 3.22% 827 808 2.30% 813 802 1.35%

Average Percent Error 6.48% 5.62% 4.05%

Test Model % Error Test Model % Error Test Model % Error

HfP-101 675 663 1.78% 671 661 1.49% 658 666 1.22%

HfP-103 828 847 2.29% 784 843 7.53% 784 850 8.42%

HfP-304 547 553 1.10% 540 550 1.85% 533 555 4.13%

HfP-306 552 543 1.63% 548 541 1.28% 540 546 1.11%

HfP-310 448 543 21.21% 465 540 16.13% 524 545 4.01%

HfP-312 466 543 16.52% 489 541 10.63% 521 546 4.80%

HfP-401 719 637 11.40% 721 634 12.07% 727 640 11.97%

HfP-402 700 666 4.86% 684 663 3.07% 688 669 2.76%

HfP-403 834 842 0.96% 857 839 2.10% 831 846 1.81%

HfP-407 655 710 8.40% 655 707 7.94% 637 713 11.93%

Maximum Pressure 834 847 1.56% 857 843 1.63% 831 850 2.29%

Average Percent Error 7.01% 6.41% 5.21%

WH6b WH6c WH6r
Pressure Measurement*

Pressure Measurement*

Pressure Measurement*
WH4b WH4c WH4r

WH5b WH5c WH5r
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waves between the thruster modules and the tank, while the 700-800 Hz frequencies are

thought to be oscillations within the thruster modules themselves. These notions are based

on calculations performed using simple straight tube harmonics; therefore, a more in-depth

analysis will be required to confirm the source of these frequencies. Comparisons were

also made with eight other tests that employed the same duty cycle as test WH6r. With

exception for the supply pressure, inputs for the EASY5 waterhammer model remained

constant for all eight test cases to provide consistency between the simulations. The ap-

proximate supply pressure was 310 psia for the tests designated with WH4x, 380 psia for

WH5x, and 400 psia for WH6x. The results of these comparisons are tabulated along with

the baseline case, WH6r, in Table 3.2. The results for all ninetests showed the maximum

surge pressures predicted to within 6.72 %, with the averagepercent error for all pressure

measurements to within 8.08%.

3.3 Resolution of Discrepancies and Error

A primary difference between the simulation and experimental data is that the simula-

tion damps out faster than the experimental data (Figure 3.3), resulting in an underpredic-

tion of the amplitude of the natural frequency (Figure 3.5) [28]. This result was consistent

across all the simulations that were run and compared with test data. It is believed this

discrepancy in the magnitude of the natural frequency (i.e.system damping) is due to one

or more characteristics of the US ReCS SDTA (e.g. ASME code tank, fluid/structure inter-

action, frequency-dependent friction, etc.) that are currently unaccounted for or modeled

incorrectly in the EASY5 model. Since accurate prediction of the system damping was not
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the primary objective of the system modeling and proved to have little to no impact on the

peak surge pressure, the discrepancy was accepted and deferred as future work. Updating

the EASY5 waterhammer model for both the test article and theflight system will focus on

establishing a better correlation between the model and test data with regards to damping

in hopes to get rid of this disparity.

Another error, which can be noted from Table 3.2, is that two of the ten measurements

(HfP-310 and HfP-312) consistently exhibit higher error (greater than 10%) than the other

eight. The most likely explanation for these errors is high variability in those individual

pressure measurements from test to test. Figures 3.6, 3.7, and 3.8 provide a comparison

of the percent error in the predicted pressure measurementsversus the standard deviation

of each pressure measurement. Each figure contains plots of the percent error in predicted

measurements for three separate runs of a single test series(i.e. WH4b, WH4c, WH4r), as

well as a plot of the standard deviation of each pressure measurement across those three

runs. In order to account for different static inlet pressures for the different tests compared,

the pressure measurements (i.e. the peak surge pressure values) were non-dimensionalized

with respect to their reference static inlet pressures.

The results shown in Figures 3.6, 3.7, and 3.8 illustrate a strong correlation between

high percent error and high variability in the pressure measurements. The pressure mea-

surements HfP-310 and HfP-312 consistently showed the highest error across all the tests

examined, and consistently those measurements also had thehighest variability from test

to test. High variability in the pressure measurement couldbe caused by a number of

things. Based on the results shown in Table 3.2, the model over-predicted the pressures at
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those two locations, which corresponded to locations in thesystem that never experienced

flow. It is likely that during the initial water fill process, residual gas in the system became

trapped at these locations and damped the pressure responsemeasured by the transducer

at those locations. Regardless of the reason for the error, these areas of high variability

ultimately result in parts of the system that are less predictable and more difficult to model.

There is no way to predict from test to test where these areas of high variability will occur,

other than they seem to tend more toward the areas of low or no flow based on the data that

has been examined thus far. For future analyses and simulations, it will have to be decided

on a case by case basis how these are handled to most accurately reflect the system being

modeled.
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CHAPTER 4

CONCLUSIONS

Waterhammer tests were performed using the US ReCS SDTA to provide anchoring

data for numerical models of the US ReCS flight system. Comparisons of the simulation

results to multiple sets of test data for the SDTA showed strong correlations for both the

pressure and frequency responses of the system. Maximum surge pressures from the test

data were predicted to within 6.75% by the EASY5 model. The natural frequency of the

system was not captured as strongly in the model as it was in the test data as a result

of the overdamping of the waterhammer pressure wave in the simulations. Future work

will focus on improvements to the EASY5 model to provide better correlation with the

system damping. In addition, tests involving multiple TCV closings will be examined

and compared to simulation results. The results presented within this thesis validate the

models ability to predict system performance of the SDTA andprovide confidence that

the maximum surge pressures can be accurately modeled and predicted for the US ReCS

flight system.
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