Project Applications of a “Weather in a Box” Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

1Gary J. Jedlove, 2Andrew L. Molthan, 3Bradley T. Zavadsky, 4Jonathan L. Case, 5Frank J. LaFontaine, and 6Jayanthi Srikishen

NASA Short-term Prediction Research and Transition (SPoRT) Center, Marshall Space Flight Center, Huntsville, AL
2NASA SPoRT/ENS CO, Inc., 3NASA SPoRT/Raytheon, and 4NASA SPoRT/Universities Space Research Association, Huntsville, AL

What is the NASA SPoRT Center?
- The NASA Short-term Prediction Research and Transition (SPoRT) Center partners with several universities and government agencies to:
 - Improve short-term (0-48 hr) weather forecasts
 - Facilitate and promote the use of Earth Observing System satellite data for weather analysis and forecasting
 - Promote the use of unique, advanced NASA modeling and data assimilation techniques applicable to regional forecasting

Mission Statement
- Serve as a focal point and facilitator for the transfer of NASA Earth Science technologies to the operational weather community, emphasizing short-term forecasting.

SPoRT Contributions to the Weather Research and Forecasting (WRF) Model
- SPoRT has developed several unique and valuable data products to support high-resolution, short-term weather forecasts:

Vision
- NOAA Land Information System
 - Unique NASA research tools
 - 3 km spatial resolution
 - Receives inputs of radar estimated precipitation and satellite vegetation composites.
 - Outputs high resolution soil moisture, soil type, and vegetation characteristics.

Surface Temperature Composites
- Normalized Difference Vegetation Index (NDVI) Composites
 - Daily composites at 1 km resolution, derived from MODIS, to serve as a proxy for vegetation cover and greenness fraction.
 - Replaces coarse climatology fields in model forecasts.

Advanced Infrared Sounder (AIRS) Profile Assimilation
- Provides vertical profiles of temperature and moisture with horizontal resolution of 50 km.
- Supplements sounding network with observations at altitude.
- Used in variational assimilation techniques to improve the three-dimensional atmospheric analysis.

SPoRT “Weather in a Box” Systems
- SPoRT is acquiring two new modeling systems to support weather forecasting experiments utilizing unique NASA research tools and products:

Research and Development
- CRAW CISI Chassis
- 8 Computer Nodes
- Each node contains:
 - 2 Intel Xeon E5520 @ 2.27 GHz
 - 32 GB RAM
 - 250 GB SSD
- INFRA Band connectivity

Real-Time Forecasting
- CRAW CISI Chassis
- 4 Computer Nodes
- Each node contains:
 - 8 Intel Xeon X5472 @ 3.00 GHz
 - 32 GB RAM
 - 120 GB 7.25 HD
- INFRA Band connectivity

SPoRT “Weather in a Box” Software
- High-resolution forecasts will be generated using the NASA Unified Weather Research and Forecasting (NU-WRF) modeling suite, which includes:
 - Advanced Research WRF (WRF-ARW)
 - NASA Land Information System (LIS) with internal coupling
 - NCAR Model Evaluation Tools (MET) Package
 - Goddard Chemistry Aerosol Radiation and Transport (GOCART)
 - Goddard Satellite Data Simulator Unit (GSDSU)
 - Unique diagnostic fields for severe weather forecasting
 - Lightning forecasting capabilities based upon cloud microphysics
 - WRF Pre- and Post-Processors

Hypothetical Forecast Cycle
Example: June 17, 2010

0000 UTC
WRF FORECAST

0600 UTC
WRF FORECAST

1200 UTC
WRF FORECAST

1800 UTC
WRF FORECAST

Summary
- SPoRT’s new “Weather in a Box” resources will provide weather research and forecast modeling capabilities for real-time application.
- Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities.
- By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.

Acknowledgements
- SPoRT modeling clusters were provided by Dr. Tsengdar Lee, High End Computing Program Manager at NASA Headquarters.
- Software installation and configuration was performed by NASA Goddard Space Flight Center under the guidance of Tom Clune.
- Local software and installation support at NASA Marshall Space Flight Center was performed and managed by Rita Edwards and David Cross.

andrew.molthan@nasa.gov
IN13A-1099