Projected Applications of a “Weather in a Box” Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

1Gary J. Jedlovec, 1Andrew L. Molthan, 1Bradley T. Zavadsky, 1Jonathan L. Case, 2Frank J. LaFontaine, and 3Jayanthi Srikishen

1NASA Short-term Prediction Research and Transition (SPoRT) Center, Marshall Space Flight Center, Huntsville, AL
2NASA SPoRT/ENSCO, Inc., 3NASA SPoRT/Raytheon, and 4NASA SPoRT/Universities Space Research Association, Huntsville, AL

What is the NASA SPoRT Center?
- The NASA Short-term Prediction Research and Transition (SPoRT) Center partners with several universities and government agencies to:
 - Improve short-term (0-48 hr) weather forecasts
 - Facilitate and promote the use of Earth Observing System (EOS) satellite data for weather analysis and forecasting
 - Promote the use of unique, advanced NASA modeling and data assimilation techniques applicable to regional forecasting

Mission Statement
- Serve as a focal point and facilitator for the transfer of NASA Earth Science technologies to the operational weather community, emphasizing short-term forecasting.

SPoRT Contributions to the Weather Research and Forecasting (WRF) Model

- SPoRT has developed several unique and valuable data products to support high-resolution, short-term weather forecasts:
 - Enhanced Infrared Sounder (AIRS) Profile Assimilation
 - Provides vertical profiles of temperature and moisture with horizontal resolution of 25 km.
 - Supplements soundings network with observations at night.
 - Used in variational assimilation techniques to improve the three-dimensional atmospheric model forecasts.

- Unique NASA research tools
 - 3 km spatial resolution
 - Revisions inputs of radar estimated precipitation and satellite vegetation composites.
 - Outputs high-resolution soil moisture, soil type, and vegetation characteristics.

- NASA Land Information System
 - Unique NASA research tool
 - 3 km spatial resolution
 - Receives inputs of radar estimated precipitation and satellite vegetation composites.
 - Outputs high-resolution soil moisture, soil type, and vegetation characteristics.

SPoRT “Weather in a Box” Systems

- SPoRT is acquiring two new modeling systems to support weather forecasting experiments utilizing unique NASA research tools and products:
 - **Research and Development**
 - CRAY CX1 Chassis
 - 8 Compute Nodes
 - Each node contains:
 - 8 Intel Xeon X5550 Cores
 - 2.67 GHz
 - 8 GB RAM
 - 120 GB 7.2k HDD
 - Infiniband connectivity
 - **Real-Time Forecasting**
 - CRAY CX1 Chassis
 - 8 Compute Nodes
 - Each node contains:
 - 8 Intel Xeon X5472 Cores
 - 2.33 GHz
 - 8 GB RAM
 - 120 GB 7.2k HDD
 - Infiniband connectivity

Research and Development
- Data Assimilation
- Land Information System
- Model Parameterizations
- Lightning Predictive
- Cloud Skies
- New Diagnostic Fields

Real-Time Forecasting
- Box-time Forecast
- New Diagnostic Fields
- Post-Processor
- Ensemble Member Support
- New Validation Metrics
- Participates in NASA Testbeds

SPoRT “Weather in a Box” Software

- High-resolution forecasts will be generated using the NASA Unified Weather Research and Forecasting (NU-WRF) modeling suite, which includes:
 - Advanced Research WRF (WRF-ARW)
 - NASA Land Information system (LIS) with internal coupling
 - NCAR Model Evaluation Tools (MET) Package
 - Goddard Chemistry Aerosol Radiation and Transport (GODDART)
 - Goddard Satellite Data Simulator Unit (SDSU)
 - Unique diagnostic fields for severe weather forecasting
 - Lightning forecasting capabilities based upon cloud microphysics
 - WRF Pre- and Post-Processors

Hypothetical Forecast Cycle Example: June 17, 2010

- 0000 UTC WRF Forecast
- 0600 UTC WRF Forecast
- 1200 UTC WRF Forecast
- 1800 UTC WRF Forecast

SSTs, Soil Moisture, and GVF
- High resolution, accurate surface water temperatures for coastal processes and moisture return.
- Soil moisture and greenness vegetation fractions derived from the NDVI to improve evapotranspiration and land contributions to low level moisture sources.

AIRS Profile Assimilation
- AIRS profiles contribute moisture and temperature data above cloud top to adjust model initial conditions.
- Above: Warm colors represent widespread, contribution of AIRS data in cloud-free conditions.
- Available on orbital times between the 00/12 UTC rawinsonde network.

Summary
- SPoRT’s new “Weather in a Box” resources will provide weather research and forecast modeling capabilities for real-time application.
- Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities.
- By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.

Acknowledgements
- SPoRT modeling clusters were provided by Dr. Tsengdar Lee, High End Computing Program Manager at NASA Headquarters.
- Software installation and configuration was performed by NASA Goddard Space Flight Center under the guidance of Tom Clune.
- Local software and installation support at NASA Marshall Space Flight Center was performed and managed by Rita Edwards and David Cross.